# Final Probability and Statistics AESB1212 Practice Exam

Only the use of a non-graphical calculator and a clean copy of the formula sheet is allowed.

This exam consists of nine multiple choice questions and three open questions. You should answer the open questions on the exam sheet.

**Grade:** Every correct multiple choice question counts for 2 points; for the open questions, points are denoted per part. Then:

 ${\rm Grade} = \frac{MC + OQ}{4} + 1,$ 

where MC is the amount of points scored for the multiple choice part and OQ for the open questions part.

**Explanation MC sheet:** Colour the boxes with a pencil. Fill in the version, course code, your name and student number. The latter should be ticked as well. Finally, sign the sheet with your signature.

#### Version 1

1.  $X_1, X_2, \ldots, X_{100}$  are i.i.d. random variables, having a U(0,6) distribution. The sum  $\sum_{i=1}^{100} X_i$  has approximately the following distribution:

**A.** N(300, 300)

**B.** N(200, 600)

 $\mathbf{C.}\ U(300,600)$ 

**D.** N(300, 200)

**E.** N(200, 300)

**F.** U(0,600)

2. Let X have a Exp(2) distribution. Using Chebyshev's inequality it holds that:

**A.**  $P(|X - \frac{1}{2}| < 2) \le \frac{1}{4}$ 

**B.**  $P(|X-2|<2) \ge \frac{15}{16}$ 

C.  $P(|X - \frac{1}{2}| < 2) \le \frac{1}{16}$ 

**D.**  $P(|X-2|<2) \ge \frac{3}{4}$ 

**E.**  $P(|X - \frac{1}{2}| < 2) \ge \frac{15}{16}$ 

**F.**  $P(|X-2|<2) \le \frac{1}{16}$ 

- 3. Consider the following two statements:
  - (I) If a random sample becomes twice as large and all other factors stay equal, then a confidence interval becomes twice as small.
  - (II) A Type II error occurs if the null hypothesis is falsely not rejected.

Which of these statements is/are true?

A. Both

B. None

C. Only (I)

D. Only (II)

4. The following values of the empirical distribution function of a certain dataset are given:

If you would draw an histogram of this dataset, what would be the height of bin (2,4]?

A.0.20

B. 0.30

C.0.50

D.0.40

**E.** 0.35

F. 0.25

5. Let  $T_1$  and  $T_2$  be two independent unbiased estimators for  $\theta$ . It is given that  $Var(T_1) = 1$  and  $Var(T_2) = 2$ . Consider the following new estimator for  $\theta$ :  $T_3 = 2T_1 - T_2$ .

What is the mean squared error of  $T_3$ ?

**A.** 2

 $\mathbf{B}.0$ 

C.  $4 + \theta^2$ 

**D.** 6

**E**. 4

 $\mathbf{F}. \theta^2$ 

6. Let  $X_1, \ldots, X_n$  be a random sample from a  $Pois(\mu)$  distribution. Consider the following two estimators for  $e^{-\mu} = P(X_i = 0)$ :

$$S = \frac{\#\{X_i = 0\}}{n}$$
 and  $T = e^{-\bar{X}_n}$ ,

where we use #A to denote the number of elements in A. Define the bias of an estimator T as  $\text{Bias}[T] = \text{E}[T] - \theta$ .

Then it is the case that

- A. S and T are both unbiased estimators
- B. S is unbiased and T has a negative bias
- C. T is unbiased and S has a negative bias
- **D.** S is unbiased and T has a positive bias
- E. T is unbiased and S has a positive bias
- F. S and T are both biased
- 7. Consider the following ordered dataset:

$$0 \quad 1 \quad 3 \quad 3 \quad 4 \quad 5 \quad 5 \quad 5 \quad 7 \quad 12$$

Which boxplot below corresponds to the given dataset?



8. We model the measurement X of the speed of a car at the highway as a normally distributed random variable with parameters  $\mu = v$  (km/h) and  $\sigma^2 = 25$ , where v is the exact speed of the car. To check whether the driver is driving faster than 130 km/h, we test  $H_0: v = 130$  against  $H_1: v > 130$ . The test statistic is the measurement X.

Furthermore, the null hypothesis is rejected (and the driver receives a speeding ticket) if the measured speed is 136 km/h or higher.

What is then the value of  $P_{II}$ , the probability of an error of type II, for a driver whose exact speed is 132 km/h?

**A.** 
$$P_{II} = 0.8888$$

**B.** 
$$P_{II} = 0.7881$$

$$\mathbf{C.}\ P_{II} = 0.4364$$

**D.** 
$$P_{II} = 0.1112$$

**E.** 
$$P_{II} = 0.5636$$

**F.** 
$$P_{II} = 0.2119$$

9. Consider 100 batteries. The lifetimes of the batteries are i.i.d. random variables with expectation  $\mu=100$  hours and  $\sigma^2=225$ .

Approximate the probability that the total lifetime of the 100 batteries is less than 10150 hours.

A.0.8413

 $\mathbf{B.}\ 0.1587$ 

C.0.6103

**D.** 0.3897

**E.** 0.5398

**F.** 0.4602

y + - 3

A Part of the

Lasty and the analysis

The state of the s

an volumble.

13 - 3 Mrs. R.

\$ 13

### Final Probability and Statistics AESB1212 Practice Exam

| Last name, initials: | Grade: |
|----------------------|--------|
| Student number:      |        |

# Open questions

ALWAYS MOTIVATE YOUR ANSWERS AND WRITE NEATLY.

- 1. The time instants of incoming request at a data server can be modelled with a Poisson process. Let  $S_n$  be the number of requests in n minutes and let  $\lambda$  be the intensity (requests per minute) of the Poisson process.
  - (a) (3 points) Use the Central Limit Theorem to deduce that if n is large, then  $S_n$  approximately has a normal distribution. Also specify its parameters.

Let  $X_i$  be the number of requests in the i-th minute.  $S_n = X_n + X_2 + ... + X_n$   $X_1, X_{21-n}, X_n$  are i.i.d.  $Pois(\lambda)$  random variables.

By the CLT,  $S_n$  is approximately normal for n large.  $IE[S_n] = IE[X_1 + X_2 + ... + X_n] = n IE[X_n] = n \lambda$   $Var(S_n) = n Var(X_1) = n \lambda$ For large n,  $S_n$  is well approximated by  $N(n\lambda, n\lambda)$ .

Recall that  $\lambda$  is the intensity (requests per minute) of the Poisson process. You want to test  $H_0: \lambda = 1$  against  $H_1: \lambda > 1$ .

(b) (3 points) Suppose that  $S_{60} = 72$  requests were counted in 60 minutes. Use part (a) to compute the corresponding p-value.

If you did not solve part (a) you may assume that  $S_{60} \stackrel{d}{\approx} N(50, 50)$ .

Large values are in favour of  $H_1: \lambda > 1$ .

The p-value is given by  $P(S_0 > 72)$ .

Under to we have that  $S_0$  is close to  $Y_1M_0, \omega$ .

Let  $Z_1M_0, 1$ . P(Y > 72) = P(Y - 60 > 72 - 60) = P(Z > 12 ) R(Y > 72) = 0.0606. The p-value is close to 0.0606.

- 2. In a factory bags of crisps are produced. The amount of crisps machine Apollo puts in a bag has a normal distribution with unknown expectation  $\mu_A$  (gram) and known variance  $\sigma_A^2 = 16$ . To ensure the quality, a random sample of 25 bags filled by Apollo is taken weekly. The sample mean of the data set of last week is  $\bar{x}_{25} = 148.22$  gram and the sample standard deviation is  $s_{25} = 4.36$  gram.
  - (a) (3 points) Compute the two-sided 90% confidence interval for  $\mu_A$ .

T is known, so  $100(n-\alpha)\%$  confidence interval for  $M_A$  is given by  $X_h \pm \frac{7}{2} \times \sqrt{n}$ . Here n = 25, x = 0.10 and  $G_A = 4$ So we get  $X_{75} \pm \frac{7}{2} = 148.22 \pm 1.645 \pm 148.22 \pm 1.316$ . This gives (146.90, 149.54) as 90% confidence interval for  $M_A$ .

The factory has recently acquired a new machine, called Beethoven. The amount of crisps filled by Beethoven has a normal distribution with expectation  $\mu_B$  gram and variance  $\sigma_B^2 = 9$ . The producer claims to fill 150 gram of crisps in the bags.

To check Beethoven a random sample of size 25 was taken last week. The sample mean of this dataset is  $\bar{x}_{25} = 148.47$  gram and the sample standard deviation is  $s_{25} = 3.25$  gram.

(b) (4 points) Formulate the relevant hypotheses and test statistic (with distribution!) and use a suitable statistical test to investigate whether Beethoven is putting too few crisps in the bags at a significance level of  $\alpha = 0.05$ .

Ho:  $\mu_8 = 150$ ,  $H_1$ :  $\mu_8 < 150$ . The variance is known, so the fest statistic is  $T = \frac{K_1 - \mu}{51/\mu^2} \approx M_0 = 1$ , under Ho.

We have a left-sided test and  $\alpha = 0.05$ , so the critical value is  $\pm 0.95 = -20.05 = -1.645$ .

Observed value of fest statistic  $t = \frac{148.47 - 150}{315} = -7.55$ Since t = -7.55 = -1.645 = 20.05 we reject tho.

- 3. Let the random variable X be the waiting time until the next student has to go to the toilet. Assume that X has an  $Exp(\lambda)$  distribution with unknown  $\lambda$ . We test  $H_0: \lambda = 0.2$  against  $H_1: \lambda < 0.2$ , where we use X as test statistic.
  - (a) (3 points) Determine the critical region for this test at significance level  $\alpha = 0.05$ .

Large values of X are in favour of  $H_1: \lambda < 0.2$ So the critical region is of the form  $E_{r_1}, \infty$ .

Since x = 0.05, we have to solve  $P(X7, C_r) = 0.05$ . Under  $H_0: \lambda = 0.7$  we have  $X = E_{r_1} = 0.05$ . Under  $H_0: \lambda = 0.7$  we have  $X = E_{r_1} = 0.05$ .  $Y(X7, C_r) = e^{-0.2 \cdot C_r} = 0.05$ which yields  $C_r = 0.05$ Which yields  $C_r = 0.05$ So the critical region is  $E_r = 0.05$ 

(b) (2 points) Suppose that the observed value for X is x=10. Compute the p-value for this realisation.

Large values of X are again in favour of  $H_1: \lambda < 0.2$ So the p-value is  $P(X \not> 10)$ Again  $X = E_X p(0.2)$  under  $H_0$ , so we get p-value =  $P(X \not> 10) = e^{-0.2 \cdot 10} = e^{-2} = 0.735$ 

1. According to CLT: 
$$\{x, x, M(y, y, 0^{-1}), Where}$$
 $M = | IE[X_1] \text{ and } 0^2 = Var(X_1). \text{ Here } u = 100,$ 
 $M = 3 \text{ and } 0^2 = \frac{1}{12} (b-a)^2 = \frac{6^2}{12} = 3.50 \text{ E}[X_1 M(30,30)]$ 

2. According to Chesysher's inequality

 $P(|X-1|, 2) \leq Var(X_1) = 16$ 

3. When the random sample becomes twice as large, the length of a confidence interval is divided by  $VeT$  to the following that we stay with  $Ve$  although  $Ve$  is true, i.e. we do not reject and this is folse. Thus only (I).

4. height =  $\frac{4}{5}[X_1, X_2 \in (2, T)] = \frac{4}{5}[X_1, X_2 \in T] - \frac{4}{5}[X_1, X_2 \in T]$ 
 $= \frac{1}{5}[VeT] - 0 = 2 \text{ E}[T_1] - IE[T_2] - 0 = 0$ 
 $Var(T_3) = Var(T_1 - T_2) = Var(T_1) + Var(T_2) = 6$ 
 $= Var(T_3) = Var(T_3) + (Bias(T_3))^2 = 6$ 

6.  $= Var(T_3) = Var(T_3) + (Bias(T_3))^2 = 6$ 

8.  $= Var(T_3) = Var(T_3) + (Var(T_3) + Var(T_4) = 2.75$ 

8.  $= Var(T_3) = Var(T_3) + (Var(T_4) + Var(T_4) = 2.75$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 2.75$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 2.75$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 2.75$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 2.75$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 2.75$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 2.75$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 0.75 \cdot (3-4) = 2.5$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 0.75 \cdot (3-4) = 2.5$ 

8.  $= Var(T_4) = Var(T_4) + Var(T_4) = 0.75 \cdot (3-4) = 2.5$ 

8.  $= Var(T_4) = Var(T_4) = Var(T_4) = Var(T_4) = 0.5$ 
 $= Var(T_4) = Var(T_4) = Var(T_4) = 0.75$ 
 $= Var(T_4) = Var(T_4) = Var(T_4) = Var(T_4) = Var(T_4) = Var(T_4)$ 
 $= Var(T_4) = Va$ 

# Answers multiple choice:

- 1 A.
- **2** E.
- **3** D.
- 4 A.
- **5** D.
- **6** D.
- **7** C.
- 8 B.
- 9 A.