- It's not allowed to use a calculator or a mathematical table.
- Each answer should be clearly motivated.
- Your grade is obtained by rounding (score +3)/3 to one decimal place.
- Points:

Ex. 1a	$2 \frac{1}{2}$	Ex. 2	4	Ex. 3	3	Ex. 4	4	Ex. 5	4	Ex. 6a	3
Ex. 1b	$1 \frac{1}{2}$									Ex. 6b	2
Ex. 1c	3										

1. Let $A=\left[\begin{array}{rrr}1 & 2 & a \\ -2 & 8 & 2 \\ 2 & -2 & 1\end{array}\right]$ where $a \in \mathbb{R}$.
a. For what value(s) of a is vector $\underline{p}=\left[\begin{array}{r}3 \\ -6 \\ 7\end{array}\right]$ in $\operatorname{COL}(A)$?
b. For what value(s) of a is vector $q=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]$ in $N U L(A)$?
c. Consider matrix $B=\left[\begin{array}{rrr}1 & 2 & b \\ -2 & 4 b & 2 \\ b & -2 & 1\end{array}\right]$ and find all possible values of $\operatorname{rank}(B)$ as b varies.
2. Determine a basis for the subspaces $H=\left\{\left.\left[\begin{array}{l}a \\ a \\ b\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, a, b \in \mathbb{R}\right\}$ and H^{\perp} of \mathbb{R}^{3}. (by H^{\perp} is meant the orthogonal complement of H in \mathbb{R}^{3})
3. Find an orthogonal basis for \mathbb{R}^{3} that includes the vectors $\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$ and $\left[\begin{array}{l}6 \\ 1 \\ 4\end{array}\right]$. p.t.o.
4. Prove that if vector \underline{u} is orthogonal to both the vectors \underline{v} and \underline{w}, then \underline{u} is orthogonal to every vector \underline{h} in $H=\operatorname{Span}\{\underline{v}, \underline{w}\}$.
5. Consider $\underline{v}=\left[\begin{array}{r}1 \\ 3 \\ -1\end{array}\right]$ and subspace $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$ of \mathbb{R}^{3} and decompose \underline{v} into the sum of a vector $\underline{w} \in W$ and a vector $\underline{u} \in W^{\perp}$ (the orthogonal complement of W in \mathbb{R}^{3}).
6. A certain experiment produces the data: | t | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| y | 2 | 3 | 3 | 4 | .

a. Find the least-squares curve of the form $y=\alpha+\beta(t-1)^{2}+\gamma \sin \left(\frac{\pi}{2} t\right)$ to fit the given data.
b. Determine the least-squares error of your approximation.

