

Delft University of Technology, EEMCS faculty Examination Mathematics 2, AESB1210 (test 3) Tuesday, January 27th, 2015, 10.00-12.00

- It's not allowed to use a calculator or a mathematical table.
- Each answer should be clearly motivated.
- Your grade is obtained by rounding (score+3)/3 to one decimal place.
- Points:

Ex. 1a	$2\frac{1}{2}$	Ex. 2	4	Ex. 3	3	Ex. 4	4	Ex. 5	4	Ex. 6a	3
Ex. 1b	$1\frac{1}{2}$									Ex. 6b	2
Ex. 1c	3										

1. Let $A = \begin{bmatrix} 1 & 2 & a \\ -2 & 8 & 2 \\ 2 & -2 & 1 \end{bmatrix}$ where $a \in \mathbb{R}$. **a**. For what value(s) of *a* is vector $\underline{p} = \begin{bmatrix} 3 \\ -6 \\ 7 \end{bmatrix}$ in *COL(A)*? **b**. For what value(s) of *a* is vector $\underline{q} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ in *NUL(A)*? **c**. Consider matrix $B = \begin{bmatrix} 1 & 2 & b \\ -2 & 4b & 2 \\ b & -2 & 1 \end{bmatrix}$ and find all possible values of rank(B) as b varies. **2**. Determine a basis for the subspaces $H = \left\{ \begin{vmatrix} a \\ a \\ b \end{vmatrix} \in \mathbb{R}^3 | a, b \in \mathbb{R} \right\}$ and H^{\perp} of \mathbb{R}^3 . (by H^{\perp} is meant the orthogonal complement of H in \mathbb{R}^3) **3.** Find an orthogonal basis for \mathbb{R}^3 that includes the vectors $\begin{vmatrix} 1 \\ 2 \\ -2 \end{vmatrix} = \begin{vmatrix} 6 \\ 1 \\ 4 \end{vmatrix}$.

p.t.o.

4. Prove that if vector \underline{u} is orthogonal to both the vectors \underline{v} and \underline{w} , then \underline{u} is orthogonal to every vector \underline{h} in $H = Span\{\underline{v}, \underline{w}\}$.

5. Consider
$$\underline{\nu} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
 and subspace $W = Span \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$

of \mathbb{R}^3 and decompose $\underline{\nu}$ into the sum of a vector $\underline{w} \in W$ and a vector $\underline{u} \in W^{\perp}$ (the orthogonal complement of W in \mathbb{R}^3).

- 6. A certain experiment produces the data: $\begin{bmatrix} t & 0 & 1 & 2 & 3 \\ y & 2 & 3 & 3 & 4 \end{bmatrix}$.
 - **a**. Find the least-squares curve of the form $y = \alpha + \beta(t-1)^2 + \gamma \sin(\frac{\pi}{2}t)$ to fit the given data.
 - **b**. Determine the least-squares error of your approximation.