- It's not allowed to use a calculator or a mathematical table.
- Each answer should be clearly motivated.
- Note: Each test takes 1 hour so should be submitted after 60 minutes. After handing in your working out of a test it's allowed to take another test.
- Your grade is obtained by rounding $\left(\operatorname{score}+2 \frac{1}{2}\right) / 2 \frac{1}{2}$ to one decimal place.
- Points:

Ex. 1	4	Ex. 2	4	Ex. 3	3	Ex. 4a	$5 \frac{1}{2}$	Ex. 5	4
						Ex. 4b	2		

1. If C is a 6×6 - matrix and $\operatorname{Nul}(C)=\{\underline{0}\}$, what can be said about solutions of equations of the form $C \underline{x}=\underline{b}$ for $\underline{b} \in \mathbb{R}^{6}$?
2. Given $B=\left[\begin{array}{rr}\beta & -2 \\ 4 \frac{1}{2} & -\beta\end{array}\right]$ where $\beta \in \mathbb{R}$. Find the value(s) of β such that $N U L(B)=C O L(B)$.
3. Let $\underline{v}=\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 0\end{array}\right]$ and $H=\left\{\underline{x} \in \mathbb{R}^{4} \mid \underline{x} \perp \underline{v}\right\}$. Find a basis for H.
4. Let $A=\left[\begin{array}{rrrr}1 & 1 & 0 & -1 \\ 0 & 1 & -1 & -2 \\ 2 & -1 & 3 & -2 \\ 2 & 0 & 2 & -1\end{array}\right]$ and $\underline{d}=\left[\begin{array}{l}3 \\ 4 \\ 5 \\ 6\end{array}\right]$.
a. Write vector \underline{d} as the sum of a vector $\underline{v} \in R O W(A)$ and a vector $\underline{w} \in R O W(A)^{\perp}$, the orthogonal complement of $\operatorname{ROW}(A)$ in \mathbb{R}^{4}.
b. Find $\operatorname{dim}\left(N U L\left(A^{T}\right)\right)$, the dimension of $N U L\left(A^{T}\right)$.
5. A certain experiment produces the data: | x | 1 | 4 | 9 | 16 |
| :--- | :--- | :--- | :--- | :--- |
| y | 0 | 2 | 4 | 5 | . Find the least-squares curve of the form $y=\alpha \sqrt{x}+\beta \cos (\pi x)$ to fit the given data.
