Delft University of Technology, EEMCS faculty Examination Mathematics 2, AESB1210 (test 2)
Friday, April 17th, 2015, 9.00-12.00

- It's not allowed to use a calculator or a mathematical table.
- Each answer should be clearly motivated.
- Note: Each test takes 1 hour so should be submitted after 60 minutes. After handing in your working out of a test it's allowed to take another test.
- Your grade is obtained by rounding $($ score +3$) / 3$ to one decimal place.
- Points:

Ex. 1	3	Ex. 2	4	Ex. 3	3	Ex. 4	3	Ex. $5 \mathrm{a}+5 \mathrm{~b}$	6	Ex. 6	3	Ex. 7	3	Ex. 8	2

1. Suppose a and b are real constants and the system

$$
\begin{cases}2 x_{1}+4 x_{2}+x_{3} & =f \\ a x_{1}+9 x_{2}+3 x_{3} & =g \\ 6 x_{1}+12 x_{2}+b x_{3} & =h\end{cases}
$$

is consistent for all possible values of f, g and h. What does this imply for the coeficients a and b ?
2. Let $\underline{a}_{1}, \underline{a}_{2}$ and \underline{a}_{3} be vectors in \mathbb{R}^{n} such that $\left\{\underline{a}_{1}, \underline{a}_{2}\right\}$ is linearly independent and $\underline{a}_{3}=5 \underline{a}_{1}-8 \underline{a}_{2}$. Suppose $A=\left[\underline{a}_{1} \underline{a}_{2} \underline{a}_{3}\right]$, so $\underline{a}_{1}, \underline{a}_{2}$ and \underline{a}_{3} are the columns of matrix A, and $\underline{b}=\underline{a}_{1}-\underline{a}_{2}+6 \underline{a}_{3}$.
Write the solution set of $A \underline{x}=\underline{b}$ in parametric vector form.
3. Prove or disprove: If \underline{v}_{1} and \underline{v}_{2} are two vectors in \mathbb{R}^{n} and $H=\operatorname{Span}\left\{\underline{v}_{1}+\underline{v}_{2}, \underline{v}_{1}-\underline{v}_{2}\right\}$ then $\underline{v}_{2} \in H$.
4. If the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies $T\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{r}-1 \\ 2\end{array}\right]$, find $T\left(\left[\begin{array}{l}4 \\ 3\end{array}\right]\right)$.
5. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be given by $T\left(\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]\right)=\left[\begin{array}{r}a+b+2 c+3 d \\ 2 c+2 d \\ a+b+c+2 d\end{array}\right]$.
a. Investigate whether transformation T is onto.
b. Investigate whether transformation T is one-to-one.
6. Solve the matrix equation $A(B+C X)=D$ for X (You may assume that all the matrices are invertible $n \times n-$ matrices).
7. Prove or disprove: If matrix A is invertible and if (real number) $r \neq 0$ then matrix $r A$ is invertible and $(r A)^{-1}=r A^{-1}$.
8. Suppose that M is an invertible matrix such that the inverse of $5 M$ is $\left[\begin{array}{ll}5 & 6 \\ 5 & 5\end{array}\right]$. Find M.

