

Delft University of Technology, EEMCS faculty Examination Mathematics 2, AESB1210 (test 2) Friday, April 17th, 2015, 9.00-12.00

- It's not allowed to use a calculator or a mathematical table.
- Each answer should be clearly motivated.
- Note: Each test takes 1 hour so should be submitted after 60 minutes. After handing in your working out of a test it's allowed to take another test.
- Your grade is obtained by rounding (score+3)/3 to one decimal place.
- Points:

Ex. 1 3 Ex. 2 4 Ex. 3 3 Ex. 4 3 Ex. 5a+5b 6 Ex. 6 3 Ex. 7 3 Ex. 8 2

1. Suppose *a* and *b* are real constants and the system

$$\begin{cases} 2x_1 + 4x_2 + x_3 &= f\\ ax_1 + 9x_2 + 3x_3 &= g\\ 6x_1 + 12x_2 + bx_3 &= h \end{cases}$$

is consistent for all possible values of f, g and h. What does this imply for the coeficients a and b?

- 2. Let <u>a</u>₁, <u>a</u>₂ and <u>a</u>₃ be vectors in ℝⁿ such that {<u>a</u>₁, <u>a</u>₂} is linearly independent and <u>a</u>₃ = 5<u>a</u>₁ 8<u>a</u>₂. Suppose A = [<u>a</u>₁ <u>a</u>₂ <u>a</u>₃], so <u>a</u>₁, <u>a</u>₂ and <u>a</u>₃ are the columns of matrix A, and <u>b</u> = <u>a</u>₁ <u>a</u>₂ + 6<u>a</u>₃. Write the solution set of A<u>x</u> = <u>b</u> in *parametric vector form*.
- **3**. *Prove or disprove*: If \underline{v}_1 and \underline{v}_2 are two vectors in \mathbb{R}^n and $H = Span \{\underline{v}_1 + \underline{v}_2, \underline{v}_1 \underline{v}_2\}$ then $\underline{v}_2 \in H$.

4. If the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies $T\left(\begin{vmatrix} 2 \\ 1 \end{vmatrix} \right) = \begin{vmatrix} 3 \\ 4 \end{vmatrix}$ and

 $T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right) = \left[\begin{array}{c}-1\\2\end{array}\right], \text{ find } T\left(\left[\begin{array}{c}4\\3\end{array}\right]\right).$ 5. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be given by $T\left(\left[\begin{array}{c}a\\b\\c\\d\end{array}\right]\right) = \left[\begin{array}{c}a+b+2c+3d\\2c+2d\\a+b+c+2d\end{array}\right].$

- **a**. Investigate whether transformation T is onto.
- **b**. Investigate whether transformation *T* is one-to-one.

p.t.o.

- **6.** Solve the matrix equation A(B + CX) = D for X (You may assume that all the matrices are invertible $n \times n$ matrices).
- 7. *Prove or disprove:* If matrix A is invertible and if (real number) $r \neq 0$ then matrix rA is invertible and $(rA)^{-1} = rA^{-1}$.
- **8**. Suppose that *M* is an invertible matrix such that the inverse of 5M is $\begin{bmatrix} 5 & 6 \\ 5 & 5 \end{bmatrix}$.

Find M.