For the first eight exercises, unless stated otherwise, only the answers are required. Use the answer form for this. No calculators are allowed. (Thinking may preclude long calculations.) Credits: 1-7: (18), 8(8), 9(10) and 10(9)

1. The inverse of the matrix $A = \begin{bmatrix} 3 & 6 & 8 \\ 4 & 2 & 7 \\ 2 & 7 & 6 \end{bmatrix}$ is given by $C = \frac{1}{21} \begin{bmatrix} -37 & 20 & 26 \\ -10 & 2 & 11 \\ 24 & -9 & -18 \end{bmatrix}$. Find the inverses of the matrices $B_1 = \begin{bmatrix} 3 & 4 & 2 \\ 6 & 2 & 7 \\ 8 & 7 & 6 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 6 & 12 & 16 \\ 8 & 4 & 14 \\ 4 & 14 & 12 \end{bmatrix}$. 2. Check whether $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of the matrix $A = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$. If so, for which eigenvalue?

$$\text{natrix} \quad D = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

 $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$. (It might be a good idea to do it in two ways and compare the answers.)

4. For the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ it is given that $T\left(\begin{bmatrix} 0\\2 \end{bmatrix} \right) = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$

3. Find the determinant of the r

and $T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}3\\2\\0\end{bmatrix}$. Find the standard matrix A of this transformation.

- 5. To find the line $y = \alpha + \beta x$ that best fits (in the least squares sense) the four points (1,0), (3,2), (-2,-1), (-1,-1), which set of (normal) equations must be solved?
- 6. **a.** Find all (possibly complex) eigenvalues of the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -2 & -1 \\ 1 & 0 & 3 \end{bmatrix}$. **b.** Is A diagonalizable? Give a short argument.

7. Find the orthogonal projection of the vector $\mathbf{y} = \begin{bmatrix} 9\\ 2\\ -4 \end{bmatrix}$ onto the subspace of \mathbb{R}^3 spanned by the set $\left\{ \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} \right\}$. Note that these two vectors are **not** orthogonal.

- 8. For each statement indicate whether it is true or false and give a short argument (or a counter example) to support your answer.
 - **a.** If A is a matrix with the property $A^3 = 0$, then A has the eigenvalue 0.
 - **b.** Suppose \mathbf{v} is an eigenvector of both the matrix A and the matrix B. Then \mathbf{v} will also be an eigenvector of the matrix AB.
 - **c.** The product of two 3×3 symmetric matrices is again symmetric.
 - **d.** If A = QR, where Q is a matrix with orthonormal columns, and R is an invertible upper triangular matrix, then $A(A^TA)^{-1}A^T = QQ^T$.

9. Given are a matrix and two vectors:

$$A = \begin{bmatrix} 1 & 1 & -1 & 2 & 5 \\ 1 & 2 & -1 & -1 & -3 \\ 2 & 1 & -2 & 0 & 4 \\ -1 & 1 & 1 & 3 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4 \\ -3 \\ 8 \\ -7 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 2 \\ -2 \\ 1 \\ -2 \\ 1 \end{bmatrix}.$$

You may use
$$\begin{bmatrix} 1 & 1 & -1 & 2 & 5 & | & 4 \\ 1 & 2 & -1 & -1 & -3 & | & -3 \\ 2 & 1 & -2 & 0 & 4 & | & 8 \\ -1 & 1 & 1 & 3 & 1 & | & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 2 & 5 & | & 4 \\ 0 & 1 & 0 & -3 & -8 & | & -7 \\ 0 & 0 & 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

- **a.** Find all solutions of the equation $A\mathbf{x} = \mathbf{b}$.
- **b.** Check whether \mathbf{v} is in the null space of A.
- **c.** Find a basis for the null space of *A*. (Preferably *without* starting a complete row reduction process again.)
- d. Find a basis for the column space of A.Is b in this column space?
- **e.** Give the definition of an onto function (not necessarily linear) from \mathbb{R}^n to \mathbb{R}^m . (A definition is <u>not</u> an informal description.)
- **f.** Is the linear transformation T with the standard matrix A onto?

10. Given are the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$$
 and the vector $\mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ -5 \\ -3 \end{bmatrix}$

- **a.** Give an orthogonal basis for the column space of A.
- **b.** Give an orthogonal basis for the orthogonal complement of $\operatorname{Col} A$.
- **c.** Find $\mathbf{v} \in \operatorname{Col} A$ and $\mathbf{w} \in (\operatorname{Col} A)^{\perp}$ such that $\mathbf{b} = \mathbf{v} + \mathbf{w}$.
- **d.** Find the distance of **b** to $(\operatorname{Col} A)^{\perp}$. (Use at least *one sentence <u>in words</u>* to explain what is going on.)

SOLUTIONS

1 Note that
$$B_1 = A^T$$
 and $B_2 = 2A$ (*Thinking precludes*;-))
 $B_1^{-1} = C^T = \frac{1}{21} \begin{bmatrix} -37 & -10 & 24 \\ 20 & 2 & -9 \\ 26 & 11 & -18 \end{bmatrix}$ and $B_2^{-1} = \frac{1}{2}C = \frac{1}{42} \begin{bmatrix} -37 & 20 & 26 \\ -10 & 2 & 11 \\ 24 & -9 & -18 \end{bmatrix}$.

2 $A\mathbf{v} = \begin{bmatrix} 10\\5 \end{bmatrix} = 5\mathbf{v}$, so \mathbf{v} is an eigenvector for eigenvalue 5 **3** $\det(D) = -2$

4 Obviously,
$$T(\mathbf{e}_2) = \frac{1}{2}T(\left(\begin{bmatrix} 0\\2 \end{bmatrix}\right)) = \frac{1}{2}\begin{bmatrix} 1\\1\\-1 \end{bmatrix} = \begin{bmatrix} 1/2\\1/2\\-1/2 \end{bmatrix}$$
,
and from $\mathbf{e}_1 = \begin{bmatrix} 1\\2 \end{bmatrix} - \begin{bmatrix} 0\\2 \end{bmatrix}$, it follows that $T(\mathbf{e}_1) = \begin{bmatrix} 3\\2\\0 \end{bmatrix} - \begin{bmatrix} 1\\1\\-1 \end{bmatrix} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$.
Then $[T] = \begin{bmatrix} T(\mathbf{e}_1) \ T(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} 2 \ 1/2\\1 \ 1/2\\1 \ -1/2 \end{bmatrix}$

5 $\begin{bmatrix} 4 & 1 \\ 1 & 15 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \end{bmatrix}$. Or: $\begin{cases} 4\alpha + & \beta = & 0 \\ \alpha + & 15\beta = & 9 \end{cases}$

6a $\lambda_1 = -2; \quad \lambda_{2,3} = 2 \pm \sqrt{2}.$

6b Since A has three different real eigenvalues, there will be three independent eigenvectors, so yes, A is diagonalizable.

7 The solution of
$$\begin{bmatrix} 2 & 1 & 5 \\ 1 & 2 & -2 \end{bmatrix}$$
: $\hat{\mathbf{x}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$; projection: $A\hat{\mathbf{x}} = \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$.

8a TRUE: $det(A^3) = (det A)^3 = 0$, so det(A - 0I) = 0, from which it follows immediately that A has eigenvalue 0.

Alternative: If $A^3 = 0$ and $A\mathbf{v} = \lambda \mathbf{v}$ for $\mathbf{v} \neq \mathbf{0}$, then on the one hand $A^3\mathbf{v} = 0\mathbf{v} = \mathbf{0}$, and on the other hand $A^3\mathbf{v} = A^2A\mathbf{v} = A^2\lambda\mathbf{v} = \ldots = \lambda^3\mathbf{v}$, so $\lambda^3\mathbf{v} = \mathbf{0}$. Since it was assumed that $\mathbf{v} \neq \mathbf{0}$ it follows that $\lambda^3 = 0$, which implies that $\lambda = 0$.

Quite a few people assumed that $A^3 = 0$ implies A = 0, or that A should have 0's on its diagonal. Where did they get that 'wisdom' from??

For instance, $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -3 & 2 \\ -1 & -3 & 2 \end{bmatrix}$ all have the property $A^3 = 0$.

8b TRUE: Simple!! $A\mathbf{v} = \lambda_1 \mathbf{v}$ and $B\mathbf{v} = \lambda_2 \mathbf{v}$ imply that $AB\mathbf{v} = A\lambda_2 \mathbf{v} = \lambda_1 \lambda_2 \mathbf{v}$, which shows that \mathbf{v} is an eigenvector of AB for the eigenvalue $\lambda_1 \lambda_2$.

8c FALSE: e.g.
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} \dots & 4 & \dots \\ 2 & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix}.$$

Almost any example will work, but some people chose complicated examples and then made one or more computation errors :-(

Also 2×2 counterexamples came up too often

8d TRUE: use the rules
$$Q^T Q = I$$
, and $(AB)^T = B^T A^T$:
 $(QR)((QR)^T(QR))^{-1}(QR)^T = (QR)(R^T Q^T QR)^{-1}(R^T Q^T) = QR(R^T R)^{-1}R^T Q^T = QRR^{-1}(R^T)^{-1}R^T Q^T = QQ^T$, since $RR^{-1} = I$ and $(R^T)^{-1}R^T = I$.

Note that A and Q in general will not be square matrices, so people that talk about A^{-1} or Q^{-1} live in a parallel universe.

9a Further row reducing the already reduced form:

$$\begin{bmatrix} 1 & 1 & -1 & 2 & 5 & | & 4 \\ 0 & 1 & 0 & -3 & -8 & | & -7 \\ 0 & 0 & 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 5 & 13 & | & 11 \\ 0 & 1 & 0 & -3 & -8 & | & -7 \\ 0 & 0 & 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 & 3 & | & 6 \\ 0 & 1 & 0 & 0 & -2 & | & -4 \\ 0 & 0 & 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Hence x_3 and x_5 can be taken as free variables, and the general solution in vector form becomes

$$\mathbf{x} = \begin{bmatrix} 6 \\ -4 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$

9b $A\mathbf{v} = \begin{bmatrix} 0\\ -4\\ 4\\ -8 \end{bmatrix} \neq \mathbf{0}$, so **no**, **v** is not in the null space of A.

9c The null space is the homogeneous part of the solution of the system $A\mathbf{x} = \mathbf{b}$.

The num space is the homogeneous part of the solution of th	0 0,0			×.	
	ſ	$\begin{bmatrix} 1 \end{bmatrix}$		[-3])
		0		2	
So no further calculations are needed! A (possible) basis:	{	1	,	0	}
		0		-2	
		0		1	

9d We can use the pive	ot co	lum	ns of	f A ,	whie	ch corr	espond	to the	pivot	columns	in the
row reduced matrix:		$\begin{bmatrix} 1 \\ 1 \\ 2 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}$,	$\begin{bmatrix} 2\\ -1\\ 0\\ 3 \end{bmatrix}$					

In part **a**. it was shown that $A\mathbf{x} = \mathbf{b}$ is consistent, so yes, vector **b** is in the column space of A.

9e For any vector \mathbf{y} in \mathbb{R}^4 there is at least one vector \mathbf{x} in \mathbb{R}^5 for which $T(\mathbf{x}) = \mathbf{y}$.

9f No, it is not: the range of T is the column space of A, and since the latter has dimension three, it is *smaller* than the whole \mathbb{R}^4 .

10a Gram-Schmidt:
$$\mathbf{b}_1 = \mathbf{a}_1$$
,
 $\mathbf{b}_2 = \mathbf{a}_2 - \hat{\mathbf{a}}_1 = \mathbf{a}_2 - \frac{\mathbf{a}_2 \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 = \begin{bmatrix} 2\\4\\1\\1 \end{bmatrix} - \frac{10}{10} \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} = \begin{bmatrix} 1\\3\\-1\\-1 \end{bmatrix}$.
Answer: $\{\mathbf{b}_1, \mathbf{b}_2\}$.

10b Dim $((\operatorname{Col} A)^{\perp}) = 4 - \operatorname{Dim}(\operatorname{Col} A) = 2$, so we need: two vectors that are orthogonal to the columns of A, and orthogonal to each other. One way is: first find a basis for $(\operatorname{Col} A)^{\perp}$ = Nul (A^T) and then use Gram-Schmidt. the vector $\mathbf{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$ is certainly orthogonal to Col A, and then we just need a gonal to span $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ This works a bit awkward here Alternative:

vector orthogonal to span{ $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ }:

$$\begin{bmatrix} 1 & 1 & 2 & 2 & | & 0 \\ 2 & 4 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 2 & | & 0 \\ 0 & 2 & -3 & -3 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 4 & | & 0 \\ 0 & 2 & 0 & -6 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 7 & | & 0 \\ 0 & 1 & 0 & -3 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \end{bmatrix}$$

We find a second orthogonal vector $\mathbf{a}_4 = \begin{bmatrix} -7 \\ 3 \\ 1 \\ 1 \end{bmatrix}$, and we can take the basis $\{\mathbf{a}_3, \mathbf{a}_4\}$.

10c (e.g.) **v** is the projection of **b** onto $\operatorname{Col} A$, for which we can use the *orthogonal* basis $\{\mathbf{b}_1, \mathbf{b}_2\}$:

$$\mathbf{v} = \frac{\mathbf{b} \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 + \frac{\mathbf{b} \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2 = \frac{-10}{10} \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} + \frac{24}{12} \begin{bmatrix} 1\\3\\-1\\-1 \end{bmatrix} = \begin{bmatrix} 1\\5\\-4\\-4 \end{bmatrix}, \text{ and then } \mathbf{w} = \mathbf{b} - \mathbf{v} = \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix}$$

10d **w** is the orthogonal projection of **b** onto $(\operatorname{Col} A)^{\perp}$. Thus dist(**b**, $(\operatorname{Col} A)^{\perp}$) = dist(**b**, **w**) = $||\mathbf{b} - \mathbf{w}|| = ||\mathbf{v}|| = \sqrt{1^2 + 5^2 + (-4)^2 + (-4)^2} = \sqrt{58}$.