For the first eight exercises, unless stated otherwise, only the answers are required.
Use the answer form for this. No calculators are allowed. (Thinking may preclude long calculations.)
Credits: 1-7: (18), $\boldsymbol{8}(8), \mathbf{9}(10)$ and $\mathbf{1 0 (9)}$

1. The inverse of the matrix $A=\left[\begin{array}{lll}3 & 6 & 8 \\ 4 & 2 & 7 \\ 2 & 7 & 6\end{array}\right]$ is given by $C=\frac{1}{21}\left[\begin{array}{ccc}-37 & 20 & 26 \\ -10 & 2 & 11 \\ 24 & -9 & -18\end{array}\right]$.

Find the inverses of the matrices $B_{1}=\left[\begin{array}{lll}3 & 4 & 2 \\ 6 & 2 & 7 \\ 8 & 7 & 6\end{array}\right] \quad$ and $\quad B_{2}=\left[\begin{array}{ccc}6 & 12 & 16 \\ 8 & 4 & 14 \\ 4 & 14 & 12\end{array}\right]$.
2. Check whether $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is an eigenvector of the matrix $A=\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]$. If so, for which eigenvalue?
3. Find the determinant of the matrix $D=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$. (It might be a good idea to do it in
two ways and compare the answers.)
4. For the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ it is given that $T\left(\left[\begin{array}{l}0 \\ 2\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$. Find the standard matrix A of this transformation.
5. To find the line $y=\alpha+\beta x$ that best fits (in the least squares sense) the four points $(1,0),(3,2)$, $(-2,-1),(-1,-1)$, which set of (normal) equations must be solved?
6. a. Find all (possibly complex) eigenvalues of the matrix $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -2 & -1 \\ 1 & 0 & 3\end{array}\right]$.
b. Is A diagonalizable? Give a short argument.
7. Find the orthogonal projection of the vector $\mathbf{y}=\left[\begin{array}{c}9 \\ 2 \\ -4\end{array}\right]$ onto the subspace of \mathbb{R}^{3} spanned by the set $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$. Note that these two vectors are not orthogonal.
8. For each statement indicate whether it is true or false and give a short argument (or a counter example) to support your answer.
a. If A is a matrix with the property $A^{3}=0$, then A has the eigenvalue 0 .
b. Suppose \mathbf{v} is an eigenvector of both the matrix A and the matrix B. Then \mathbf{v} will also be an eigenvector of the matrix $A B$.
c. The product of two 3×3 symmetric matrices is again symmetric.
d. If $A=Q R$, where Q is a matrix with orthonormal columns, and R is an invertible upper triangular matrix, then $A\left(A^{T} A\right)^{-1} A^{T}=Q Q^{T}$.

For the last two exercises you have to give complete solutions.
Answer the parts in the correct order!!
Use the first half of a double A4 sheet for exercise 9 and the other half for exercise 10 .
9. Given are a matrix and two vectors:

$$
\begin{gathered}
A=\left[\begin{array}{ccccc}
1 & 1 & -1 & 2 & 5 \\
1 & 2 & -1 & -1 & -3 \\
2 & 1 & -2 & 0 & 4 \\
-1 & 1 & 1 & 3 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
4 \\
-3 \\
8 \\
-7
\end{array}\right] \quad \text { and } \mathbf{v}=\left[\begin{array}{c}
2 \\
-2 \\
1 \\
-2 \\
1
\end{array}\right] . \\
\text { You may use }\left[\begin{array}{ccccc|c}
1 & 1 & -1 & 2 & 5 & 4 \\
1 & 2 & -1 & -1 & -3 & -3 \\
2 & 1 & -2 & 0 & 4 & 8 \\
-1 & 1 & 1 & 3 & 1 & -7
\end{array}\right] \sim\left[\begin{array}{ccccc|c}
1 & 1 & -1 & 2 & 5 & 4 \\
0 & 1 & 0 & -3 & -8 & -7 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

a. Find all solutions of the equation $A \mathbf{x}=\mathbf{b}$.
b. Check whether \mathbf{v} is in the null space of A.
c. Find a basis for the null space of A.
(Preferably without starting a complete row reduction process again.)
d. Find a basis for the column space of A.

Is \mathbf{b} in this column space?
e. Give the definition of an onto function (not necessarily linear) from \mathbb{R}^{n} to \mathbb{R}^{m}. (A definition is not an informal description.)
f. Is the linear transformation T with the standard matrix A onto?
10. Given are the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 4 \\ 2 & 1 \\ 2 & 1\end{array}\right]$ and the vector $\mathbf{b}=\left[\begin{array}{c}1 \\ 5 \\ -5 \\ -3\end{array}\right]$
a. Give an orthogonal basis for the column space of A.
b. Give an orthogonal basis for the orthogonal complement of $\operatorname{Col} A$.
c. Find $\mathbf{v} \in \operatorname{Col} A$ and $\mathbf{w} \in(\operatorname{Col} A)^{\perp}$ such that $\mathbf{b}=\mathbf{v}+\mathbf{w}$.
d. Find the distance of \mathbf{b} to $(\operatorname{Col} A)^{\perp}$.
(Use at least one sentence in words to explain what is going on.)

SOLUTIONS

1 Note that $B_{1}=A^{T}$ and $B_{2}=2 A \quad$ (Thinking precludes . . . ;-))
$B_{1}^{-1}=C^{T}=\frac{1}{21}\left[\begin{array}{ccc}-37 & -10 & 24 \\ 20 & 2 & -9 \\ 26 & 11 & -18\end{array}\right] \quad$ and $\quad B_{2}^{-1}=\frac{1}{2} C=\frac{1}{42}\left[\begin{array}{ccc}-37 & 20 & 26 \\ -10 & 2 & 11 \\ 24 & -9 & -18\end{array}\right]$.
$\mathbf{2} A \mathbf{v}=\left[\begin{array}{c}10 \\ 5\end{array}\right]=5 \mathbf{v}, \quad$ so \mathbf{v} is an eigenvector for eigenvalue 5
$3 \operatorname{det}(D)=-2$
4 Obviously, $T\left(\mathbf{e}_{2}\right)=\frac{1}{2} T\left(\left(\left[\begin{array}{l}0 \\ 2\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right]\right.$,
and from $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]-\left[\begin{array}{l}0 \\ 2\end{array}\right]$, it follows that $T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]-\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$.
Then $[T]=\left[\begin{array}{ll}T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right)\end{array}\right]=\left[\begin{array}{cc}2 & 1 / 2 \\ 1 & 1 / 2 \\ 1 & -1 / 2\end{array}\right]$
$\mathbf{5}\left[\begin{array}{cc}4 & 1 \\ 1 & 15\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 9\end{array}\right] . \quad$ Or: $\quad\left\{\begin{aligned} 4 \alpha+ & \beta= \\ \alpha+ & 15 \beta=\end{aligned}\right.$
6a $\quad \lambda_{1}=-2 ; \quad \lambda_{2,3}=2 \pm \sqrt{2}$.
6b Since A has three different real eigenvalues, there will be three independent eigenvectors, so yes, A is diagonalizable.

7 The solution of $\left[\begin{array}{cc|c}2 & 1 & 5 \\ 1 & 2 & -2\end{array}\right]: \quad \hat{\mathbf{x}}=\left[\begin{array}{c}4 \\ -3\end{array}\right] ; \quad$ projection: $A \hat{\mathbf{x}}=\left[\begin{array}{c}4 \\ -3 \\ 1\end{array}\right]$.
8a TRUE: $\operatorname{det}\left(A^{3}\right)=(\operatorname{det} A)^{3}=0$, so $\operatorname{det}(A-0 \mathrm{I})=0$, from which it follows immediately that A has eigenvalue 0 .
Alternative: If $A^{3}=0$ and $A \mathbf{v}=\lambda \mathbf{v}$ for $\mathbf{v} \neq \mathbf{0}$, then on the one hand $A^{3} \mathbf{v}=0 \mathbf{v}=\mathbf{0}$, and on the other hand $A^{3} \mathbf{v}=A^{2} A \mathbf{v}=A^{2} \lambda \mathbf{v}=\ldots=\lambda^{3} \mathbf{v}$, so $\lambda^{3} \mathbf{v}=\mathbf{0}$. Since it was assumed that $\mathbf{v} \neq \mathbf{0}$ it follows that $\lambda^{3}=0$, which implies that $\lambda=0$.
Quite a few people assumed that $A^{3}=0$ implies $A=0$, or that A should have 0 's on its diagonal. Where did they get that 'wisdom' from??
For instance, $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ and $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2\end{array}\right]$ and $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & -3 & 2 \\ -1 & -3 & 2\end{array}\right]$
all have the property $A^{3}=0$.
$\mathbf{8 b}$ TRUE: Simple!! $\quad A \mathbf{v}=\lambda_{1} \mathbf{v}$ and $B \mathbf{v}=\lambda_{2} \mathbf{v} \quad$ imply that $A B \mathbf{v}=A \lambda_{2} \mathbf{v}=\lambda_{1} \lambda_{2} \mathbf{v}$, which shows that \mathbf{v} is an eigenvector of $A B$ for the eigenvalue $\lambda_{1} \lambda_{2}$.

8c FALSE: e.g. $\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}\ldots & 4 & \ldots \\ 2 & \ldots & \ldots \\ \ldots & \ldots & \ldots\end{array}\right]$.
Almost any example will work, but some people chose complicated examples and then made one or more computation errors :-(
Also 2×2 counterexamples came up too often \ldots...

8d TRUE: use the rules $Q^{T} Q=I$, and $(A B)^{T}=B^{T} A^{T}$:

$$
\begin{aligned}
& (Q R)\left((Q R)^{T}(Q R)\right)^{-1}(Q R)^{T}=(Q R)\left(R^{T} Q^{T} Q R\right)^{-1}\left(R^{T} Q^{T}\right)=Q R\left(R^{T} R\right)^{-1} R^{T} Q^{T}= \\
& \quad=Q R R^{-1}\left(R^{T}\right)^{-1} R^{T} Q^{T}=Q Q^{T}, \quad \text { since } \quad R R^{-1}=I \quad \text { and } \quad\left(R^{T}\right)^{-1} R^{T}=I
\end{aligned}
$$

Note that A and Q in general will not be square matrices, so people that talk about A^{-1} or Q^{-1} live in a parallel universe.

9a Further row reducing the already reduced form:

$$
\left[\begin{array}{ccccc|c}
1 & 1 & -1 & 2 & 5 & 4 \\
0 & 1 & 0 & -3 & -8 & -7 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc|c}
1 & 0 & -1 & 5 & 13 & 11 \\
0 & 1 & 0 & -3 & -8 & -7 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc|c}
1 & 0 & -1 & 0 & 3 & 6 \\
0 & 1 & 0 & 0 & -2 & -4 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Hence x_{3} and x_{5} can be taken as free variables, and the general solution in vector form becomes

$$
\mathbf{x}=\left[\begin{array}{c}
6 \\
-4 \\
0 \\
1 \\
0
\end{array}\right]+c_{1}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-3 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

$\mathbf{9 b} A \mathbf{v}=\left[\begin{array}{c}0 \\ -4 \\ 4 \\ -8\end{array}\right] \neq \mathbf{0}$, so $\mathbf{n o}, \mathbf{v}$ is not in the null space of A.
$\mathbf{9 c}$ The null space is the homogeneous part of the solution of the system $A \mathbf{x}=\mathbf{b}$.
So no further calculations are needed! A (possible) basis: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 2 \\ 0 \\ -2 \\ 1\end{array}\right]\right\}$
9d We can use the pivot columns of A, which correspond to the pivot columns in the row reduced matrix: $\left\{\left[\begin{array}{c}1 \\ 1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 0 \\ 3\end{array}\right]\right\}$
In part \mathbf{a}. it was shown that $A \mathbf{x}=\mathbf{b}$ is consistent, so yes, vector \mathbf{b} is in the column space of A.
9e For any vector \mathbf{y} in \mathbb{R}^{4} there is at least one vector \mathbf{x} in \mathbb{R}^{5} for which $T(\mathbf{x})=\mathbf{y}$.
$\mathbf{9 f}$ No, it is not: the range of T is the column space of A, and since the latter has dimension three, it is smaller than the whole \mathbb{R}^{4}.

10a Gram-Schmidt: $\quad \mathbf{b}_{1}=\mathbf{a}_{1}, \quad\left[\begin{array}{l}2 \\ 4 \\ 1 \\ 1\end{array}\right]-\frac{10}{10}\left[\begin{array}{l}\mathbf{b}_{2}=\mathbf{a}_{2}-\hat{\mathbf{a}}_{1}=\mathbf{a}_{2}-\frac{\mathbf{a}_{1}}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}=\left[\begin{array}{c}1 \\ 1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{c}1 \\ 3 \\ -1 \\ -1\end{array}\right] ~ . ~\end{array}\right.$
Answer: $\quad\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$.
10b $\operatorname{Dim}\left((\operatorname{Col} A)^{\perp}\right)=4-\operatorname{Dim}(\operatorname{Col} A)=2$, so we need: two vectors that are orthogonal to the columns of A, and orthogonal to each other.
One way is: first find a basis for $\left.(\operatorname{Col} A)^{\perp}\right)=\operatorname{Nul}\left(A^{T}\right)$ and then use Gram-Schmidt.
This works a bit awkward here.
Alternative: the vector $\mathbf{a}_{3}=\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]$ is certainly orthogonal to $\operatorname{Col} A$, and then we just need a vector orthogonal to $\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$:

$$
\left[\begin{array}{cccc|c}
1 & 1 & 2 & 2 & 0 \\
2 & 4 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 1 & 2 & 2 & 0 \\
0 & 2 & -3 & -3 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 1 & 0 & 4 & 0 \\
0 & 2 & 0 & -6 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 0 & 0 & 7 & 0 \\
0 & 1 & 0 & -3 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

We find a second orthogonal vector $\mathbf{a}_{4}=\left[\begin{array}{c}-7 \\ 3 \\ 1 \\ 1\end{array}\right]$, and we can take the basis $\left\{\mathbf{a}_{3}, \mathbf{a}_{4}\right\}$.
$\mathbf{1 0} \mathbf{c}$ (e.g.) \mathbf{v} is the projection of \mathbf{b} onto $\operatorname{Col} A$, for which we can use the orthogonal basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$:
$\mathbf{v}=\frac{\mathbf{b} \cdot \mathbf{b}_{1}}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}+\frac{\mathbf{b} \cdot \mathbf{b}_{2}}{\mathbf{b}_{2} \cdot \mathbf{b}_{2}} \mathbf{b}_{2}=\frac{-10}{10}\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 2\end{array}\right]+\frac{24}{12}\left[\begin{array}{c}1 \\ 3 \\ -1 \\ -1\end{array}\right]=\left[\begin{array}{c}1 \\ 5 \\ -4 \\ -4\end{array}\right]$, and then $\mathbf{w}=\mathbf{b}-\mathbf{v}=\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]$
$\mathbf{1 0 d} \mathbf{w}$ is the orthogonal projection of \mathbf{b} onto $(\operatorname{Col} A)^{\perp}$.
Thus $\operatorname{dist}\left(\mathbf{b},(\operatorname{Col} A)^{\perp}\right)=\operatorname{dist}(\mathbf{b}, \mathbf{w})=\|\mathbf{b}-\mathbf{w}\|=\|\mathbf{v}\|=\sqrt{1^{2}+5^{2}+(-4)^{2}+(-4)^{2}}=\sqrt{58}$.

