
Final Exam Linear Algebra TI1206M
24 July 2017, 09.00 – 12.00 h

For the first eight exercises, unless stated otherwise, only the answers are required.
Use the answer form for this. No calculators are allowed. (Thinking may preclude long calculations.)
Credits: 1 – 7: (18), 8 (8), 9 (10) and 10 (9)

1. The inverse of the matrix A =

 3 6 8
4 2 7
2 7 6

 is given by C =
1

21

 −37 20 26
−10 2 11
24 −9 −18

.

Find the inverses of the matrices B1 =

 3 4 2
6 2 7
8 7 6

 and B2 =

 6 12 16
8 4 14
4 14 12

.

2. Check whether v =

[
2
1

]
is an eigenvector of the matrix A =

[
3 4
2 1

]
.

If so, for which eigenvalue?

3. Find the determinant of the matrix D =


1 1 0 0
0 1 1 1
1 0 1 1
1 1 1 0

.
(It might be a good idea to do it in
two ways and compare the answers.)

4. For the linear transformation T : R2 → R3 it is given that T

([
0
2

])
=

 1
1
−1


and T

([
1
2

])
=

 3
2
0

. Find the standard matrix A of this transformation.

5. To find the line y = α+βx that best fits (in the least squares sense) the four points (1,0), (3,2),
(−2,−1), (−1,−1), which set of (normal) equations must be solved?

6. a. Find all (possibly complex) eigenvalues of the matrix A =

 1 0 1
2 −2 −1
1 0 3

.

b. Is A diagonalizable? Give a short argument.

7. Find the orthogonal projection of the vector y =

 9
2
−4

 onto the subspace of R3 spanned

by the set


 1

0
1

 ,
 0

1
1

. Note that these two vectors are not orthogonal.

8. For each statement indicate whether it is true or false and give a short argument (or a counter
example) to support your answer.

a. If A is a matrix with the property A3 = 0, then A has the eigenvalue 0.

b. Suppose v is an eigenvector of both the matrix A and the matrix B.
Then v will also be an eigenvector of the matrix AB.

c. The product of two 3×3 symmetric matrices is again symmetric.

d. If A = QR, where Q is a matrix with orthonormal columns, and R is an invertible upper
triangular matrix, then A(ATA)−1AT = QQT .
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For the last two exercises you have to give complete solutions.
Answer the parts in the correct order!!
Use the first half of a double A4 sheet for exercise 9
and the other half for exercise 10.

9. Given are a matrix and two vectors:

A =


1 1 −1 2 5
1 2 −1 −1 −3
2 1 −2 0 4
−1 1 1 3 1

, b =


4
−3
8
−7

 and v =


2
−2
1
−2
1

.

You may use


1 1 −1 2 5 4
1 2 −1 −1 −3 −3
2 1 −2 0 4 8
−1 1 1 3 1 −7

 ∼


1 1 −1 2 5 4
0 1 0 −3 −8 −7
0 0 0 1 2 1
0 0 0 0 0 0

.

a. Find all solutions of the equation Ax = b.

b. Check whether v is in the null space of A.

c. Find a basis for the null space of A.
(Preferably without starting a complete row reduction process again.)

d. Find a basis for the column space of A.
Is b in this column space?

e. Give the definition of an onto function (not necessarily linear) from Rn to Rm.
(A definition is not an informal description.)

f. Is the linear transformation T with the standard matrix A onto?

10. Given are the matrix A =


1 2
1 4
2 1
2 1

 and the vector b =


1
5
−5
−3


a. Give an orthogonal basis for the column space of A.

b. Give an orthogonal basis for the orthogonal complement of ColA.

c. Find v ∈ ColA and w ∈ (ColA)⊥ such that b = v + w.

d. Find the distance of b to (ColA)⊥.
(Use at least one sentence in words to explain what is going on.)
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SOLUTIONS

1 Note that B1 = AT and B2 = 2A (Thinking precludes . . . . ;-) )

B−11 = CT =
1

21

 −37 −10 24
20 2 −9
26 11 −18

 and B−12 = 1
2C =

1

42

 −37 20 26
−10 2 11
24 −9 −18

.

2 Av =

[
10
5

]
= 5v, so v is an eigenvector for eigenvalue 5

3 det(D) = −2

4 Obviously, T (e2) =
1

2
T (

([
0
2

])
=

1

2

 1
1
−1

 =

 1/2
1/2
−1/2

,

and from e1 =

[
1
2

]
−
[

0
2

]
, it follows that T (e1) =

 3
2
0

−
 1

1
−1

 =

 2
1
1

.

Then
[
T
]

=
[
T (e1) T (e2)

]
=

 2 1/2
1 1/2
1 −1/2


5

[
4 1
1 15

] [
α
β

]
=

[
0
9

]
. Or:

{
4α+ β = 0
α+ 15β = 9

6a λ1 = −2; λ2,3 = 2±
√

2.

6b Since A has three different real eigenvalues, there will be three independent eigenvectors, so
yes, A is diagonalizable.

7 The solution of

[
2 1 5
1 2 −2

]
: x̂ =

[
4
−3

]
; projection: Ax̂ =

 4
−3
1

.

8a TRUE: det(A3) = (detA)3 = 0, so det(A − 0I) = 0, from which it follows immediately that A
has eigenvalue 0.

Alternative: If A3 = 0 and Av = λv for v 6= 0, then on the one hand A3v = 0v = 0, and on the
other hand A3v = A2Av = A2λv = . . . = λ3v, so λ3v = 0. Since it was assumed that v 6= 0 it
follows that λ3 = 0, which implies that λ = 0.

Quite a few people assumed that A3 = 0 implies A = 0, or that A should have 0’s on its diagonal.
Where did they get that ‘wisdom’ from??

For instance, A =

 0 1 0
0 0 1
0 0 0

 and A =

 1 1 1
1 1 1
−2 −2 −2

 and A =

 1 2 −1
−1 −3 2
−1 −3 2


all have the property A3 = 0.

8b TRUE: Simple!! Av = λ1v and Bv = λ2v imply that ABv = Aλ2v = λ1λ2v, which shows
that v is an eigenvector of AB for the eigenvalue λ1λ2.

8c FALSE: e.g.

 1 2 0
2 1 0
0 0 1

 1 0 0
0 2 0
0 0 3

 =

 . . . 4 . . .
2 . . . . . .
. . . . . . . . .

.

Almost any example will work, but some people chose complicated examples and then made one or
more computation errors :-(
Also 2× 2 counterexamples came up too often . . . .
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8d TRUE: use the rules QTQ = I, and (AB)T = BTAT :

(QR)
(
(QR)T (QR)

)−1
(QR)T = (QR)

(
RTQTQR

)−1
(RTQT ) = QR

(
RTR

)−1
RTQT =

= QRR−1(RT )−1RTQT = QQT , since RR−1 = I and (RT )−1RT = I.

Note that A and Q in general will not be square matrices, so people that talk about A−1 or Q−1

live in a parallel universe.
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9a Further row reducing the already reduced form:
1 1 −1 2 5 4
0 1 0 −3 −8 −7
0 0 0 1 2 1
0 0 0 0 0 0

 ∼


1 0 −1 5 13 11
0 1 0 −3 −8 −7
0 0 0 1 2 1
0 0 0 0 0 0

 ∼


1 0 −1 0 3 6
0 1 0 0 −2 −4
0 0 0 1 2 1
0 0 0 0 0 0


Hence x3 and x5 can be taken as free variables, and the general solution in vector form becomes

x =


6
−4
0
1
0

+ c1


1
0
1
0
0

+ c2


−3
2
0
−2
1



9b Av =


0
−4
4
−8

 6= 0, so no, v is not in the null space of A.

9c The null space is the homogeneous part of the solution of the system Ax = b.

So no further calculations are needed! A (possible) basis:




1
0
1
0
0

 ,

−3
2
0
−2
1




9d We can use the pivot columns of A, which correspond to the pivot columns in the

row reduced matrix:




1
1
2
−1

 ,


1
2
1
1

 ,


2
−1
0
3




In part a. it was shown that Ax = b is consistent, so yes, vector b is in the column space of A.

9e For any vector y in R4 there is at least one vector x in R5 for which T (x) = y.

9f No, it is not: the range of T is the column space of A, and since the latter has dimension three,
it is smaller than the whole R4.
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10a Gram-Schmidt: b1 = a1,

b2 = a2 − â1 = a2 −
a2 · b1

b1 · b1
b1 =


2
4
1
1

− 10

10


1
1
2
2

 =


1
3
−1
−1

.

Answer: {b1, b2}.

10b Dim( (ColA)⊥) = 4−Dim (ColA) = 2, so we need: two vectors that are orthogonal to the
columns of A, and orthogonal to each other.

One way is: first find a basis for (ColA)⊥) = Nul(AT ) and then use Gram-Schmidt.
This works a bit awkward here.

Alternative: the vector a3 =


0
0
1
−1

 is certainly orthogonal to ColA, and then we just need a

vector orthogonal to span{a1, a2, a3}: 1 1 2 2 0
2 4 1 1 0
0 0 1 −1 0

 ∼
 1 1 2 2 0

0 2 −3 −3 0
0 0 1 −1 0

 ∼
 1 1 0 4 0

0 2 0 −6 0
0 0 1 −1 0

 ∼
 1 0 0 7 0

0 1 0 −3 0
0 0 1 −1 0



We find a second orthogonal vector a4 =


−7
3
1
1

, and we can take the basis {a3, a4}.

10c (e.g.) v is the projection of b onto ColA, for which we can use the orthogonal basis {b1, b2}:

v =
b · b1

b1 · b1
b1 +

b · b2

b2 · b2
b2 =

−10

10


1
1
2
2

+
24

12


1
3
−1
−1

 =


1
5
−4
−4

, and then w = b− v =


0
0
1
−1


10d w is the orthogonal projection of b onto (ColA)⊥.

Thus dist(b, (ColA)⊥) = dist(b,w) = ||b−w|| = ||v|| =
√

12 + 52 + (−4)2 + (−4)2 =
√

58.
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