For most exercises only the answers are required. Use the answer form for exercise 1 to 8 . No calculators (nor smart watches nor whatever) are allowed. (Thinking may preclude long calculations.) Credits: exercises 1-7: $\mathbf{1 9} \mathrm{pt}$, exc. 8: $\mathbf{8 p t}$, exc. 9: $\mathbf{9 p t}$, exc. 10: $\mathbf{7 p t}$.

1. Find the inverse of the matrix $C=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.
2. It is given that
$A=\left[\begin{array}{ccccc}\| & \| & \| & \| & \| \\ \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} \\ \| & \| & \| & \| & \|\end{array}\right] \sim\left[\begin{array}{ccccc}\| & \| & \| & \| & \| \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{5} \\ \| & \| & \| & \| & \|\end{array}\right]=\left[\begin{array}{lllll}1 & 0 & 2 & 1 & 2 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
That is: these matrices are row equivalent.
a. Give the dimension of the column space of A.
b. Which of the following sets can be taken as a basis for $\operatorname{Col} A$ (there may be several):

$$
\begin{array}{lll}
\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}\right\}, & \left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{5}\right\}, & \left\{\mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}\right\}, \\
\left\{\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}, & \left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{5}\right\}, & \left\{\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\} .
\end{array}
$$

3. Suppose $\operatorname{det} A=3, \operatorname{det} B=2$ and $\operatorname{det} C=4$ for three 4×4 matrices A, B, C. Insofar as possible find the determinants of the matrices $A(B-C),(A B C)^{T}$ and $2 A B^{2} C^{-1}$. Give the answer "U" (= "unknown") if a determinant cannot be computed.
4. Find a unit vector that is in the orthogonal complement of $\operatorname{Span}\left\{\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$.
5. a. Find all (also the complex) eigenvalues of the matrix $M=\left[\begin{array}{ccc}1 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & 2 & 1\end{array}\right]$.
b. Give an eigenvector for one of the complex eigenvalues.
6. Let H be the subspace of \mathbb{R}^{4} generated by the vector $\left[\begin{array}{c}2 \\ 1 \\ -2 \\ 2\end{array}\right]$. Write the vector $\left[\begin{array}{c}4 \\ -9 \\ 10 \\ 4\end{array}\right]$ as the sum of a vector \mathbf{v} in H and a vector \mathbf{w} in H^{\perp}.
7. Consider the (over determined) linear system $\left\{\begin{array}{rr}x_{1}+2 x_{2}=1 \\ x_{1}+x_{2}=8 \\ 2 x_{1}-x_{2}=10 \\ 3 x_{1}+x_{2}= & 9\end{array}\right.$
a. Give the augmented matrix of the normal equations that you have to solve to find the least-squares solution of this system.
b. Find the least-squares solution.
8. For each statement indicate whether it is true or false and give a short argument (or a counter example) to support your answer.
a. Suppose $A B=2 I$, for two $n \times n$ matrices A and B. Then $B A=2 I$ as well.
b. Suppose \mathbf{v} is an eigenvector of both the matrix A and the matrix B.

Then \mathbf{v} will also be an eigenvector of the matrix $A B$.
c. If $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a linearly independent set, then the vectors $\mathbf{a}_{1}+\mathbf{a}_{2}$ and $\mathbf{a}_{1}-\mathbf{a}_{2}$ are also linearly independent.
d. If $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is an orthogonal set, then $\left\{\mathbf{a}_{1}+\mathbf{a}_{2}, \mathbf{a}_{1}-\mathbf{a}_{2}\right\}$ is also an orthogonal set.

For the last two exercises you have to give complete solutions.
Answer the parts in the correct order!!
Use the first half of a double A4 sheet for exercise 9 and the other half for exc 10.
9. It is given that $E=\left[\begin{array}{ccccc}1 & 0 & -1 & -2 & 1 \\ 2 & 1 & -5 & -2 & 1 \\ -2 & 3 & -7 & 11 & -3 \\ 1 & 1 & -4 & 3 & 6\end{array}\right]$ and $F=\left[\begin{array}{ccccc}1 & 0 & -1 & -2 & 1 \\ 0 & 1 & -3 & 2 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
are row equivalent. Furthermore, put $A=\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 2 & 1 & -5 & -2 \\ -2 & 3 & -7 & 11 \\ 1 & 1 & -4 & 3\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}1 \\ 1 \\ -3 \\ 6\end{array}\right]$.
(Note that $E=\left[\begin{array}{ll}A & \mathbf{y}\end{array}\right]$.)
a. Find a basis for the column space of A. (Explain what you do, and why.)
b. Find a basis for the null space of A.
c. Check whether the vector $\mathbf{r}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ is in the row space of A.

Now consider the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ with standard matrix A.
d. Check whether \mathbf{y} is in the range of T.
e. Complete the definition: a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if \ldots
f. Starting from this definition, check whether this transformation T is onto.
10. Let A be given by $A=\left[\begin{array}{lll}3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3\end{array}\right]$, and $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Note that A is a symmetric matrix, so it must be orthogonally diagonalizable.
a. Complete the definition: a matrix A is orthogonally diagonalizable if
b. Show that \mathbf{v}_{1} is an eigenvector of A.
c. Find all eigenvalues of A, and for each eigenvalue find a basis for the corresponding eigenspace.
Hint: for which value of λ will the matrix $(A-\lambda I)$ clearly have determinant 0 ?
d. Find matrices P and D that orthogonally diagonalize A.

SOLUTIONS

$1 C^{-1}=\frac{1}{2}\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$
2a $\quad \operatorname{dim} \operatorname{Col} A=4$.
2b From a. it follows that the column space is ('the whole') \mathbb{R}^{4}. So any set of four independent vectors is a basis for $\operatorname{Col} A$.
So all except $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{5}\right\}$, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{5}\right\}$ are okay.
$3 \mathbf{U}, \quad 24, \quad 2^{4} \cdot 3 \cdot 2^{2} \cdot \frac{1}{4}=48$ respectively.
$4 \pm \frac{1}{7}\left[\begin{array}{c}2 \\ 3 \\ -6\end{array}\right]$.
5a $\quad \lambda_{1}=-2 ; \quad \lambda_{2,3}=1 \pm 2 i$.
5b For $\lambda=1+2 i$: $\mathbf{v}=\left[\begin{array}{l}i \\ 0 \\ 1\end{array}\right]$ does the trick.
You can also take the conjugates of both!
$\mathbf{6} \mathbf{q}=\left[\begin{array}{c}4 \\ -9 \\ 10 \\ 4\end{array}\right]=\mathbf{v}+\mathbf{w}=(-1)\left[\begin{array}{c}2 \\ 1 \\ -2 \\ 2\end{array}\right]+\left[\begin{array}{c}6 \\ -8 \\ 8 \\ 6\end{array}\right]$
$\mathbf{7 a}\left[\begin{array}{rr|r}15 & 4 & 56 \\ 4 & 7 & 9\end{array}\right]$
$\mathbf{7 b}\left[\begin{array}{c}4 \\ -1\end{array}\right]$

8a TRUE. Namely, if $A B=I$ for a square matrix A, then $B=A^{-1}$, and then also $B A=I$. In this case, from $A B=2 I$, it follows that $A\left(\frac{1}{2} B\right)=I$, so $\frac{1}{2} B=A^{-1}$, and it follows that $\left(\frac{1}{2} B\right) A=\frac{1}{2} A B=I$. Multiplying the last equation by 2 gives the result $A B=2 I$.
$\mathbf{8 b}$ TRUE, Simple!!, $A \mathbf{v}=\lambda_{1} \mathbf{v}$ and $B \mathbf{v}=\lambda_{2} \mathbf{v}$ imply that $A B \mathbf{v}=A \lambda_{2} \mathbf{v}=\lambda_{1} \lambda_{2} \mathbf{v}$, which show that \mathbf{v} is an eigenvector of $A B$ for the eigenvalue $\lambda_{1} \lambda_{2}$.

8c TRUE: Suppose $c_{1}\left(\mathbf{a}_{1}+\mathbf{a}_{2}\right)+c_{2}\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)=\mathbf{0}$.
Reordering terms gives $\left(c_{1}+c_{2}\right) \mathbf{a}_{1}+\left(c_{1}-c_{2}\right) \mathbf{a}_{2}=\mathbf{0}$, and from the linear independence of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ we may conclude that $\left(c_{1}+c_{2}\right)=0$ and also $\left(c_{1}-c_{2}\right)=0$. This implies $c_{1}=c_{2}=0$, so that there is no non-trivial combination $c_{1}\left(\mathbf{a}_{1}+\mathbf{a}_{2}\right)+c_{2}\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)$ that is equal to $\mathbf{0}$.

8d FALSE: $\left(\mathbf{a}_{1}+\mathbf{a}_{2}\right) \cdot\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)=\mathbf{a}_{1} \cdot \mathbf{a}_{1}-\mathbf{a}_{2} \cdot \mathbf{a}_{2}$,
and this is only equal to zero if $\left\|\mathbf{a}_{1}\right\|=\left\|\mathbf{a}_{2}\right\|$.
So in general the statement is FALSE.

9a Row reduction does not affect the relations between the columns. Row reducing A leads to F_{1}, the matrix with the first four coumns of F. Here the 1 st, 2 nd and 4 th column give a maximal set of independent columns, i.e. a basis for $\mathrm{Col} F_{1}$. Then the corresponding columns of A give a basis for $\operatorname{Col} A$. So (for instance) $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}\right\}$ is a basis for $\operatorname{Col} A$.
$\mathbf{9 b}$ Row reduction does not change null space, i.e. solutions of $A \mathbf{x}=\mathbf{0}$. Put otherwise: $\operatorname{Nul} A=\operatorname{Nul} F_{1}$, and with just one extra step a basis for the last subspace is quickly found:

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & -2 \\
0 & 1 & -3 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Here the third 'variable' can be taken as a free variable, which lead to the basis $\left\{\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 0\end{array}\right]\right\}$.
9c By row reduction the row space doesn't change, and from the equivalence of E and F it can be immediately seen that $A \sim\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$, where \mathbf{r} is just the third row.
So yes $\mathbf{r} \in$ row A.

9d Since $[A \mid \mathbf{y}] \sim F$ it follows that the equation $T(\mathbf{x})=\mathbf{y}$, which is the same as $A \mathbf{x}=\mathbf{y}$ is consistent. So yes again, $\mathbf{y} \in \operatorname{Col} A=\operatorname{Range}(T)$.

9e Definition of an onto transformation....
9f T is not onto. Since A has only three pivot positions, not every system with augmented matric $[A \mid \mathbf{b}]$ will be consistent.
Other argument: A has only three independent columns, so the range of T, which is the column space of A, is a three-dimensional subspace of \mathbb{R}^{4}, and cannot be equal to the whole \mathbb{R}^{4}.

10a Definition of orthogonally diagonalizable
$\mathbf{1 0 b}$ It is easily seen that $A \mathbf{v}_{1}=\left[\begin{array}{l}7 \\ 7 \\ 7\end{array}\right]=7 \mathbf{v}_{1}$,
so \mathbf{v}_{1} is an eigenvector of A for the eigenvalue $\lambda_{1}=7$.
10c Following the hint: $\quad A-1 I=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]$ has clearly (very) dependent columns, and it is also quickly seen that the null space of $(A-1 I)$ has dimension 2 ,
with (for instance) the basis $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$
10d To diagonalize A we can use $D=\left[\begin{array}{lll}7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $P_{1}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]$.
To 'orthogonalize', we need an orthonormal basis for the eigenspace for $\lambda_{2,3}=1$.
We can use Gram-Schmidt to fix this:

$$
\mathbf{u}_{2}=\mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{u}_{3}=\mathbf{v}_{3}-\frac{\mathbf{v}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

Normalizing these vectors and putting them in a matrix gives
one of the (many) possible answer(s): $P=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}}\end{array}\right]$.

Credits

1.	2a	2b	3.	4.	5 a	5b	6.	7a	7b
2	2	2	3	2	2	2	2	2	1
8a	8b	8c	8d	9a	9b	9c	9d	9e	9f
2	2	2	2	2	2	1	2	1	1
10a	10b	10c	10d						
1	1	2	3						

