- Calculators and formula sheets are **not** allowed.
- Credits: 2 points for questions from Part I (except question 17 and 18; 1 point for these) and 5 points for questions from Part II.
- The final score: Sum and divide by 6.

PART I: MULTIPLE CHOICE QUESTIONS

1. How many solutions does the following system of equations has?

$$x_1 + x_2 + x_3 = 6$$

$$2x_1 + x_2 + 3x_3 = 10$$

$$x_1 + 3x_2 + 2x_3 = 13$$

A. No solution C. A unique solution **B.** ∞ many solutions

D. None of the other statements apply

Answer: C.

The system is consistent, with unique solution $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$.

- **2.** Consider the vectors $\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & -1 & 2 \end{bmatrix}^T$, $\mathbf{b}_2 = \begin{bmatrix} -1 & 3 & 0 & 1 \end{bmatrix}^T$, $\mathbf{b}_3 = \begin{bmatrix} 3 & -1 & -2 & 3 \end{bmatrix}^T$. The dimension of $\text{Span}\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is:
 - **C.** 2 **A.** 0 **B.** 1 **D.** 3 **E.** 4

Answer: C.

The matrix $A = [\mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3]$ has rank 2 (meaning: it has 2 pivot positions), so the dimension is 2.

3. It is given that $AB = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$, where $B = \begin{bmatrix} 4 & 5 \\ 1 & 1 \end{bmatrix}$. The (3,2)-entry a_{32} of A is equal to:

A. -17 B. -13 C. -7 D. -1 E. 1 F. 7 G. 13 H. 17

Answer: B.

We have $A = (AB)B^{-1} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} -1 & 5 \\ 1 & -4 \end{bmatrix}$. The (3,2)-entry a_{32} of A is therefore equal to $3 \cdot 5 + 7 \cdot (-4) = -13$.

- 4. Suppose the equation $A\mathbf{x} = \mathbf{b}$, for an $n \times n$ matrix A, is inconsistent for some \mathbf{b} in \mathbb{R}^n . Which of the following statements must be true?
 - **A.** det $A \neq 0$ **B.** The columns of A are linearly independent**C.** Col $A = \mathbb{R}^n$ **D.** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution**E.** A has n pivot positions**F.** The map $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one**G.** Nul $A \neq \{\mathbf{0}\}$ **H.** None of the others

Answer: G.

Because of the Invertible Matrix Theorem: $\operatorname{Nul} A \neq \{\mathbf{0}\}$

5. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that leaves \mathbf{e}_1 unchanged, while \mathbf{e}_2 is mapped to $-2\mathbf{e}_1 + \mathbf{e}_2$. Let $S : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects points though the line y = -x. Find the standard matrix for the composition $S \circ T$:

А.	$\begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}$	B. $\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$	$\mathbf{C.} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$	D. $\begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}$
Е.	$\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$	F. $\begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$	G. $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	H. $\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$

Answer: D.

The standard matrix of $S \circ T$ is given by

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}$$

6. Which of the sets $W_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x + y + z = 2 \right\}, W_2 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid 2x - y = z, x = y \right\}$ is a subspace of \mathbb{R}^3 ? A. None of them **B.** Only W_1 **C.** Only W_2 **D.** Both

Answer: C.

Only W_2 is a subspace, it is a plane passing through the origin. W_1 is an affine line, so it is not a subspace.

7. The dimension of Nul(A), where $A = \begin{bmatrix} -2 & 2 & 3 & 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & 3 & 2 & 0 & 1 \end{bmatrix}$, equals: A. 0 B. 1 C. 2 D. 3 E. 4 F. 5 G. 6 H. 7

Answer: E.

The rank of A is 3 (since it has 3 pivot positions), so by the rank theorem the dimension of Nul(A) is 7-3=4.

- 8. Let A and B be two invertible matrices, **v** a non-zero vector and λ a non-zero scalar such that $A\mathbf{v} = \lambda B\mathbf{v}$. Then:
 - **A.** λ^{-1} is an eigenvalue of $B^{-1}A$ **B.** λ is an eigenvalue of $A^{-1}B$ **C.** λ^{-1} is an eigenvalue of BA^{-1} **D.** λ is an eigenvalue of AB^{-1}

E. λ^{-1} is an eigenvalue of $A^{-1}B$ **G.** λ^{-1} is an eigenvalue of AB^{-1}

- **F.** λ is an eigenvalue of BA^{-1}
- **H.** None of the other options

Answer: E.

Multiplying both sides of $A\mathbf{v} = \lambda B\mathbf{v}$ by A^{-1} from the left and then dividing both sides by λ shows that λ^{-1} is an eigenvalue $A^{-1}B$. Observe that $\lambda \neq 0$ since A is invertible.

9. Calculate
$$A^5$$
, where $A = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$:
A. $\begin{bmatrix} -30 & -62 \\ 31 & 63 \end{bmatrix}$ **B.** $\begin{bmatrix} 0 & 1 \\ -2 & 243 \end{bmatrix}$ **C.** $\begin{bmatrix} 63 & -31 \\ -62 & -30 \end{bmatrix}$ **D.** $\begin{bmatrix} -30 & 63 \\ -62 & 31 \end{bmatrix}$
E. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ **F.** $\begin{bmatrix} -62 & 63 \\ -30 & 31 \end{bmatrix}$ **G.** $\begin{bmatrix} 0 & 1 \\ -32 & 243 \end{bmatrix}$ **H.** $\begin{bmatrix} -30 & 31 \\ -62 & 63 \end{bmatrix}$

Answer: H.

The matrix A is diagonalizable: $A = PDP^{-1}$, where $P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Whence $A^5 = PD^5P^{-1} = \begin{bmatrix} -30 & 31 \\ -62 & 63 \end{bmatrix}$.

10. Consider the vectors $\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$, $\mathbf{b}_2 = \begin{bmatrix} 4 & 0 & 0 & 0 \end{bmatrix}^T$ and $\mathbf{b}_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$. If we apply the Gram-Schmidt process to $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ to obtain an orthogonal set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, then \mathbf{v}_3 is (up to rescaling) equal to

 A. $\begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix}^T$ B. $\begin{bmatrix} 0 & -2 & 1 & 1 \end{bmatrix}^T$

 C. $\begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}^T$ D. $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$

 E. $\begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}^T$ F. $\begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix}^T$

 G. $\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}^T$ H. $\begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix}^T$

Answer: B.

Applying Gram-Schmidt yields
$$\mathbf{v}_2 = \mathbf{b}_2 - \mathbf{b}_1 = \begin{bmatrix} 3\\ -1\\ -1\\ -1\\ -1 \end{bmatrix}$$
 and $\mathbf{v}_3 = \begin{bmatrix} 0\\ -2\\ 1\\ 1\\ 1 \end{bmatrix}$

11. Determine all the distinct (real and complex) eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 4 & -1 \end{bmatrix}.$$

A. 1, -1 + 2*i*, -1 - 2*i*
B. 1
C. 1, 1 + 2*i*, 1 - 2*i*
D. 1, 1 + 2*i*, -1 - 2*i*
E. 1, -2 + *i*, -2 - *i*
F. 1, 1 + *i*, 1 - *i*
G. 1, 3, -1
H. 1, 2 + *i*, 2 - *i*

Answer: C.

The characteristic polynomial of A is given by $p(\lambda) = (1 - \lambda)(\lambda^2 - 2\lambda + 5)$. Using the quadratic formula we conclude that the roots are given by $1, 1 \pm 2i$

12. Calculate the inverse of the matrix
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
, if it exists.

Then the sum of all the entries of A^{-1} is equal to: **B.** -2 **C.** -1 **D.** 0 **F.** 2 **A.** -3 **E.** 1 **G.** 3 **H.** A is not invertible Answer: F. We have $A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{3}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$, so the sum of the entries is 2. **13.** Find the distance from $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ to $W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$: **D.** $\sqrt{29}$ **E.** $\sqrt{30}$ **F.** 10 **A.** 1 **B.** 2 **C.** 5 **G.** 29 **H.** 30 Answer: A. The projection of **y** onto *W* is given by $\hat{\mathbf{y}} = \begin{bmatrix} 3/2\\ 3/2\\ 7/2\\ 7/2\\ 7/2 \end{bmatrix}$ and the distance is equal to

$$||\mathbf{y} - \hat{\mathbf{y}}|| = \begin{vmatrix} 1\\1\\-1\\1\\1 \end{vmatrix} = \sqrt{1} = 1$$

	1	1	0	0	0]	
	-1	3	0	0	0	
For questions 14 and 15 consider the matrix $A =$	0	0	0	1	0	•
	0	0	-2	3	0	
	0	0	0	0	2	

14. The algebraic multiplicity of the eigenvalue 2 of the above matrix A equals

A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** 4 **F.** 5

Answer: E.

The characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ is given by $(1 - \lambda)(2 - \lambda)^4$, so the algebraic multiplicity is 4.

15. The geometric multiplicity of the eigenvalue 2 of the above matrix A equals

16. Suppose the equation $A(XB^{-1})^T = C$ holds for invertible matrices A, B, C. Solving for X gives that X is equal to:

A. $C(A^{-1})^T B$ **B.** $A^{-1}CB$ **C.** $(A^{-1})^T C^T B$ **D.** $C^T A^{-1}B$ **E.** $(A^{-1})^T C^T B^T$ **F.** $C^T (A^{-1})^T B$ **G.** $(A^{-1})^T CB^T$ **H.** None of the above

Answer: F.

Solving for X yields $X = C^T (A^{-1})^T B$

17. Suppose that the square matrix A is row equivalent to B and $\lambda = 1$ is an eigenvalue of A. Is $\lambda = 1$ also an eigenvalue of B?

A. True B. False

Answer: B.

This is in general false (if $\lambda \neq 0$). Example: $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.

18. Suppose that the square matrix A is row equivalent to B and $\lambda = 0$ is an eigenvalue of A. Is $\lambda = 0$ also an eigenvalue of B?

A. True B. False

Answer: A.

By the Invertible Matrix Theorem: $\lambda = 0$ is an eigenvalue of $A \iff A$ is singular (i.e. not invertible). Since B is row equivalent to A, it follows that B is also singular. Therefore $\lambda = 0$ is also an eigenvalue of B.

19. Which of the following statements are always true if Q is a (not necessarily square) matrix with **orthonormal rows**?

(I) $Q^T Q = I$ (II) $Q Q^T = I$

A. Both are false B. Only (I) is true C. Only (II) is true D. Both are true

Answer: C.

A matrix Q has orthonormal columns if and only if $Q^T Q = I$. Since Q has orthonormal rows if and only if Q^T has orthonormal columns, it follows that Q has orthonormal rows if and only if $(Q^T)^T (Q^T) = I$, that is $QQ^T = I$.

- **20.** Consider the following statements for a square matrix A.
 - (I) If A invertible and diagonalizable, then A^{-1} is also diagonalizable
 - (II) If A diagonalizable, then A^T is also diagonalizable

А.	Both statements are false	в.	Only (I) is true
С.	Only (II) is true	D.	Both statements are true

Answer: D.

Suppose that A is diagonalizable: $A = PDP^{-1}$, with D a diagonal matrix. The matrix A^T is also diagonalizable since $A^T = (P^T)^{-1}D^TP^T = (P^T)^{-1}DP^T$. If A is also invertible, then A^{-1} is also diagonalizable because $A^{-1} = PD^{-1}P^{-1}$. **21.** Find the equation $y = \beta_0 + \beta_1 x$ of the best line (in the least-squares sense) that fits the points (0, 1), (2, 3), (4, 2).

A. y = 2B. y = 0.5 + xC. y = 1 + xD. y = 1.5 + 0.25xE. y = 1 + 0.25xF. y = 4 - 0.5xG. y = 1H. y = 1 + 0.5x

Answer: D.

The vector $\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$ is a least-square solution of the system $X \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \mathbf{y}$, where X is the design matrix and \mathbf{y} the observation vector of the data:

$$X = \begin{bmatrix} 1 & 0\\ 1 & 2\\ 1 & 4 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 1\\ 3\\ 2 \end{bmatrix}$$

The corresponding normal equations are given by $X^T X \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = X^T \mathbf{y}$, i.e.

 $\begin{bmatrix} 3 & 6 \\ 6 & 20 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$ This system has the unique solution $\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0.25 \end{bmatrix}$

END OF PART I. GO TO PART II: TRUE/FALSE QUESTIONS

CSE1205 (Linear Algebra), 17–04–2019, True/False Questions

Name: E. Emsiz	Student ID:
write <i>readable</i> and underline your <u>surname</u>	

You are asked to decide whether the statements are true or false. Either give a proof or a specific counterexample.

22. If A and B are matrices such that AB exists, then: if $\mathbf{x} \in \operatorname{Col}(AB) \implies \mathbf{x} \in \operatorname{Col}(A)$.

Answer: TRUE.

Solution 1:

If $\mathbf{x} \in \text{Col}(AB)$, then \mathbf{x} is a linear combination of the columns of AB. This means that there exists a certain vector \mathbf{c} such that $\mathbf{x} = AB\mathbf{c}$.

Therefore $\mathbf{x} = A\mathbf{c}'$ where $\mathbf{c}' = B\mathbf{c}$.

This proves that $\mathbf{x} \in \operatorname{Col}(A)$.

<u>Solution 2</u>:

If $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$, then

 $\operatorname{Col}(AB) = \operatorname{Span}\{A\mathbf{b}_1 \dots A\mathbf{b}_n\}$ But $A\mathbf{b}_j \in \operatorname{Col}(A)$ for any j, and therefore: $\operatorname{Col}(AB) \subseteq \operatorname{Col}(A)$

23. If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ are linearly independent vectors, then $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_3 + \mathbf{v}_4, 2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_4\}$ are also linearly independent.

Answer: FALSE.

A set of vectors $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ is linearly independent if the vector equation

 $x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n = \mathbf{0}$

admits only the trivial solution.

So we need to check whether the following system has non-trivial solutions or not:

$$x_1(\mathbf{v}_1 + \mathbf{v}_2) + x_2(\mathbf{v}_2 + \mathbf{v}_3) + x_3(\mathbf{v}_3 + \mathbf{v}_4) + x_4(2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_4) = \mathbf{0}.$$
 (*)

We can re-write (*) as follows:

$$(x_1 + 2x_4)\mathbf{v}_1 + (x_1 + x_2 + x_4)\mathbf{v}_2 + (x_2 + x_3)\mathbf{v}_3 + (x_3 + x_4)\mathbf{v}_4 = \mathbf{0},$$

By the linear independence of the $\{v_1, v_2, v_3, v_4\}$ this is equivalent to the system

$$\begin{cases} x_1 + 2x_4 = 0\\ x_1 + x_2 + x_4 = 0\\ x_2 + x_3 = 0\\ x_3 + x_4 = 0 \end{cases}$$

The vectors $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_3 + \mathbf{v}_4, 2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_4\}$ are linearly dependent since thie above system has non-trivial solutions:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \operatorname{Span} \left\{ \begin{bmatrix} -2 \\ 1 \\ -1 \\ 1 \end{bmatrix} \right\}.$$

A concrete counterexample: $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ in \mathbb{R}^4 .

24. If $A^T A$ is a diagonal matrix, then the columns of A are orthogonal.

Answer: TRUE.

If $A = [\mathbf{a}_1 \, \mathbf{a}_2 \, \cdots \, \mathbf{a}_n]$, then

$$A^{T}A = \begin{bmatrix} -\mathbf{a}_{1}^{T} - \\ -\mathbf{a}_{1}^{T} - \\ \vdots \\ -\mathbf{a}_{n}^{T} - \end{bmatrix} \begin{bmatrix} \mathbf{a}_{1} \, \mathbf{a}_{2} \cdots \mathbf{a}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} \cdot \mathbf{a}_{1} & \mathbf{a}_{1} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{1} \cdot \mathbf{a}_{n} \\ \mathbf{a}_{2} \cdot \mathbf{a}_{1} & \mathbf{a}_{2} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{2} \cdot \mathbf{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n} \cdot \mathbf{a}_{1} & \mathbf{a}_{n} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \cdot \mathbf{a}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \end{bmatrix}_{i,j}$$

In other words: the (i, j)-the entry of $A^T A$ is given by the inner product $\mathbf{a}_i \cdot \mathbf{a}_j$.

Therefore, if $A^T A = D$, with D a diagonal matrix D with (say) entries d_1, d_2, \ldots, d_n on the diagonal, then

$$\mathbf{a}_i \cdot \mathbf{a}_j = \begin{cases} d_j & \text{if } j = i \\ 0 & \text{if } j \neq j \end{cases}$$

25. If a square matrix A satisfies the equation $2A^2 + 3A = 4I$, then A is invertible.

Answer: TRUE.

Solution 1: If $2A^2 + 3A = 4I$, then $\frac{1}{2}A^2 + \frac{3}{2}A = I$, and therefore also $A(\frac{1}{2}A + \frac{3}{4}I) = I$ and $(\frac{1}{2}A + \frac{3}{4}I)A = I$.

I.e. AB = BA = I where $B = (\frac{1}{2}A + \frac{3}{4}I)$.

This proves that A is invertible (and furthermore $A^{-1} = B = \frac{1}{2}A + \frac{3}{4}I$).

Solution 2 (with determinants): $AB = I \implies \det A \det B = 1 \implies \det A \neq 0 \implies A$ is invertible by the Invertible Matrix Theorem.

Solution 3 (with determinants): $A(2A + 3I) = 4I \implies \det A \det(2A + 3I) = 4^n$, where n is the size of A. Therefore $\det A \neq 0$, which implies that A is invertible (again by the

Invertible Matrix Theorem.).

Solution 4 (with eigenvalues):

Suppose that λ is an eigenvalue of A: $A\mathbf{x} = \lambda \mathbf{x}$, with $\mathbf{x} \neq 0$. Together with $2A^2 + 3A = 4I$ we see that $(2\lambda^2 + 3\lambda)\mathbf{x} = 4\mathbf{x}$, and therefore $\lambda(2\lambda + 3) = 4$. This implies that $\lambda \neq 0$, i.e that 0 is not an eigenvalue of A. By the Invertible Matrix Theorem it follows that A is invertible.