Final Exam: Linear Algebra CSE1205

April 17, 2019, 13:30-16:30 hs

- Calculators and formula sheets are not allowed.
- Credits: 2 points for questions from Part I (except question 17 and 18; 1 point for these) and 5 points for questions from Part II.
- The final score: Sum and divide by 6 .

PART I: MULTIPLE CHOICE QUESTIONS

1. How many solutions does the following system of equations has?

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =6 \\
2 x_{1}+x_{2}+3 x_{3} & =10 \\
x_{1}+3 x_{2}+2 x_{3} & =13
\end{aligned}
$$

A. No solution
B. ∞ many solutions
C. A unique solution
D. None of the other statements apply

Answer: C.
The system is consistent, with unique solution $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$.
2. Consider the vectors $\mathbf{b}_{1}=\left[\begin{array}{llll}1 & 1 & -1 & 2\end{array}\right]^{T}, \mathbf{b}_{2}=\left[\begin{array}{llll}-1 & 3 & 0 & 1\end{array}\right]^{T}, \mathbf{b}_{3}=\left[\begin{array}{lllll}3 & -1 & -2 & 3\end{array}\right]^{T}$. The dimension of $\operatorname{Span}\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is:
A. 0
B. 1
C. 2
D. 3
E. 4

Answer: C.
The matrix $A=\left[\mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3}\right]$ has rank 2 (meaning: it has 2 pivot positions), so the dimension is 2 .
3. It is given that $A B=\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right]$, where $B=\left[\begin{array}{ll}4 & 5 \\ 1 & 1\end{array}\right]$. The (3,2)-entry a_{32} of A is equal to:
A. -17
B. -13
C. -7
D. -1
E. 1
F. 7
G. 13
H. 17

Answer: B.
We have $A=(A B) B^{-1}=\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right]\left[\begin{array}{rr}-1 & 5 \\ 1 & -4\end{array}\right]$. The $(3,2)$-entry a_{32} of A is therefore equal to $3 \cdot 5+7 \cdot(-4)=-13$.
4. Suppose the equation $A \mathbf{x}=\mathbf{b}$, for an $n \times n$ matrix A, is inconsistent for some \mathbf{b} in \mathbb{R}^{n}. Which of the following statements must be true?
A. $\operatorname{det} A \neq 0$
B. The columns of A are linearly independent
C. $\operatorname{Col} A=\mathbb{R}^{n}$
D. $A \mathrm{x}=\mathbf{0}$ has only the trivial solution
E. A has n pivot positions
F. The map $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
G. $\operatorname{Nul} A \neq\{\mathbf{0}\}$
H. None of the others

Answer: G.
Because of the Invertible Matrix Theorem: $\operatorname{Nul} A \neq\{\mathbf{0}\}$
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that leaves \mathbf{e}_{1} unchanged, while \mathbf{e}_{2} is mapped to $-2 \mathbf{e}_{1}+\mathbf{e}_{2}$. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that reflects points though the line $y=-x$. Find the standard matrix for the composition $S \circ T$:
A. $\left[\begin{array}{rr}2 & -1 \\ -1 & 0\end{array}\right]$
B. $\left[\begin{array}{rr}0 & 1 \\ 1 & -2\end{array}\right]$
C. $\left[\begin{array}{rr}1 & 0 \\ -2 & 1\end{array}\right]$
D. $\left[\begin{array}{rr}0 & -1 \\ -1 & 2\end{array}\right]$
E. $\left[\begin{array}{rr}1 & -1 \\ -2 & 2\end{array}\right]$
F. $\left[\begin{array}{rr}-2 & 1 \\ 1 & 0\end{array}\right]$
G. $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$
H. $\left[\begin{array}{rr}-1 & 2 \\ 0 & -1\end{array}\right]$

Answer: D.
The standard matrix of $S \circ T$ is given by

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 2
\end{array}\right]
$$

6. Which of the sets $W_{1}=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x+y+z=2\right\}, W_{2}=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, 2 x-y=z, x=y\right\}$ is a subspace of \mathbb{R}^{3} ?
A. None of them
B. Only W_{1}
C. Only W_{2}
D. Both

Answer: C.
Only W_{2} is a subspace, it is a plane passing through the origin.
W_{1} is an affine line, so it is not a subspace.
7. The dimension of $\operatorname{Nul}(A)$, where $A=\left[\begin{array}{rrrrrrr}-2 & 2 & 3 & 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & 3 & 2 & 0 & 1\end{array}\right]$, equals:
A. 0
B. 1
C. 2
D. 3
E. 4
F. 5
G. 6
H. 7

Answer: E.
The rank of A is 3 (since it has 3 pivot positions), so by the rank theorem the dimension of $\operatorname{Nul}(A)$ is $7-3=4$.
8. Let A and B be two invertible matrices, \mathbf{v} a non-zero vector and λ a non-zero scalar such that $A \mathbf{v}=\lambda B \mathbf{v}$. Then:
A. λ^{-1} is an eigenvalue of $B^{-1} A$
B. λ is an eigenvalue of $A^{-1} B$
C. λ^{-1} is an eigenvalue of $B A^{-1}$
D. λ is an eigenvalue of $A B^{-1}$
E. λ^{-1} is an eigenvalue of $A^{-1} B$
F. λ is an eigenvalue of $B A^{-1}$
G. λ^{-1} is an eigenvalue of $A B^{-1}$
H. None of the other options

Answer: E.
Multiplying both sides of $A \mathbf{v}=\lambda B \mathbf{v}$ by A^{-1} from the left and then dividing both sides by λ shows that λ^{-1} is an eigenvalue $A^{-1} B$. Observe that $\lambda \neq 0$ since A is invertible.
9. Calculate A^{5}, where $A=\left[\begin{array}{rr}0 & 1 \\ -2 & 3\end{array}\right]$:
A. $\left[\begin{array}{rr}-30 & -62 \\ 31 & 63\end{array}\right]$
B. $\left[\begin{array}{rr}0 & 1 \\ -2 & 243\end{array}\right]$
C. $\left[\begin{array}{rr}63 & -31 \\ -62 & -30\end{array}\right]$
D. $\left[\begin{array}{ll}-30 & 63 \\ -62 & 31\end{array}\right]$
E. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
F. $\left[\begin{array}{ll}-62 & 63 \\ -30 & 31\end{array}\right]$
G. $\left[\begin{array}{rr}0 & 1 \\ -32 & 243\end{array}\right]$
H. $\left[\begin{array}{ll}-30 & 31 \\ -62 & 63\end{array}\right]$

Answer: H.
The matrix A is diagonalizable: $A=P D P^{-1}$, where $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right], D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
Whence $A^{5}=P D^{5} P^{-1}=\left[\begin{array}{ll}-30 & 31 \\ -62 & 63\end{array}\right]$.
10. Consider the vectors $\mathbf{b}_{1}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}, \mathbf{b}_{2}=\left[\begin{array}{llll}4 & 0 & 0 & 0\end{array}\right]^{T}$ and $\mathbf{b}_{3}=\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]^{T}$. If we apply the Gram-Schmidt process to $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ to obtain an orthogonal set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, then \mathbf{v}_{3} is (up to rescaling) equal to
A. $\left[\begin{array}{llll}0 & -1 & 1 & 0\end{array}\right]^{T}$
B. $\left[\begin{array}{llll}0 & -2 & 1 & 1\end{array}\right]^{T}$
C. $\left[\begin{array}{llll}\frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3}\end{array}\right]^{T}$
D. $\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]^{T}$
E. $\left[\begin{array}{llll}1 & 1 & -1 & -1\end{array}\right]^{T}$
F. $\left[\begin{array}{llll}0 & 0 & 1 & -1\end{array}\right]^{T}$
G. $\left[\begin{array}{llll}0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right]^{T}$
H. $\left[\begin{array}{llll}0 & -1 & 0 & 1\end{array}\right]^{T}$

Answer: B.
Applying Gram-Schmidt yields $\mathbf{v}_{2}=\mathbf{b}_{2}-\mathbf{b}_{1}=\left[\begin{array}{r}3 \\ -1 \\ -1 \\ -1\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{r}0 \\ -2 \\ 1 \\ 1\end{array}\right]$
11. Determine all the distinct (real and complex) eigenvalues of the matrix $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 4 & -1\end{array}\right]$.
A. $1,-1+2 i,-1-2 i$
B. 1
C. $1,1+2 i, 1-2 i$
D. $1,1+2 i,-1-2 i$
E. $1,-2+i,-2-i$
F. $1,1+i, 1-i$
G. $1,3,-1$
H. $1,2+i, 2-i$

Answer: C.

The characteristic polynomial of A is given by $p(\lambda)=(1-\lambda)\left(\lambda^{2}-2 \lambda+5\right)$. Using the quadratic formula we conclude that the roots are given by $1,1 \pm 2 i$
12. Calculate the inverse of the matrix $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 3\end{array}\right]$, if it exists.

Then the sum of all the entries of A^{-1} is equal to:
A. -3
B. -2
C. -1
D. 0
E. 1
F. 2
G. 3
H. A is not invertible

Answer: F.
We have $A^{-1}=\left[\begin{array}{rrr}0 & 1 & 0 \\ \frac{3}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2}\end{array}\right]$, so the sum of the entries is 2 .
13. Find the distance from $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ to $W=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ 1 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$:
A. 1
B. 2
C. 5
D. $\sqrt{29}$
E. $\sqrt{30}$
F. 10
G. 29
H. 30

Answer: A.
The projection of \mathbf{y} onto W is given by $\hat{\mathbf{y}}=\left[\begin{array}{l}3 / 2 \\ 3 / 2 \\ 7 / 2 \\ 7 / 2\end{array}\right]$ and the distance is equal to

$$
\|\mathbf{y}-\hat{\mathbf{y}}\|=\left\|\frac{1}{2}\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right\|=\sqrt{1}=1
$$

For questions $\mathbf{1 4}$ and $\mathbf{1 5}$ consider the matrix $A=\left[\begin{array}{rrrrr}1 & 1 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$.
14. The algebraic multiplicity of the eigenvalue 2 of the above matrix A equals
A. 0
B. 1
C. 2
D. 3
E. 4
F. 5

Answer: E.
The characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ is given by $(1-\lambda)(2-\lambda)^{4}$, so the algebraic multiplicity is 4 .
15. The geometric multiplicity of the eigenvalue 2 of the above matrix A equals
A. 0
B. 1
C. 2
D. 3
E. 4
F. 5

Answer: D.
The matrix $A-2 I=\left[\begin{array}{rrrrr}-1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{rrrrr}\boxed{-1} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \boxed{-2} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ has 2 pivot positions, therefore $\operatorname{dim} E_{2}=\operatorname{dim} \operatorname{Nul}(A-2 I)=5-2=3$.
16. Suppose the equation $A\left(X B^{-1}\right)^{T}=C$ holds for invertible matrices A, B, C. Solving for X gives that X is equal to:
A. $C\left(A^{-1}\right)^{T} B$
B. $A^{-1} C B$
C. $\left(A^{-1}\right)^{T} C^{T} B$
D. $C^{T} A^{-1} B$
E. $\left(A^{-1}\right)^{T} C^{T} B^{T}$
F. $C^{T}\left(A^{-1}\right)^{T} B$
G. $\left(A^{-1}\right)^{T} C B^{T}$
H. None of the above

Answer: F.
Solving for X yields $X=C^{T}\left(A^{-1}\right)^{T} B$
17. Suppose that the square matrix A is row equivalent to B and $\lambda=1$ is an eigenvalue of A. Is $\lambda=1$ also an eigenvalue of B ?
A. True
B. False

Answer: B.
This is in general false (if $\lambda \neq 0$). Example: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$.
18. Suppose that the square matrix A is row equivalent to B and $\lambda=0$ is an eigenvalue of A. Is $\lambda=0$ also an eigenvalue of B ?
A. True
B. False

Answer: A.
By the Invertible Matrix Theorem: $\lambda=0$ is an eigenvalue of $A \Longleftrightarrow A$ is singular (i.e. not invertible). Since B is row equivalent to A, it follows that B is also singular. Therefore $\lambda=0$ is also an eigenvalue of B.
19. Which of the following statements are always true if Q is a (not necessarily square) matrix with orthonormal rows?
(I) $Q^{T} Q=I$
(II) $Q Q^{T}=I$
A. Both are false
B. Only (I) is true
C. Only (II) is true
D. Both are true

Answer: C.
A matrix Q has orthonormal columns if and only if $Q^{T} Q=I$. Since Q has orthonormal rows if and only if Q^{T} has orthonormal columns, it follows that Q has orthonormal rows if and only if $\left(Q^{T}\right)^{T}\left(Q^{T}\right)=I$, that is $Q Q^{T}=I$.
20. Consider the following statements for a square matrix A.
(I) If A invertible and diagonalizable, then A^{-1} is also diagonalizable
(II) If A diagonalizable, then A^{T} is also diagonalizable
A. Both statements are false
B. Only (I) is true
C. Only (II) is true
D. Both statements are true

Answer: D.
Suppose that A is diagonalizable: $A=P D P^{-1}$, with D a diagonal matrix.
The matrix A^{T} is also diagonalizable since $A^{T}=\left(P^{T}\right)^{-1} D^{T} P^{T}=\left(P^{T}\right)^{-1} D P^{T}$. If A is also invertible, then A^{-1} is also diagonalizable because $A^{-1}=P D^{-1} P^{-1}$.
21. Find the equation $y=\beta_{0}+\beta_{1} x$ of the best line (in the least-squares sense) that fits the points $(0,1),(2,3),(4,2)$.
A. $y=2$
B. $y=0.5+x$
C. $y=1+x$
D. $y=1.5+0.25 x$
E. $y=1+0.25 x$
F. $y=4-0.5 x$
G. $y=1$
H. $y=1+0.5 x$

Answer: D.
The vector $\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]$ is a least-square solution of the system $X\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\mathbf{y}$, where X is the design matrix and \mathbf{y} the observation vector of the data:

$$
X=\left[\begin{array}{ll}
1 & 0 \\
1 & 2 \\
1 & 4
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
$$

The corresponding normal equations are given by $X^{T} X\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=X^{T} \mathbf{y}$, i.e.

$$
\left[\begin{array}{rr}
3 & 6 \\
6 & 20
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{r}
6 \\
14
\end{array}\right]
$$

This system has the unique solution $\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\left[\begin{array}{c}1.5 \\ 0.25\end{array}\right]$

CSE1205 (Linear Algebra), 17-04-2019, True/False Questions

Name: E. Emsiz
 Student ID:

write readable and underline your surname
You are asked to decide whether the statements are true or false.
Either give a proof or a specific counterexample.
22. If A and B are matrices such that $A B$ exists, then: if $\mathbf{x} \in \operatorname{Col}(A B) \Longrightarrow \mathbf{x} \in \operatorname{Col}(A)$.

Answer: TRUE.

Solution 1:

If $\mathbf{x} \in \operatorname{Col}(A B)$, then \mathbf{x} is a linear combination of the columns of $A B$. This means that there exists a certain vector \mathbf{c} such that $\mathbf{x}=A B \mathbf{c}$.

Therefore $\mathbf{x}=A \mathbf{c}^{\prime}$ where $\mathbf{c}^{\prime}=B \mathbf{c}$.

This proves that $\mathbf{x} \in \operatorname{Col}(A)$.

Solution 2:
If $B=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right]$, then

$$
\operatorname{Col}(A B)=\operatorname{Span}\left\{A \mathbf{b}_{1} \ldots A \mathbf{b}_{n}\right\}
$$

But $A \mathbf{b}_{j} \in \operatorname{Col}(A)$ for any j, and therefore: $\operatorname{Col}(A B) \subseteq \operatorname{Col}(A)$
23. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ are linearly independent vectors, then $\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{v}_{3}+\mathbf{v}_{4}, 2 \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{4}\right\}$ are also linearly independent.

Answer: FALSE.

A set of vectors $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is linearly independent if the vector equation

$$
x_{1} \mathbf{b}_{1}+\cdots+x_{n} \mathbf{b}_{n}=\mathbf{0}
$$

admits only the trivial solution.

So we need to check whether the following system has non-trivial solutions or not:

$$
\begin{equation*}
x_{1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+x_{2}\left(\mathbf{v}_{2}+\mathbf{v}_{3}\right)+x_{3}\left(\mathbf{v}_{3}+\mathbf{v}_{4}\right)+x_{4}\left(2 \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{4}\right)=\mathbf{0} . \tag{*}
\end{equation*}
$$

We can re-write (*) as follows:

$$
\left(x_{1}+2 x_{4}\right) \mathbf{v}_{1}+\left(x_{1}+x_{2}+x_{4}\right) \mathbf{v}_{2}+\left(x_{2}+x_{3}\right) \mathbf{v}_{3}+\left(x_{3}+x_{4}\right) \mathbf{v}_{4}=\mathbf{0},
$$

By the linear independence of the $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ this is equivalent to the system

$$
\left\{\begin{array}{l}
x_{1}+2 x_{4}=0 \\
x_{1}+x_{2}+x_{4}=0 \\
x_{2}+x_{3}=0 \\
x_{3}+x_{4}=0
\end{array}\right.
$$

The vectors $\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{v}_{3}+\mathbf{v}_{4}, 2 \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{4}\right\}$ are linearly dependent since thie above system has non-trivial solutions:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \operatorname{Span}\left\{\left[\begin{array}{r}
-2 \\
1 \\
-1 \\
1
\end{array}\right]\right\}
$$

A concrete counterexample: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ in \mathbb{R}^{4}.
24. If $A^{T} A$ is a diagonal matrix, then the columns of A are orthogonal.

Answer: TRUE.

If $A=\left[\mathbf{a}_{1} \mathbf{a}_{2} \cdots \mathbf{a}_{n}\right]$, then

$$
A^{T} A=\left[\begin{array}{c}
-\mathbf{a}_{1}^{T}- \\
-\mathbf{a}_{1}^{T}- \\
\vdots \\
-\mathbf{a}_{n}^{T}-
\end{array}\right]\left[\mathbf{a}_{1} \mathbf{a}_{2} \cdots \mathbf{a}_{n}\right]=\left[\begin{array}{cccc}
\mathbf{a}_{1} \cdot \mathbf{a}_{1} & \mathbf{a}_{1} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{1} \cdot \mathbf{a}_{n} \\
\mathbf{a}_{2} \cdot \mathbf{a}_{1} & \mathbf{a}_{2} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{2} \cdot \mathbf{a}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{a}_{n} \cdot \mathbf{a}_{1} & \mathbf{a}_{n} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \cdot \mathbf{a}_{n}
\end{array}\right]=\left[\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right]_{i, j}
$$

In other words: the (i, j)-the entry of $A^{T} A$ is given by the inner product $\mathbf{a}_{i} \cdot \mathbf{a}_{j}$.

Therefore, if $A^{T} A=D$, with D a diagonal matrix D with (say) entries $d_{1}, d_{2}, \ldots, d_{n}$ on the diagonal, then

$$
\mathbf{a}_{i} \cdot \mathbf{a}_{j}= \begin{cases}d_{j} & \text { if } j=i \\ 0 & \text { if } j \neq j\end{cases}
$$

25. If a square matrix A satisfies the equation $2 A^{2}+3 A=4 I$, then A is invertible.

Answer: TRUE.

Solution 1:
If $2 A^{2}+3 A=4 I$, then $\frac{1}{2} A^{2}+\frac{3}{2} A=I$, and therefore also $A\left(\frac{1}{2} A+\frac{3}{4} I\right)=I$ and $\left(\frac{1}{2} A+\frac{3}{4} I\right) A=I$.
I.e. $A B=B A=I$ where $B=\left(\frac{1}{2} A+\frac{3}{4} I\right)$.

This proves that A is invertible (and furthermore $A^{-1}=B=\frac{1}{2} A+\frac{3}{4} I$).

Solution 2 (with determinants): $A B=I \Longrightarrow \operatorname{det} A \operatorname{det} B=1 \Longrightarrow \operatorname{det} A \neq 0 \Longrightarrow A$ is invertible by the Invertible Matrix Theorem.

Solution 3 (with determinants): $A(2 A+3 I)=4 I \Longrightarrow \operatorname{det} A \operatorname{det}(2 A+3 I)=4^{n}$, where n is the size of A. Therefore $\operatorname{det} A \neq 0$, which implies that A is invertible (again by the

Invertible Matrix Theorem.).

Solution 4 (with eigenvalues):
Suppose that λ is an eigenvalue of $A: A \mathbf{x}=\lambda \mathbf{x}$, with $\mathbf{x} \neq 0$. Together with $2 A^{2}+3 A=$ $4 I$ we see that $\left(2 \lambda^{2}+3 \lambda\right) \mathbf{x}=4 \mathbf{x}$, and therefore $\lambda(2 \lambda+3)=4$. This implies that $\lambda \neq 0$, i.e that 0 is not an eigenvalue of A. By the Invertible Matrix Theorem it follows that A is invertible.

