- Calculators and formula sheets are **not** allowed.
- Credits: **2** points for questions from Part I (19 questions) and **4** points for questions from Part II (3 questions).
- The final score: Sum and divide by 5.

PART I: MULTIPLE CHOICE QUESTIONS

1. Let (x_1, x_2, x_3) be the unique solution of the system

$$x_2 - 3x_3 = 8$$

$$2x_1 + 2x_2 + 9x_3 = 7$$

$$x_1 + 5x_3 = -2$$

Then x_1 is equal to:

A. -3 B. -2 C. -1 D. 0 E. 1 F. 2 G. 3 H. 4

Answer: G.

The system is consistent, with unique solution
$$\begin{bmatrix} 3\\5\\-1 \end{bmatrix}$$

2. The dimension of Nul(A), where
$$A = \begin{bmatrix} 0 & 1 & 2 & -2 & -1 & 3 & 0 \\ 1 & 3 & 1 & 1 & 2 & 0 & 0 \\ -1 & 3 & 4 & 2 & -2 & -1 & 0 \end{bmatrix}$$
, is given by:
A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** 4 **F.** 5 **G.** 6 **H.** 7

Answer: E.

A has 3 pivot positions, whence the number of free variables is equal to 7-3.

3. It is given that

 $A = \begin{bmatrix} \| & \| & \| & \| & \| & \| \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \\ \| & \| & \| & \| & \| \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Which of the following sets can be taken as a basis for $\operatorname{Col} A$ (for any matrix A satisfying the above condition)?

(I)
$$\{e_1, e_2, e_3\}$$

(II) $\{a_2, a_3, a_5\}$
A. None
B. Only (I)
C. Only (II)
D. (I) and (II)

Answer: C.

⁽I) is not always true.

A counterexample is given by:

ſ	1	0	1	1	0
	0	1	1	2	0
	0	0	0	0	0
	0	0	0	0	1

(II) is always true.

The rank of A is 3, so Col(A) has dimension 3. Since the columns $\mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_5$ are linearly independent (just observe that $[\mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_5]$ has rank 3), they must be a basis of Col(A) by the basis theorem.

4. The solution set of the system $A\mathbf{x} = 0$ has a basis that consists of four vectors and A is a 7×9 -matrix. What is the rank of A?

A. 1	B. 2	C. 3
D. 4	E. 5	F. 6
G. 7	H. There is no sufficient info	prmation to determine the rank

Answer: E.

A has 9 columns, so its rank is equal to 9 minus the dimension of Nul(A) by the Rank Theorem, i.e. 9-4.

5. Suppose that X, Y, Z are 3×3 matrices such that $XYZ = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$. Which of the matrices must be invertible?

 A. None
 B. Only X
 C. Only Y
 D. Only Z

 E. Only X,Y
 F. Only X,Z
 G. Only Y,Z
 H. X,Y,Z

Answer: H.

 $|X||Y||Z| = |XYZ| = 1 \cdot 4 \cdot 6 \neq 0 \implies |X|, |Y|, |Z| \neq 0 \implies X, Y, Z \text{ are invertible.}$

6. Find the determinant det(A) of $A = \begin{bmatrix} 2 & 3 & 0 & 0 \\ 2 & 2 & 3 & 0 \\ 2 & 2 & 2 & 3 \\ 2 & 2 & 2 & 2 \end{bmatrix}$: A. -8 B. -6 C. -4 D. -2 E. 0 F. 2 G. 4 H. 6

Answer: D.

Expand along the last column or row-reduce to an echelon form: det(A) = -2.

.....

For the following two questions, let A = LU be the LU-decomposition of the matrix

$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix}$$

7. The first column of L is equal to

$$\mathbf{A}. \begin{bmatrix} 1\\-1\\2 \end{bmatrix} \quad \mathbf{B}. \begin{bmatrix} 3\\-1\\2 \end{bmatrix} \quad \mathbf{C}. \begin{bmatrix} 1\\1\\-2 \end{bmatrix} \quad \mathbf{D}. \begin{bmatrix} 3\\1\\-2 \end{bmatrix} \quad \mathbf{E}. \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \quad \mathbf{F}. \begin{bmatrix} -3\\-1\\2 \end{bmatrix} \quad \mathbf{G}. \begin{bmatrix} -1\\1\\-2 \end{bmatrix} \quad \mathbf{H}. \begin{bmatrix} -3\\1\\-2 \end{bmatrix}$$
$$\mathbf{Answer: A. \qquad L = \begin{bmatrix} 1 & 0 & 0\\-1 & 1 & 0\\2 & -5 & 1 \end{bmatrix}$$

8. The last column of U is equal to
A.
$$\begin{bmatrix} 2\\1\\1 \end{bmatrix}$$
 B. $\begin{bmatrix} -2\\1\\0 \end{bmatrix}$ **C.** $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ **D.** $\begin{bmatrix} 2\\-1\\0 \end{bmatrix}$ **E.** $\begin{bmatrix} -2\\-1\\-\frac{1}{2} \end{bmatrix}$ **F.** $\begin{bmatrix} -1\\-2\\-1 \end{bmatrix}$ **G.** $\begin{bmatrix} -2\\-1\\-1 \end{bmatrix}$ **H.** $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$
Answer: G. $U = \begin{bmatrix} 3 & -7 & -2\\0 & -2 & -1\\0 & 0 & -1 \end{bmatrix}$

For the following two questions consider the following basis of \mathbb{R}^2 :

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$$

9. Find the coordinate vector
$$[5\mathbf{e}_2]_{\boldsymbol{\beta}}$$
:

A. $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ **B.** $\begin{bmatrix} 0 \\ 5 \end{bmatrix}$ **C.** $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ **D.** $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ **E.** $\begin{bmatrix} -5 \\ 10 \end{bmatrix}$ **F.** $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ **G.** $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ **H.** $\begin{bmatrix} 10 \\ 5 \end{bmatrix}$

Answer: F.

Because: $5\mathbf{e}_2 = 1 \cdot \mathbf{b}_1 + 2 \cdot \mathbf{b}_2$.

10. The matrix $[T]_{\mathcal{B}}$ of the transformation $T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} -x_1 - x_2\\ 4x_1 + 3x_2 \end{bmatrix}$ relative to \mathcal{B} is given by the matrix: $\begin{bmatrix} 1 & 5 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} -1 & -1 \end{bmatrix}$ $\begin{bmatrix} 5 & 1 \end{bmatrix}$

A.
$$\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$$
B. $\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ C. $\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$ D. $\begin{bmatrix} 5 & 1 \\ 1 & 0 \end{bmatrix}$ E. $\begin{bmatrix} 0 & 1 \\ 1 & 5 \end{bmatrix}$ F. $\begin{bmatrix} -3 & -1 \\ 11 & 2 \end{bmatrix}$ G. $\begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$ H. $\begin{bmatrix} -3 & 11 \\ -1 & 2 \end{bmatrix}$

Answer: B.

Because: $T(\mathbf{b}_1) = \begin{bmatrix} -3\\11 \end{bmatrix} = \mathbf{b}_1 + 5\mathbf{b}_2$ and $T(\mathbf{b}_2) = \begin{bmatrix} -1\\2 \end{bmatrix} = 0\mathbf{b}_1 + \mathbf{b}_2.$

11. For which value of *a* is 3 an eigenvalue of $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 3 & a \end{bmatrix}$?

Answer: D.

det(A - 3I) = 4a, so $E_3 = Nul(A - 3I) \neq \{\mathbf{0}\}$ if and only if a = 0.

12. Which of the following statements are always true for square matrices?

(I) If A is upper triangular \implies A is diagonalizable.

(II) If D is a diagonal matrix and $AP = PD \implies A$ is diagonalizable.

A. Both statements are false.
B. Only (I) is true.
D. Both statements are true.

Answer: A.

Counterexample for (I): $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Statement (II) can fail if P is not invertible. Counterexample for (II): $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, D = I, $P = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

13. Find a in the matrix A below such that A is diagonalizable:

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & a & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A. -8 **B.** -6 **C.** -4 **D.** -2 **E.** 0 **F.** 2 **G.** 4 **H.** 6

Answer: H.

The algebraic multiplicity of the eigenvalue 5 is equal to 2.

The geometric multiplicity of the eigenvalue 5 is equal to 2 if and only if a = 6.

The algebraic and geometric multiplicity of the other eigenvalues are equal to 1.

For the following two questions consider the matrix $A = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$.

14. The eigenvalues of A are given by

A. $-1 \pm \sqrt{3}i$	B. $1 \pm \sqrt{3}i$	C. $\pm 1 + \sqrt{3}i$	D. $1, \sqrt{3}$
E. $\sqrt{3} \pm i$	F. $1 \pm 3i$	G. $\sqrt{3}, \sqrt{3}$	H. $\sqrt{3} \pm 3i$

Answer: E.

In Lecture 16 we have seen that A has complex eigenvalues $\sqrt{3} \pm i$.

15. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, defined by $T(\mathbf{x}) = A\mathbf{x}$ is:

A. A rotation over an angle $\pi/6$ (counter-clockwise), followed by a scaling by factor 2 **B.** A rotation over an angle $\pi/6$ (counter-clockwise), followed by a scaling by factor 4 C. A rotation over an angle $\pi/3$ (counter-clockwise), followed by a scaling by factor 2 D. A rotation over an angle $\pi/3$ (counter-clockwise), followed by a scaling by factor 4 E. A rotation over an angle $\pi/6$ (clockwise), followed by a scaling by factor 2 F. A rotation over an angle $\pi/6$ (clockwise), followed by a scaling by factor 4 G. A rotation over an angle $\pi/3$ (clockwise), followed by a scaling by factor 2 H. A rotation over an angle $\pi/3$ (clockwise), followed by a scaling by factor 4

Answer: A.

The polar coordinates of $(\sqrt{3}, 1)$ are given by $(r, \varphi) = (2, \pi/6)$. In class (in the lecture on Complex eigenvalues and eigenvectors) we have seen that this implies that T is a rotation over an angle $\pi/6$ (counter-clockwise), followed by a scaling by factor 2.

.....

- **16.** Consider the following statements for orthogonal $n \times n$ matrices U and V:
 - (I) U + V is orthogonal.
 - (II) UV is orthogonal.

A. Both statements are false.C. Only (II) is true.

B. Only (I) is true.D. Both statements are true.

Answer: C.

Counterexample for (I): U = I, V = -I. (II) is true since $(UV)^T UV = V^T U^T UV = V^T IV = V^T V = I$.

17. The distance from
$$\begin{bmatrix} 1\\5\\-10 \end{bmatrix}$$
 to $W = \operatorname{Span} \left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 5\\-2\\1 \end{bmatrix} \right\}$ equals:
A. 6 B. $3\sqrt{5}$ C. 9 D. 45
E. 16 F. $3\sqrt{14}$ G. 126 H. 10

Answer: B.

The projection of \mathbf{y} onto W is given by $\hat{\mathbf{y}} = \begin{bmatrix} 1 \\ 8 \\ -4 \end{bmatrix}$. The distance of \mathbf{y} to W is, by definition, $\begin{bmatrix} 0 \end{bmatrix}$

equal to the length of $\hat{\mathbf{y}} - \mathbf{y}$, i.e. of $\begin{bmatrix} 0\\ -3\\ -6 \end{bmatrix}$, and this is equal to $\sqrt{45}$.

18. Applying Gram-Schmidt to the vectors $\mathbf{b}_1 = \begin{bmatrix} 3\\1\\2\\1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -1\\1\\0\\2 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 2\\1\\3\\2 \end{bmatrix}$ we obtain, after

rescaling, as third vector \mathbf{v}_3 :

$$\mathbf{A}. \begin{bmatrix} 1\\-7\\0\\4 \end{bmatrix} \quad \mathbf{B}. \begin{bmatrix} 1\\-3\\-1\\2 \end{bmatrix} \quad \mathbf{C}. \begin{bmatrix} 0\\-4\\1\\2 \end{bmatrix} \quad \mathbf{D}. \begin{bmatrix} -1\\-1\\2\\0 \end{bmatrix} \quad \mathbf{E}. \begin{bmatrix} -3\\-11\\8\\4 \end{bmatrix} \quad \mathbf{F}. \begin{bmatrix} 2\\2\\2\\3 \end{bmatrix} \quad \mathbf{G}. \begin{bmatrix} -5\\3\\8\\-4 \end{bmatrix} \quad \mathbf{H}. \begin{bmatrix} -7\\17\\8\\-12 \end{bmatrix}$$

Answer: D.

Applying Gram-Schmidt yields, without rescaling, as third vector $\begin{bmatrix} -1/2 \\ -1/2 \\ 1 \\ 0 \end{bmatrix}$.

19. Determine the least-squares solution of the overdetermined system $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 0 \\ -5 \end{bmatrix}$: A. $\begin{bmatrix} -1\\ 2 \end{bmatrix}$ B. $\begin{bmatrix} 1\\ 2 \end{bmatrix}$ C. $\begin{bmatrix} 1\\ -2 \end{bmatrix}$ D. $\begin{bmatrix} -2\\ 1 \end{bmatrix}$ E. $\begin{bmatrix} -2\\ -1 \end{bmatrix}$ F. $\begin{bmatrix} 2\\ -1 \end{bmatrix}$ G. $\begin{bmatrix} 2\\ 1 \end{bmatrix}$ H. There are no least-squares solutions

Answer: C.

The normal equations $A^T A \hat{x} = A^T b$ are given by:

The unique solution is therefore given by $\hat{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

END OF PART I.

GO TO PART II: TRUE/FALSE QUESTIONS

Resit Linear Algebra (CSE1205): True/False Questions July 4, 2019, 13:30-16:30

- In the following questions you are asked to decide whether the statements are true or false.
- If you think the statement is true, explain clearly why.
- Give a counterexample (with explanation) if you think the statement is false.
- Simply writing true or false is not enough.
- Credits: 4 points for every True/False questions.
- **20.** If A is a 3×3 matrix such that $A\mathbf{x} = 0$ has infinitely many solutions, then $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for each $\mathbf{b} \in \mathbb{R}^3$.

Answer: FALSE.

A counterexample is given by:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Then $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions, but $A\mathbf{x} = \mathbf{b}$ has NO solutions.

(But any non-invertible matrix A actually will do the trick, but one has to choose **b** suitably).

21. If \mathbf{v} is an eigenvector of the matrices A and B, then \mathbf{v} is also an eigenvector of AB.

Answer: TRUE.

Let us denote the corresponding eigenvalues of A and B by λ and μ , respectively:

$$A\mathbf{v} = \lambda \mathbf{v}, \qquad B\mathbf{v} = \mu \mathbf{v}$$

Observe that in general $\lambda \neq \mu$. Therefore:

 $AB\mathbf{v} = A(\mu\mathbf{v}) = \mu A\mathbf{v} = \mu\lambda\mathbf{v}$

So **v** is an eigenvector of AB with eigenvalue $\lambda \mu$.

22. If the unit vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^4$ are orthogonal, then the vectors $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$ are also orthogonal.

Answer: TRUE.

The vectors $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$ are orthogonal if and only if their dot product is equal to 0. . Taking the dot product of $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$:

$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{v}.$$
$$= \mathbf{u} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{v}.$$
$$= 1 - 1 = 0.$$

So $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$ are indeed orthogonal.