- Calculators and formula sheets are not allowed.
- Credits: 2 points for questions from Part I (19 questions) and 4 points for questions from Part II (3 questions).
- The final score: Sum and divide by 5 .

PART I: MULTIPLE CHOICE QUESTIONS

1. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be the unique solution of the system

$$
\begin{aligned}
x_{2}-3 x_{3} & =8 \\
2 x_{1}+2 x_{2}+9 x_{3} & =7 \\
x_{1}+5 x_{3} & =-2
\end{aligned}
$$

Then x_{1} is equal to:
A. -3
B. -2
C. -1
D. 0
E. 1
F. 2
G. 3
H. 4

Answer: G.
The system is consistent, with unique solution $\left[\begin{array}{r}3 \\ 5 \\ -1\end{array}\right]$.
2. The dimension of $\operatorname{Nul}(A)$, where $A=\left[\begin{array}{rrrrrrr}0 & 1 & 2 & -2 & -1 & 3 & 0 \\ 1 & 3 & 1 & 1 & 2 & 0 & 0 \\ -1 & 3 & 4 & 2 & -2 & -1 & 0\end{array}\right]$, is given by:
A. 0
B. 1
C. 2
D. 3
E. 4
F. 5
G. 6
H. 7

Answer: E.
A has 3 pivot positions, whence the number of free variables is equal to $7-3$.
3. It is given that
$A=\left[\begin{array}{ccccc}\| & \| & \| & \| & \| \\ \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} \\ \| & \| & \| & \| & \|\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
Which of the following sets can be taken as a basis for $\operatorname{Col} A$ (for any matrix A satisfying the above condition)?
(I) $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$
(II) $\left\{\mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{5}\right\}$
A. None
B. Only (I)
C. Only (II)
D. (I) and (II)

Answer: C.
(I) is not always true.

A counterexample is given by:

$$
\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(II) is always true.

The rank of A is 3 , so $\operatorname{Col}(A)$ has dimension 3 . Since the columns $\mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{5}$ are linearly independent (just observe that $\left[\mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{5}\right]$ has rank 3), they must be a basis of $\operatorname{Col}(A)$ by the basis theorem.
4. The solution set of the system $A \mathrm{x}=0$ has a basis that consists of four vectors and A is a 7×9-matrix. What is the rank of A ?
A. 1
B. 2
C. 3
D. 4
E. 5
F. 6
G. 7
H. There is no sufficient information to determine the rank

Answer: E.
A has 9 columns, so its rank is equal to 9 minus the dimension of $\operatorname{Nul}(A)$ by the Rank Theorem, i.e. $9-4$.
5. Suppose that X, Y, Z are 3×3 matrices such that $X Y Z=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$. Which of the matrices must be invertible?
A. None
B. Only X
C. Only Y
D. Only Z
E. Only X,Y
F. Only X,Z
G. Only Y,Z
H. $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

Answer: H.
$|X||Y||Z|=|X Y Z|=1 \cdot 4 \cdot 6 \neq 0 \Longrightarrow|X|,|Y|,|Z| \neq 0 \Longrightarrow X, Y, Z$ are invertible.
6. Find the determinant $\operatorname{det}(A)$ of $A=\left[\begin{array}{llll}2 & 3 & 0 & 0 \\ 2 & 2 & 3 & 0 \\ 2 & 2 & 2 & 3 \\ 2 & 2 & 2 & 2\end{array}\right]$:
A. -8
B. -6
C. -4
D. -2
E. 0
F. 2
G. 4
H. 6

Answer: D.
Expand along the last column or row-reduce to an echelon form: $\operatorname{det}(A)=-2$.

For the following two questions, let $A=L U$ be the $L U$-decomposition of the matrix

$$
A=\left[\begin{array}{rrr}
3 & -7 & -2 \\
-3 & 5 & 1 \\
6 & -4 & 0
\end{array}\right]
$$

7. The first column of L is equal to
A. $\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]$
B. $\left[\begin{array}{r}3 \\ -1 \\ 2\end{array}\right]$
C. $\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right]$
D. $\left[\begin{array}{r}3 \\ 1 \\ -2\end{array}\right]$
E. $\left[\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right]$
F. $\left[\begin{array}{r}-3 \\ -1 \\ 2\end{array}\right]$
G. $\left[\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right]$
H. $\left[\begin{array}{r}-3 \\ 1 \\ -2\end{array}\right]$

Answer: A. $\quad L=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1\end{array}\right]$
8. The last column of U is equal to
A. $\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
B. $\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right]$
C. $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
D. $\left[\begin{array}{r}2 \\ -1 \\ 0\end{array}\right]$
E. $\left[\begin{array}{l}-2 \\ -1 \\ -\frac{1}{2}\end{array}\right]$
F. $\left[\begin{array}{l}-1 \\ -2 \\ -1\end{array}\right]$
G. $\left[\begin{array}{l}-2 \\ -1 \\ -1\end{array}\right]$
H. $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$

Answer: G. $\quad U=\left[\begin{array}{rrr}3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1\end{array}\right]$

For the following two questions consider the following basis of \mathbb{R}^{2} :

$$
\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
2
\end{array}\right]\right\}
$$

9. Find the coordinate vector $\left[5 \mathbf{e}_{2}\right]_{\mathcal{B}}$:
A. $\left[\begin{array}{r}2 \\ -1\end{array}\right]$
B. $\left[\begin{array}{l}0 \\ 5\end{array}\right]$
C. $\left[\begin{array}{l}5 \\ 0\end{array}\right]$
D. $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
E. $\left[\begin{array}{r}-5 \\ 10\end{array}\right]$
F. $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
G. $\left[\begin{array}{r}-1 \\ 2\end{array}\right]$
H. $\left[\begin{array}{r}10 \\ 5\end{array}\right]$

Answer: F.
Because: $5 \mathbf{e}_{2}=1 \cdot \mathbf{b}_{1}+2 \cdot \mathbf{b}_{2}$.
10. The matrix $[T]_{\mathcal{B}}$ of the transformation $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}-x_{1}-x_{2} \\ 4 x_{1}+3 x_{2}\end{array}\right]$ relative to \mathcal{B} is given by the matrix:
A. $\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$
C. $\left[\begin{array}{rr}-1 & -1 \\ 4 & 3\end{array}\right]$
D. $\left[\begin{array}{ll}5 & 1 \\ 1 & 0\end{array}\right]$
E. $\left[\begin{array}{ll}0 & 1 \\ 1 & 5\end{array}\right]$
F. $\left[\begin{array}{rr}-3 & -1 \\ 11 & 2\end{array}\right]$
G. $\left[\begin{array}{ll}-1 & 4 \\ -1 & 3\end{array}\right]$
H. $\left[\begin{array}{rr}-3 & 11 \\ -1 & 2\end{array}\right]$

Answer: B.
Because: $T\left(\mathbf{b}_{1}\right)=\left[\begin{array}{r}-3 \\ 11\end{array}\right]=\mathbf{b}_{1}+5 \mathbf{b}_{2}$ and $T\left(\mathbf{b}_{2}\right)=\left[\begin{array}{r}-1 \\ 2\end{array}\right]=0 \mathbf{b}_{1}+\mathbf{b}_{2}$.
11. For which value of a is 3 an eigenvalue of $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 3 & a\end{array}\right]$?
A. -3
B. -2
C. -1
D. 0
E. 1
F. 2
G. 3
H. 4

Answer: D.
$\operatorname{det}(A-3 I)=4 a$, so $E_{3}=\operatorname{Nul}(A-3 I) \neq\{\mathbf{0}\}$ if and only if $a=0$.
12. Which of the following statements are always true for square matrices?
(I) If A is upper triangular $\Longrightarrow A$ is diagonalizable.
(II) If D is a diagonal matrix and $A P=P D \Longrightarrow A$ is diagonalizable.
A. Both statements are false.
B. Only (I) is true.
C. Only (II) is true.
D. Both statements are true.

Answer: A.
Counterexample for (I): $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
Statement (II) can fail if P is not invertible.
Counterexample for (II): $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], D=I, P=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
13. Find a in the matrix A below such that A is diagonalizable:

$$
A=\left[\begin{array}{rrrr}
5 & -2 & 6 & -1 \\
0 & 3 & a & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

A. -8
B. -6
C. -4
D. -2
E. 0
F. 2
G. 4
H. 6

Answer: H.
The algebraic multiplicity of the eigenvalue 5 is equal to 2 .
The geometric multiplicity of the eigenvalue 5 is equal to 2 if and only if $a=6$.
The algebraic and geometric multiplicity of the other eigenvalues are equal to 1 .

For the following two questions consider the matrix $A=\left[\begin{array}{rr}\sqrt{3} & -1 \\ 1 & \sqrt{3}\end{array}\right]$.
14. The eigenvalues of A are given by
A. $-1 \pm \sqrt{3} i$
B. $1 \pm \sqrt{3} i$
C. $\pm 1+\sqrt{3} i$
D. $1, \sqrt{3}$
E. $\sqrt{3} \pm i$
F. $1 \pm 3 i$
G. $\sqrt{3}, \sqrt{3}$
H. $\sqrt{3} \pm 3 i$

Answer: E.
In Lecture 16 we have seen that A has complex eigenvalues $\sqrt{3} \pm i$.
15. The transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by $T(\mathbf{x})=A \mathbf{x}$ is:
A. A rotation over an angle $\pi / 6$ (counter-clockwise), followed by a scaling by factor 2
B. A rotation over an angle $\pi / 6$ (counter-clockwise), followed by a scaling by factor 4
C. A rotation over an angle $\pi / 3$ (counter-clockwise), followed by a scaling by factor 2
D. A rotation over an angle $\pi / 3$ (counter-clockwise), followed by a scaling by factor 4
E. A rotation over an angle $\pi / 6$ (clockwise), followed by a scaling by factor 2
F. A rotation over an angle $\pi / 6$ (clockwise), followed by a scaling by factor 4
G. A rotation over an angle $\pi / 3$ (clockwise), followed by a scaling by factor 2
H. A rotation over an angle $\pi / 3$ (clockwise), followed by a scaling by factor 4

Answer: A.
The polar coordinates of $(\sqrt{3}, 1)$ are given by $(r, \varphi)=(2, \pi / 6)$. In class (in the lecture on Complex eigenvalues and eigenvectors) we have seen that this implies that T is a rotation over an angle $\pi / 6$ (counter-clockwise), followed by a scaling by factor 2 .
16. Consider the following statements for orthogonal $n \times n$ matrices U and V :
(I) $U+V$ is orthogonal.
(II) $U V$ is orthogonal.
A. Both statements are false.
B. Only (I) is true.
C. Only (II) is true.
D. Both statements are true.

Answer: C.
Counterexample for (I): $U=I, V=-I$.
(II) is true since $(U V)^{T} U V=V^{T} U^{T} U V=V^{T} I V=V^{T} V=I$.
17. The distance from $\left[\begin{array}{r}1 \\ 5 \\ -10\end{array}\right]$ to $W=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{r}5 \\ -2 \\ 1\end{array}\right]\right\}$ equals:
A. 6
B. $3 \sqrt{5}$
C. 9
D. 45
E. 16
F. $3 \sqrt{14}$
G. 126
H. 10

Answer: B.
The projection of \mathbf{y} onto W is given by $\hat{\mathbf{y}}=\left[\begin{array}{r}1 \\ 8 \\ -4\end{array}\right]$. The distance of \mathbf{y} to W is, by definition, equal to the length of $\hat{\mathbf{y}}-\mathbf{y}$, i.e. of $\left[\begin{array}{r}0 \\ -3 \\ -6\end{array}\right]$, and this is equal to $\sqrt{45}$.
18. Applying Gram-Schmidt to the vectors $\mathbf{b}_{1}=\left[\begin{array}{c}3 \\ 1 \\ 2 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 2\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 3 \\ 2\end{array}\right]$ we obtain, after rescaling, as third vector \mathbf{v}_{3} :
A. $\left[\begin{array}{r}1 \\ -7 \\ 0 \\ 4\end{array}\right]$
B. $\left[\begin{array}{r}1 \\ -3 \\ -1 \\ 2\end{array}\right]$
C. $\left[\begin{array}{r}0 \\ -4 \\ 1 \\ 2\end{array}\right]$
D. $\left[\begin{array}{r}-1 \\ -1 \\ 2 \\ 0\end{array}\right]$
E. $\left[\begin{array}{r}-3 \\ -11 \\ 8 \\ 4\end{array}\right]$
F. $\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 3\end{array}\right]$
G. $\left[\begin{array}{r}-5 \\ 3 \\ 8 \\ -4\end{array}\right]$
H. $\left[\begin{array}{r}-7 \\ 17 \\ 8 \\ -12\end{array}\right]$

Answer: D.
Applying Gram-Schmidt yields, without rescaling, as third vector $\left[\begin{array}{r}-1 / 2 \\ -1 / 2 \\ 1 \\ 0\end{array}\right]$.
19. Determine the least-squares solution of the overdetermined system $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rr}2 & 1 \\ -2 & 0 \\ 2 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}3 \\ 0 \\ -5\end{array}\right]$:
A. $\left[\begin{array}{r}-1 \\ 2\end{array}\right]$
B. $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
C. $\left[\begin{array}{r}1 \\ -2\end{array}\right]$
D. $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$
E. $\left[\begin{array}{l}-2 \\ -1\end{array}\right]$
F. $\left[\begin{array}{r}2 \\ -1\end{array}\right]$
G. $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
H. There are no least-squares solutions

Answer: C.
The normal equations $A^{T} A \hat{x}=A^{T} b$ are given by:

$$
\left[\begin{array}{rr}
12 & 8 \\
8 & 10
\end{array}\right] \hat{x}=\left[\begin{array}{r}
-4 \\
-12
\end{array}\right]
$$

The unique solution is therefore given by $\hat{x}=\left[\begin{array}{r}1 \\ -2\end{array}\right]$.

END OF PART I.

GO TO PART II: TRUE/FALSE QUESTIONS

Resit Linear Algebra (CSE1205): True/False Questions July 4, 2019, 13:30-16:30

- In the following questions you are asked to decide whether the statements are true or false.
- If you think the statement is true, explain clearly why.
- Give a counterexample (with explanation) if you think the statement is false.
- Simply writing true or false is not enough.
- Credits: 4 points for every True/False questions.

20. If A is a 3×3 matrix such that $A \mathbf{x}=0$ has infinitely many solutions, then $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions for each $\mathbf{b} \in \mathbb{R}^{3}$.

Answer: FALSE.

A counterexample is given by: $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Then $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions, but $A \mathbf{x}=\mathbf{b}$ has NO solutions.
(But any non-invertible matrix A actually will do the trick, but one has to choose \mathbf{b} suitably).
21. If \mathbf{v} is an eigenvector of the matrices A and B, then \mathbf{v} is also an eigenvector of $A B$.

Answer: TRUE.

Let us denote the corresponding eigenvalues of A and B by λ and μ, respectively:

$$
A \mathbf{v}=\lambda \mathbf{v}, \quad B \mathbf{v}=\mu \mathbf{v}
$$

Observe that in general $\lambda \neq \mu$.
Therefore:

$$
A B \mathbf{v}=A(\mu \mathbf{v})=\mu A \mathbf{v}=\mu \lambda \mathbf{v}
$$

So \mathbf{v} is an eigenvector of $A B$ with eigenvalue $\lambda \mu$.
22. If the unit vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{4}$ are orthogonal, then the vectors $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are also orthogonal.

Answer: TRUE.

The vectors $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are orthogonal if and only if their dot product is equal to 0 .
Taking the dot product of $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$:

$$
\begin{aligned}
(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v}) & =\mathbf{u} \cdot \mathbf{u}-\mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{u}-\mathbf{v} \cdot \mathbf{v} . \\
& =\mathbf{u} \cdot \mathbf{u}-\mathbf{v} \cdot \mathbf{v} . \\
& =1-1=0
\end{aligned}
$$

So $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are indeed orthogonal.

