Midterm Linear Algebra (CSE1205)

11 March 2020, 13:30-15:30, TU Delft

- Calculators and formula sheets are not allowed.
- Each question has a unique correct answer.
- Credits: 1 point for every question.
- Grade: $\max \left(9 \cdot \frac{(P-1)}{12}+1,1\right)$, where P denotes the total number of points.

1. Suppose that A and B are $n \times n$ matrices with $n \geq 2$ such that all the entries $(A B)_{i j}$ of $A B$ are strictly positive. Which of the following matrices must be invertible?
A. None
B. Only A
C. Only B
D. A and B

Answer: A.
2. Determine the last column of the reduced echelon form of $\left[\begin{array}{rrrr}0 & 3 & -6 & 6 \\ 3 & -4 & 2 & 1 \\ 3 & -6 & 6 & -3\end{array}\right]$.
A. $\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$
B. $\left[\begin{array}{r}-2 \\ -2 \\ 0\end{array}\right]$
C. $\left[\begin{array}{l}\frac{3}{2} \\ 1 \\ 0\end{array}\right]$
D. $\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$
E. $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
F. $\left[\begin{array}{r}6 \\ 1 \\ -3\end{array}\right]$
G. $\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$
H. $\left[\begin{array}{l}0 \\ \frac{2}{3} \\ 1\end{array}\right]$

Answer: A.
3. Find the determinant of the matrix $\left[\begin{array}{cccc}4 & 7 & 6 & 2 \\ 0 & 5 & 3 & 0 \\ 2 & 5 & 4 & 1 \\ 8 & 3 & 0 & 1\end{array}\right]$.
A. 6
B. 4
C. 2
D. 0
E. -2
F. -4
G. -6
H. -8

Answer: G.
4. Suppose the equation $A^{T} B^{-1}\left(C^{T}+X\right)^{T}=C$ holds for invertible matrices A, B, C. Solving for X gives that X is equal to:
A. $X=C^{T}\left(B^{T} A^{-1}-I\right)$
B. $X=C^{T}\left(A^{-1} B^{T}-I\right)$
C. $X=\left(B^{T} A^{-1}+I\right) C^{T}$
D. $X=\left(A^{-1} B^{T}+I\right) C^{T}$
E. $X=\left(B^{T} A^{-1}-I\right) C^{T}$
F. $X=C^{T}\left(A^{-1} B^{T}+I\right)$
G. $X=\left(A^{-1} B^{T}-I\right) C^{T}$
H. None of the above

Answer: B.
5. Calculate the inverse of the matrix $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 2 & 1 \\ 4 & 5 & 2\end{array}\right]$ if it exists. Then the sum of all the entries of A^{-1} is equal to:
A. -3
B. -2
C. -1
D. 0
E. 1
F. 2
G. 3
H. A is not invertible

Answer: D.
6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation satisfying $T\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T\left(\left[\begin{array}{l}2 \\ 3 \\ 6\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 7\end{array}\right]$. Calculate $T\left(\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right]\right)$:
A. $\left[\begin{array}{l}-1 \\ -3\end{array}\right]$
B. $\left[\begin{array}{l}3 \\ 1\end{array}\right]$
C. $\left[\begin{array}{r}1 \\ -3\end{array}\right]$
D. $\left[\begin{array}{r}-3 \\ 1\end{array}\right]$
E. $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$
F. $\left[\begin{array}{l}-3 \\ -1\end{array}\right]$
G. $\left[\begin{array}{l}1 \\ 3\end{array}\right]$
H. $\left[\begin{array}{r}3 \\ -1\end{array}\right]$

Answer: G.
7. For which values of α is the system $\left[\begin{array}{rrrr|r}1 & 3 & -1 & 1 & 1 \\ 3 & 8 & 0 & 1 & 1 \\ 1 & 4 & -4 & \alpha & 4\end{array}\right]$ consistent and has the solution exactly 1 free variable?
A. $\alpha \neq 1$
B. $\alpha \neq-1$
C. $\alpha \neq 2$
D. $\alpha \neq-2$
E. $\alpha \neq 3$
F. $\alpha \neq-3$
G. $\alpha \neq 4$
H. $\alpha \neq-4$

Answer: E.
8. Find the second row of the standard matrix of the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first rotates counter clockwise over $\frac{\pi}{6}$ around the origin and then reflects vectors across the x_{1}-axis:
A. $\left[\begin{array}{ll}\frac{1}{2} & -\frac{1}{2} \sqrt{3}\end{array}\right]$
B. $\left[\begin{array}{ll}-\frac{1}{2} & \frac{1}{2} \sqrt{3}\end{array}\right]$
C. $\left[\begin{array}{ll}-\frac{1}{2} & -\frac{1}{2} \sqrt{3}\end{array}\right]$
D. $\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \sqrt{3}\end{array}\right]$
E. $\left[\begin{array}{ll}-\frac{1}{2} \sqrt{3} & -\frac{1}{2}\end{array}\right]$
F. $\left[\begin{array}{ll}-\frac{1}{2} \sqrt{3} & \frac{1}{2}\end{array}\right]$
G. $\left[\begin{array}{ll}\frac{1}{2} \sqrt{3} & -\frac{1}{2}\end{array}\right]$
H. $\left[\begin{array}{ll}\frac{1}{2} \sqrt{3} & \frac{1}{2}\end{array}\right]$

Answer: C.
9. For which value of α is the dimension of the span of the following vectors less than 3 ?

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
3 \\
-3 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-3 \\
\alpha \\
0
\end{array}\right]
$$

A. 4
B. 3
C. 2
D. 1
E. 0
F. -1
G. -2
H. -3

Answer: H.
10. Let A be a 9×11 matrix with rank 6 . What is the dimension of the null space of A ?
A. 0
B. 1
C. 2
D. 3
E. 4
F. 5
G. 6
H. 7

Answer: F.
11. If A is an invertible 4×4 matrix that satisfies the property $A^{4}\left(A^{-1}\right)^{T}=-2 A^{T}$, then find all the possible values for $\operatorname{det} A$:
A. $-4,4,0$
B. -4
C. 4
D. $-4,4$
E. $-\sqrt{2}, \sqrt{2}$
F. $\sqrt{2}$
G. $-\sqrt{2} i, \sqrt{2} i$
H. 0

Answer: D.
12. Suppose that $A=\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3} \mathbf{a}_{4} \mathbf{a}_{5}\right]$ is row equivalent to $\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.

Which of the sets $\mathcal{B}_{1}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}, \mathbf{a}_{5}\right\}$ and $\mathcal{B}_{2}=\left\{\mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}\right\}$ are a basis for $\operatorname{Col}(A)$?
A. none of these
B. \mathcal{B}_{1} and \mathcal{B}_{2}
C. only \mathcal{B}_{1}
D. only \mathcal{B}_{2}

Answer: B.
13. Calculate the coordinate vector $[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ of the vector \mathbf{w} with respect to the basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where $\mathbf{w}=\left[\begin{array}{r}0 \\ -5 \\ 1\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{r}3 \\ -1 \\ 5\end{array}\right]$. Then x_{2} is given by:
A. -3
B. -2
C. -1
D. 0
E. 1
F. 2
G. 3
H. 4

Answer: F.

