Resit Linear Algebra (AESB1210-15), July 2, 2019, 9:00-12:00

- Calculators and formula sheets are not allowed.
- Credits: 4 points for questions from Part I and 5 points for questions from Part II.
- The final score: $($ Total +5$) / 6$, rounded to 1 decimal.
- Write your answers on exam paper.

PART I: SHORT-ANSWER QUESTIONS

1. Solve the following system of equations:

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3}= & 6 \\
3 x_{1}+2 x_{2}+14 x_{3} & =5 \\
x_{1}+5 x_{3} & =-2
\end{aligned}
$$

2. A is a 3×3-matrix that satisfies the property $A^{2}=2 A^{T}$. What are the possible values for the determinant of A ?

3. Let $A=\left[\begin{array}{rrr}4 & 7 & 3 \\ -6 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & -1 & 6 \\ -5 & 3 & -1 \\ 0 & -4 & -7\end{array}\right]$.
a. Write the entries in the first row of $A B$:

b. Find the entries in the second column of $A B$:

4. Determine all possible values of h such that the vectors $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{r}-1 \\ h \\ 1\end{array}\right]$ are linearly independent. (Write NOT if there are no such h):
\square
5. Find the $L U$-decomposition $A=L U$ of the matrix $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ 2 & 3 & 3 \\ -3 & -10 & 2\end{array}\right]$:

6. For the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ it is given that $T\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $T\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)=\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$. Find the standard matrix A of $T:$

7. Find the orthogonal projection of $\mathbf{y}=\left[\begin{array}{r}18 \\ 12 \\ 6\end{array}\right]$ onto $W=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]\right\}$:

8. Consider the matrix $A=\left[\begin{array}{rrr}3 & -4 & 7 \\ 4 & 3 & -2 \\ 0 & 0 & 1\end{array}\right]$.
a. Find the characteristic polynomial $p(\lambda)$ of A : \qquad
b. Find all the (real, and possibly, complex) eigenvalues of A :
\square
9. Consider the overdetermined system $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rr}-1 & 1 \\ 2 & -1 \\ 0 & -1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$.
a. Give the augmented matrix of the normal equations that you have to solve to find the least-squares solution of this system:
b. Find all the least-squares solutions: \square
10. a. Find the dimension of $W:=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 4 \\ 0\end{array}\right]\right\}$ in $\mathbb{R}^{4}: \quad \operatorname{dim} W=\square$
b. Find a basis for W^{\perp} : \square

END OF PART I. GO TO PART II (OPEN QUESTIONS)!
(continued on next page!)

PART II: OPEN QUESTIONS

- Justify clearly your answer.
- Mention the theorems, corollaries and results you are using!

11. a. Find the reduced echelon form of the matrix $A:=\left[\begin{array}{rrrrr}1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8\end{array}\right]$
b. Find the rank of A.
c. Find the dimension of $\operatorname{Nul}(A)$.
d. Find a basis for $\operatorname{Col}(A)$.
(continued on next page!)
12. a. Calculate the determinant of the matrix $A:=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & a\end{array}\right]$.
b. Find all values of a such that A is invertible.
c. Find the inverse A^{-1} for $a=1$.
13. a. Find the eigenvalues of $A:=\left[\begin{array}{rr}-1 & 4 \\ 2 & -3\end{array}\right]$.
b. Find a basis for all the eigenspaces E_{λ}.
c. Give a diagonalization of A (if it exists), i.e. write A in the form $P D P^{-1}$ with D a diagonal matrix.
