AES1210-15 (Linear Algebra), 15-04-2019, Final Exam

Name:		Student ID:
	write readable and underline your $\underline{surname}$	

- Calculators and formula sheets are **not** allowed.
- Credits: 3 points for questions from Part I and 4 points for questions from Part II.
- The final score: (Total+4)/5, rounded to 1 decimal.

PART I: SHORT-ANSWER QUESTIONS

1. Solve the following system of equations:

3. Consider the following linear transformations:

(1)
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 has standard matrix $\begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 6 & 5 \end{bmatrix}$
(2) $S : \mathbb{R}^3 \to \mathbb{R}^2$ is given by the formula $S\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 + x_3 \\ x_2 + x_3 \end{bmatrix}$
a. Determine the standard matrix of S :

6. Consider the transformation $T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + 4x_2\\ -x_1 - x_2 \end{bmatrix}$.

Find the matrix $[T]_{\mathcal{B}}$ of T relative to the basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, where $\mathbf{b}_1 = \begin{bmatrix} 2\\ -1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$. Answer: $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$

7. Find an orthogonal basis for $W = \text{Span}\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$, where

8. Let W be the subspace of \mathbb{R}^3 spanned by the vectors $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

a. Write $\mathbf{y} = \mathbf{\hat{y}} + \mathbf{z}$, with $\mathbf{\hat{y}} \in W$ and $\mathbf{z} \in W^{\perp}$:

b. Calculate the distance $dist(\mathbf{y}, W)$ between \mathbf{y} and W.

Answer:

9. Let
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$$
.

a. Find the (real and possibly complex) eigenvalues of A:

Eigenvalues of A:

b. For every eigenvalue of A you found in part **a**, find an associated (real and complex) eigenvector.

Eigenvectors:

Г

10. Consider the matrix
$$A = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{2}{3} & b \\ \frac{1}{\sqrt{2}} & a & b \\ 0 & \frac{1}{3} & -4b \end{bmatrix}$$
.

Determine all scalars a and b such that A is an orthogonal matrix.

END OF PART I. GO TO PART II (OPEN QUESTIONS)!

PART II: OPEN QUESTIONS

Important: Mention clearly the theorems, corollaries and results you are using!

11. Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \subset \mathbb{R}^7$ be a set of linearly independent set of vectors.

Proof that $\{\mathbf{v}_1 - \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_3\}$ is also a linearly independent set.

12. Suppose that A, B, C are square matrices satisfying ABC = I. Prove that B is invertible and express B^{-1} in terms of A and C.

13. Let
$$A = \begin{bmatrix} 7 & 2 & 1 \\ -4 & 1 & a \\ 0 & 0 & 5 \end{bmatrix}$$
, where *a* is a real constant.

a. Determine all the eigenvalues of A and their algebraic multiplicity.

b. Find a basis for the eigenspace E_{λ} with $\lambda = 5$.

(continued on next page!)

c. For which value(s) of a is the matrix A diagonalizable?

14. Find the equation of the line $y = \beta_0 + \beta_1 x$ that best fits (in the least-square sense) the points (0,0), (1,0), (2,1), (3,1).