AES1210-15 (Linear Algebra), 15-04-2019, Final Exam

Name:
 Student ID:

write readable and underline your surname

- Calculators and formula sheets are not allowed.
- Credits: 3 points for questions from Part I and 4 points for questions from Part II.
- The final score: $($ Total +4$) / 5$, rounded to 1 decimal.

PART I: SHORT-ANSWER QUESTIONS

1. Solve the following system of equations:

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
x_{1}-x_{2}-3 x_{3}=4 \\
3 x_{1}-4 x_{2}+x_{3}=2
\end{array}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=
$$

2. Let $A=\left[\begin{array}{rrrr}1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7\end{array}\right]$
a. Find a basis for $\operatorname{Col}(A)$:

b. Find a basis for $\operatorname{Nul}(A): \longdiv { \{ }\}$
3. Consider the following linear transformations:
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ has standard matrix $\left[\begin{array}{ll}2 & 3 \\ 1 & 4 \\ 6 & 5\end{array}\right]$
(2) $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by the formula $S\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2}+x_{3} \\ x_{2}+x_{3}\end{array}\right]$
a. Determine the standard matrix of S :

b. Determine the standard matrix of $S \circ T$:

4. Let $A=\left[\begin{array}{rrrr}1 & 0 & 2 & 0 \\ 2 & 0 & 1 & a \\ 1 & 0 & 3 & 2 \\ 2 & -2 & 1 & 4\end{array}\right]$, where a is a scalar. Calculate the determinant of A.
\square
5. Calculate the inverse of the matrix $A=\left[\begin{array}{lll}0 & 1 & a \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$ for all $a \neq 1: \quad A^{-1}=$
6. Consider the transformation $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}3 x_{1}+4 x_{2} \\ -x_{1}-x_{2}\end{array}\right]$.

Find the matrix $[T]_{\mathcal{B}}$ of T relative to the basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where $\mathbf{b}_{1}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$,
$\mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

7. Find an orthogonal basis for $W=\operatorname{Span}\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$, where

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
1 \\
2 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
3
\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{l}
2 \\
1 \\
3 \\
2
\end{array}\right]
$$

8. Let W be the subspace of \mathbb{R}^{3} spanned by the vectors $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$. Consider the vector $\mathbf{y}=\left[\begin{array}{r}-2 \\ 2 \\ 2\end{array}\right]$.
a. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, with $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$:

b. Calculate the distance $\operatorname{dist}(\mathbf{y}, W)$ between \mathbf{y} and W.

9. Let $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right]$.
a. Find the (real and possibly complex) eigenvalues of A :

Eigenvalues of A :

b. For every eigenvalue of A you found in part a, find an associated (real and complex) eigenvector.

Eigenvectors:

10. Consider the matrix $A=\left[\begin{array}{rrr}-\frac{1}{\sqrt{2}} & \frac{2}{3} & b \\ \frac{1}{\sqrt{2}} & a & b \\ 0 & \frac{1}{3} & -4 b\end{array}\right]$.

Determine all scalars a and b such that A is an orthogonal matrix.
\square

PART II: OPEN QUESTIONS

Important: Mention clearly the theorems, corollaries and results you are using!
11. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subset \mathbb{R}^{7}$ be a set of linearly independent set of vectors.

Proof that $\left\{\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{3}-\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{3}\right\}$ is also a linearly independent set.
12. Suppose that A, B, C are square matrices satisfying $A B C=I$.

Prove that B is invertible and express B^{-1} in terms of A and C.
13. Let $A=\left[\begin{array}{rrr}7 & 2 & 1 \\ -4 & 1 & a \\ 0 & 0 & 5\end{array}\right]$, where a is a real constant.
a. Determine all the eigenvalues of A and their algebraic multiplicity.
\square
b. Find a basis for the eigenspace E_{λ} with $\lambda=5$.

c. For which value(s) of a is the matrix A diagonalizable?
\square
14. Find the equation of the line $y=\beta_{0}+\beta_{1} x$ that best fits (in the least-square sense) the points $(0,0),(1,0),(2,1),(3,1)$.

