AES1210-15 (Linear Algebra), 15-04-2019, Final Exam

Name: SOLUTION

Student ID:

write readable and underline your surname

- Calculators and formula sheets are not allowed.
- Credits: 3 points for questions from Part I and 4 points for questions from Part II.
- The final score: $($ Total +4$) / 5$, rounded to 1 decimal.

PART I: SHORT-ANSWER QUESTIONS

1. Solve the following system of equations:

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
x_{1}-x_{2}-3 x_{3}=4 \\
3 x_{1}-4 x_{2}+x_{3}=2
\end{array}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

2. Let $A=\left[\begin{array}{rrrr}1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7\end{array}\right]$
a. Find a basis for $\left.\operatorname{Col}(A):\left\{\begin{array}{r}1 \\ -3 \\ 2 \\ -4\end{array}\right],\left[\begin{array}{r}2 \\ -1 \\ 4 \\ 2\end{array}\right] \cdot\left[\begin{array}{r}-4 \\ 5 \\ -3 \\ 7\end{array}\right]\right\}$
b. Find a basis for $\operatorname{Nul}(A): \sqrt{\left\{\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]}$
3. Consider the following linear transformations:
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ has standard matrix $\left[\begin{array}{ll}2 & 3 \\ 1 & 4 \\ 6 & 5\end{array}\right]$
(2) $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by the formula $S\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2}+x_{3} \\ x_{2}+x_{3}\end{array}\right]$
a. Determine the standard matrix of S :
$\left[\begin{array}{lll}{\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 1 & 1\end{array}\right]}\end{array}\right]$
b. Determine the standard matrix of $S \circ T$:

4. Let $A=\left[\begin{array}{rrrr}1 & 0 & 2 & 0 \\ 2 & 0 & 1 & a \\ 1 & 0 & 3 & 2 \\ 2 & -2 & 1 & 4\end{array}\right]$, where a is a scalar. Calculate the determinant of A.
$\operatorname{det} A=2 a+12$
5. Calculate the inverse of the matrix $A=\left[\begin{array}{lll}0 & 1 & a \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$ for all $a \neq 1: \quad A^{-1}=$
6. Consider the transformation $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}3 x_{1}+4 x_{2} \\ -x_{1}-x_{2}\end{array}\right]$.

Find the matrix $[T]_{\mathcal{B}}$ of T relative to the basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where $\mathbf{b}_{1}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$, $\mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Answer:

7. Find an orthogonal basis for $W=\operatorname{Span}\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$, where

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
1 \\
2 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
3
\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{c}
2 \\
1 \\
3 \\
2
\end{array}\right]
$$

Answer: $\left\{\begin{array}{l}\left\{\begin{array}{l}3 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ -2 \\ 0\end{array}\right]\end{array}\right\}$
8. Let W be the subspace of \mathbb{R}^{3} spanned by the vectors $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$. Consider the vector $\mathbf{y}=\left[\begin{array}{r}-2 \\ 2 \\ 2\end{array}\right]$.
a. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, with $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$:

$$
\hat{\mathbf{y}}=\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]}
\end{array}\right]
$$

$$
\mathbf{z}=\left[\begin{array}{r}
\\
{\left[\begin{array}{r}
-2 \\
0 \\
2
\end{array}\right]}
\end{array}\right]
$$

b. Calculate the distance $\operatorname{dist}(\mathbf{y}, W)$ between \mathbf{y} and W.

Answer: \square $\sqrt{8}$
9. Let $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right]$.
a. Find the (real and possibly complex) eigenvalues of A :

Eigenvalues of A : $1+2 i, 1-2 i$
b. For every eigenvalue of A you found in part a, find an associated (real and complex) eigenvector.

Eigenvectors: $\left[\begin{array}{r}1+i \\ 2\end{array}\right],\left[\begin{array}{r}1+i \\ 2\end{array}\right]$
10. Consider the matrix $A=\left[\begin{array}{rrr}-\frac{1}{\sqrt{2}} & \frac{2}{3} & b \\ \frac{1}{\sqrt{2}} & a & b \\ 0 & \frac{1}{3} & -4 b\end{array}\right]$.

Determine all scalars a and b such that A is an orthogonal matrix.
Answer: $a=\frac{2}{3}, b= \pm \frac{1}{\sqrt{1} 8}$

PART II: OPEN QUESTIONS

Important: Mention clearly the theorems, corollaries and results you are using!

11. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subset \mathbb{R}^{7}$ be a set of linearly independent set of vectors.

Proof that $\left\{\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{3}-\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{3}\right\}$ is also a linearly independent set.

Answer:

The vector equation

$$
x_{1}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)+x_{2}\left(\mathbf{v}_{3}-\mathbf{v}_{2}\right)+x_{3}\left(\mathbf{v}_{1}+\mathbf{v}_{3}\right)=\mathbf{0}
$$

is equivalent to

$$
\left(x_{1}+x_{3}\right) \mathbf{v}_{1}+\left(-x_{1}-x_{2}\right) \mathbf{v}_{2}+\left(x_{2}+x_{3}\right) \mathbf{v}_{3}=\mathbf{0}
$$

and since $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent, to the system

$$
\left\{\begin{array}{l}
x_{1}+x_{3}=0 \\
-x_{1}-x_{2}=0 \\
x_{2}+x_{3}=0
\end{array}\right.
$$

But the only solution to this system is the trivial solution $x_{3}=x_{2}=x_{1}=0$.
This implies that the vectors $\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{3}-\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{3}$ are linearly independent.
12. Suppose that A, B, C are square matrices satisfying $A B C=I$.

Prove that B is invertible and express B^{-1} in terms of A and C.

Answer: Taking determinants:

$$
\operatorname{det} A \operatorname{det} B \operatorname{det} C=1 \Longrightarrow \operatorname{det} A, \operatorname{det} B, \operatorname{det} C \neq 0
$$

The Invertible Matrix Theorem: A, B, C are invertible.
Multiplying the identity $A B C=I$ first from the left by A^{-1} and then from the right by C^{-1} yields

$$
B=A^{-1} I C^{-1}=A^{-1} C^{-1}
$$

and therefore

$$
B^{-1}=\left(C^{-1}\right)^{-1}\left(A^{-1}\right)^{-1}=C A
$$

13. Let $A=\left[\begin{array}{rrr}7 & 2 & 1 \\ -4 & 1 & a \\ 0 & 0 & 5\end{array}\right]$, where a is a real constant.
a. Determine all the eigenvalues of A and their algebraic multiplicity.

Answer:
The characteristic polynomial of A is given by

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{rrr}
7-\lambda & 2 & 1 \\
-4 & 1-\lambda & a \\
0 & 0 & 5-\lambda
\end{array}\right]
$$

Expanding along the last row yields:

$$
p(\lambda)=(5-\lambda) \operatorname{det}\left[\begin{array}{rr}
7-\lambda & 2 \\
-4 & 1-\lambda
\end{array}\right]=(5-\lambda)\left(\lambda^{2}-8 \lambda+15\right)=-(\lambda-3)(\lambda-5)^{2}
$$

The eigenvalues are therefore:
$\lambda_{1}=3$ (with algebraic multiplicity 1), and
$\lambda_{2}=5$ (with algebraic multiplicity 2).
b. Find a basis for the eigenspace E_{λ} with $\lambda=5$.

Answer:

$$
A-5 I=\left[\begin{array}{rrr}
2 & 2 & 1 \\
-4 & -4 & a \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrr}
2 & 2 & 1 \\
-4 & -4 & a \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrr}
2 & 2 & 1 \\
0 & 0 & a+2 \\
0 & 0 & 0
\end{array}\right]
$$

If $a+2 \neq 0$, then the above system has 2 pivot positions and

$$
E_{5}=\operatorname{Nul}(A-5 I)=\mathbb{R}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

If $a+2=0$, then the above system has 1 pivot position and $E_{5}=\operatorname{Nul}(A-5 I)=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right]\right\}$.
c. For which value(s) of a is the matrix A diagonalizable?

Answer:

A matrix A is diagonalizable if and only if the geometric multiplicity of any eigenvalue is equal to the algebraic multiplicity.
For the given matrix A this always holds for $\lambda=3$, but for $\lambda=5$ it only holds if $a=-2$.
Conclusion: A is diagonalizable if and only if $a=-2$.
14. Find the equation of the line $y=\beta_{0}+\beta_{1} x$ that best fits (in the least-square sense) the points $(0,0),(1,0),(2,1),(3,1)$.

Answer:

The vector $\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]$ is a least-square solution of the system $X\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\mathbf{y}$, where X is the design matrix and \mathbf{y} the observation vector of the data:

$$
X=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

The corresponding normal equations are given by $X^{T} X\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=X^{T} \mathbf{y}$, i.e.

$$
\left[\begin{array}{rr}
4 & 6 \\
6 & 14
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
2 \\
5
\end{array}\right]
$$

This system has the unique solution $\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\left[\begin{array}{r}-0.1 \\ 0.4\end{array}\right]$.
So the best line is given by the equation $y=0.4-0.1 x$.

