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1.1 SOLUTIONS  

Notes: The key exercises are 7 (or 11 or 12), 19–22, and 25. For brevity, the symbols R1, R2,…, stand for 
row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section. 

 1. 1 2

1 2

5 7
2 7 5

x x
x x

+ =
− − = −

  
1 5 7
2 7 5

 
 − − − 

 

  Replace R2 by R2 + (2)R1 and obtain: 1 2

2

5 7
3 9

x x
x

+ =
=

 
1 5 7
0 3 9
 
 
 

 

  Scale R2 by 1/3: 1 2

2

5 7
3

x x
x

+ =
=

 
1 5 7
0 1 3
 
 
 

 

  Replace R1 by R1 + (–5)R2:  1

2

8
3

x
x

= −
=

 
1 0 8
0 1 3

− 
 
 

 

  The solution is (x1, x2) = (–8, 3), or simply (–8, 3). 

 2. 1 2

1 2

2 4 4
5 7 11

x x
x x

+ = −
+ =

  
2 4 4
5 7 11

− 
 
 

 

  Scale R1 by 1/2 and obtain:  1 2

1 2

2 2
5 7 11

x x
x x

+ = −
+ =

 
1 2 2
5 7 11

− 
 
 

 

  Replace R2 by R2 + (–5)R1: 1 2

2

2 2
3 21

x x
x

+ = −
− =

 
1 2 2
0 3 21

− 
 − 

 

  Scale R2 by –1/3:  1 2

2

2 2
7

x x
x

+ = −
= −

 
1 2 2
0 1 7

− 
 − 

 

  Replace R1 by R1 + (–2)R2: 1

2

12
7

x
x

=
= −

 
1 0 12
0 1 7
 
 − 

 

  The solution is (x1, x2) = (12, –7), or simply (12, –7). 
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 3. The point of intersection satisfies the system of two linear equations: 

   1 2

1 2

5 7
2 2

x x
x x

+ =
− = −

  
1 5 7
1 2 2
 
 − − 

 

  Replace R2 by R2 + (–1)R1 and obtain: 1 2

2

5 7
7 9

x x
x

+ =
− = −

 
1 5 7
0 7 9
 
 − − 

 

  Scale R2 by –1/7: 1 2

2

5 7
9/7

x x
x

+ =
=

 
1 5 7
0 1 9/7
 
 
 

 

  Replace R1 by R1 + (–5)R2: 1

2

4/7
9/7

x
x

=
=

 
1 0 4/7
0 1 9/7
 
 
 

 

  The point of intersection is (x1, x2) = (4/7, 9/7). 

 4. The point of intersection satisfies the system of two linear equations: 

   1 2

1 2

5 1
3 7 5

x x
x x

− =
− =

  
1 5 1
3 7 5

− 
 − 

 

  Replace R2 by R2 + (–3)R1 and obtain:   1 2

2

5 1
8 2

x x
x

− =
=

 
1 5 1
0 8 2

− 
 
 

 

  Scale R2 by 1/8:  1 2

2

5 1
1/4

x x
x

− =
=

 
1 5 1
0 1 1/4

− 
 
 

 

  Replace R1 by R1 + (5)R2: 1

2

9/4
1/4

x
x

=
=

 
1 0 9/4
0 1 1/4
 
 
 

 

  The point of intersection is (x1, x2) = (9/4, 1/4). 

 5. The system is already in “triangular” form. The fourth equation is x4 = –5, and the other equations do not 
contain the variable x4. The next two steps should be to use the variable x3 in the third equation to 
eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by its 
sum with 3 times R3, and then replace R1 by its sum with –5 times R3. 

 6. One more step will put the system in triangular form. Replace R4 by its sum with –3 times R3, which 

produces 

1 6 4 0 1
0 2 7 0 4
0 0 1 2 3
0 0 0 5 15

− − 
 − 
 −
 − 

. After that, the next step is to scale the fourth row by –1/5. 

 7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third column. 
But in this case, the third row of the augmented matrix corresponds to the equation 0 x1 + 0 x2 + 0 x3 = 1, 
or simply, 0 = 1. A system containing this condition has no solution. Further row operations are 
unnecessary once an equation such as 0 = 1 is evident. 

  The solution set is empty. 
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 8. The standard row operations are: 

   
1 4 9 0 1 4 9 0 1 4 0 0 1 0 0 0
0 1 7 0 ~ 0 1 7 0 ~ 0 1 0 0 ~ 0 1 0 0
0 0 2 0 0 0 1 0 0 0 1 0 0 0 1 0

− − −       
       
       
              

 

  The solution set contains one solution: (0, 0, 0). 

 9. The system has already been reduced to triangular form. Begin by scaling the fourth row by 1/2 and then 
replacing R3 by R3 + (3)R4: 

   

1 1 0 0 4 1 1 0 0 4 1 1 0 0 4
0 1 3 0 7 0 1 3 0 7 0 1 3 0 7

~ ~
0 0 1 3 1 0 0 1 3 1 0 0 1 0 5
0 0 0 2 4 0 0 0 1 2 0 0 0 1 2

− − − − − −     
     − − − − −     
     − − − −
     
     

 

  Next, replace R2 by R2 + (3)R3. Finally, replace R1 by R1 + R2: 

   

1 1 0 0 4 1 0 0 0 4
0 1 0 0 8 0 1 0 0 8

~ ~
0 0 1 0 5 0 0 1 0 5
0 0 0 1 2 0 0 0 1 2

− −   
   
   
   
   
   

 

  The solution set contains one solution: (4, 8, 5, 2). 

 10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the  
–4 and 3 above it to zeros. That is, replace R2 by R2 + (4)R4 and replace R1 by R1 + (–3)R4. For the 
final step, replace R1 by R1 + (2)R2. 

   

1 2 0 3 2 1 2 0 0 7 1 0 0 0 3
0 1 0 4 7 0 1 0 0 5 0 1 0 0 5

~ ~
0 0 1 0 6 0 0 1 0 6 0 0 1 0 6
0 0 0 1 3 0 0 0 1 3 0 0 0 1 3

− − − −     
     − − −     
     
     − − −     

 

  The solution set contains one solution: (–3, –5, 6, –3). 

11. First, swap R1 and R2. Then replace R3 by R3 + (–3)R1. Finally, replace R3 by R3 + (2)R2. 

   
0 1 4 5 1 3 5 2 1 3 5 2 1 3 5 2
1 3 5 2 ~ 0 1 4 5 ~ 0 1 4 5 ~ 0 1 4 5
3 7 7 6 3 7 7 6 0 2 8 12 0 0 0 2

− − − −       
       − − − −       
       − −       

 

  The system is inconsistent, because the last row would require that 0 = 2 if there were a solution.  
The solution set is empty. 

 12. Replace R2 by R2 + (–3)R1 and replace R3 by R3 + (4)R1. Finally, replace R3 by R3 + (3)R2. 

   
1 3 4 4 1 3 4 4 1 3 4 4
3 7 7 8 ~ 0 2 5 4 ~ 0 2 5 4
4 6 1 7 0 6 15 9 0 0 0 3

− − − − − −     
     − − − −     
     − − − −     

 

  The system is inconsistent, because the last row would require that 0 = 3 if there were a solution.  
The solution set is empty. 
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 13. 
1 0 3 8 1 0 3 8 1 0 3 8 1 0 3 8
2 2 9 7 ~ 0 2 15 9 ~ 0 1 5 2 ~ 0 1 5 2
0 1 5 2 0 1 5 2 0 2 15 9 0 0 5 5

− − − −       
       − − −       
       − − − −       

 

  
1 0 3 8 1 0 0 5

~ 0 1 5 2 ~ 0 1 0 3
0 0 1 1 0 0 1 1

−   
   −   
   − −   

. The solution is (5, 3, –1). 

 14. 
1 3 0 5 1 3 0 5 1 3 0 5 1 3 0 5
1 1 5 2 ~ 0 2 5 7 ~ 0 1 1 0 ~ 0 1 1 0
0 1 1 0 0 1 1 0 0 2 5 7 0 0 7 7

− − − −       
       − −       
       −       

 

  
1 3 0 5 1 3 0 5 1 0 0 2

~ 0 1 1 0 ~ 0 1 0 1 ~ 0 1 0 1 .
0 0 1 1 0 0 1 1 0 0 1 1

− −     
     − −     
          

 The solution is (2, –1, 1). 

15. First, replace R4 by R4 + (–3)R1, then replace R3 by R3 + (2)R2, and finally replace R4 by R4 + (3)R3.  

   

1 0 3 0 2 1 0 3 0 2
0 1 0 3 3 0 1 0 3 3

~
0 2 3 2 1 0 2 3 2 1
3 0 0 7 5 0 0 9 7 11

   
   − −   
   − −
   − − −   

 

   

1 0 3 0 2 1 0 3 0 2
0 1 0 3 3 0 1 0 3 3

~ ~
0 0 3 4 7 0 0 3 4 7
0 0 9 7 11 0 0 0 5 10

   
   − −   
   − −
   − − −   

 

  The resulting triangular system indicates that a solution exists. In fact, using the argument from Example 2, 
one can see that the solution is unique. 

16. First replace R4 by R4 + (2)R1 and replace R4 by R4 + (–3/2)R2. (One could also scale R2 before 
adding to R4, but the arithmetic is rather easy keeping R2 unchanged.) Finally, replace R4 by R4 + R3. 

   

1 0 0 2 3 1 0 0 2 3
0 2 2 0 0 0 2 2 0 0

~
0 0 1 3 1 0 0 1 3 1
2 3 2 1 5 0 3 2 3 1

− − − −   
   
   
   
   − − −   

 

   

1 0 0 2 3 1 0 0 2 3
0 2 2 0 0 0 2 2 0 0

~ ~
0 0 1 3 1 0 0 1 3 1
0 0 1 3 1 0 0 0 0 0

− − − −   
   
   
   
   − − −   

 

  The system is now in triangular form and has a solution. The next section discusses how to continue with 
this type of system. 
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17. Row reduce the augmented matrix corresponding to the given system of three equations: 

   
1 4 1 1 4 1 1 4 1
2 1 3 ~ 0 7 5 ~ 0 7 5
1 3 4 0 7 5 0 0 0

− − −     
     − − − −     
     − − −     

 

  The system is consistent, and using the argument from Example 2, there is only one solution. So the three 
lines have only one point in common. 

18. Row reduce the augmented matrix corresponding to the given system of three equations: 

   
1 2 1 4 1 2 1 4 1 2 1 4
0 1 1 1 ~ 0 1 1 1 ~ 0 1 1 1
1 3 0 0 0 1 1 4 0 0 0 5

     
     − − −     
     − − −     

 

  The third equation, 0 = –5, shows that the system is inconsistent, so the three planes have no point in 
common. 

19. 
1 4 1 4

~
3 6 8 0 6 3 4

h h
h

   
   − −   

 Write c for 6 – 3h. If c = 0, that is, if h = 2, then the system has no 

solution, because 0 cannot equal –4. Otherwise, when h ≠ 2, the system has a solution. 

20. 
1 3 1 3

~ .
2 4 6 0 4 2 0

h h
h

− −   
   − +   

 Write c for 4 + 2h. Then the second equation cx2 = 0 has a solution 

for every value of c. So the system is consistent for all h. 

21. 
1 3 2 1 3 2

~ .
4 8 0 12 0h h

− −   
   − +   

 Write c for h + 12. Then the second equation cx2 = 0 has a solution 

for every value of c. So the system is consistent for all h. 

22. 
2 3 2 3

~ .
6 9 5 0 0 5 3

h h
h

− −   
   − +   

 The system is consistent if and only if 5 + 3h = 0, that is, if and only 

if h = –5/3. 

23. a. True. See the remarks following the box titled Elementary Row Operations. 
b. False. A 5 × 6 matrix has five rows. 
c. False. The description given applied to a single solution. The solution set consists of all possible 

solutions. Only in special cases does the solution set consist of exactly one solution. Mark a statement 
True only if the statement is always true. 

d. True. See the box before Example 2. 

24. a. True. See the box preceding the subsection titled Existence and Uniqueness Questions. 
b. False. The definition of row equivalent requires that there exist a sequence of row operations that 

transforms one matrix into the other. 
c. False. By definition, an inconsistent system has no solution. 
d. True. This definition of equivalent systems is in the second paragraph after equation (2). 
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25. 
1 4 7 1 4 7 1 4 7
0 3 5 ~ 0 3 5 ~ 0 3 5
2 5 9 0 3 5 2 0 0 0 2

g g g
h h h
k k g k g h

− − −     
     − − −     
     − − − + + +     

 

  Let b denote the number k + 2g + h. Then the third equation represented by the augmented matrix above 
is 0 = b. This equation is possible if and only if b is zero. So the original system has a solution if and only 
if k + 2g + h = 0.  

26. A basic principle of this section is that row operations do not affect the solution set of a linear system. 
Begin with a simple augmented matrix for which the solution is obviously (–2, 1, 0), and then perform 
any elementary row operations to produce other augmented matrices. Here are three examples. The fact 
that they are all row equivalent proves that they all have the solution set (–2, 1, 0). 

   
1 0 0 2 1 0 0 2 1 0 0 2
0 1 0 1 ~ 2 1 0 3 ~ 2 1 0 3
0 0 1 0 0 0 1 0 2 0 1 4

− − −     
     − −     
     −     

 

27. Study the augmented matrix for the given system, replacing R2 by R2 + (–c)R1:  

   
1 3 1 3

~
0 3

f f
c d g d c g cf
   
   − −   

 

  This shows that shows d – 3c must be nonzero, since f and g are arbitrary. Otherwise, for some choices  
of f and g the second row would correspond to an equation of the form 0 = b, where b is nonzero.  
Thus d ≠ 3c. 

28. Row reduce the augmented matrix for the given system. Scale the first row by 1/a, which is possible 
since a is nonzero. Then replace R2 by R2 + (–c)R1. 

   
1 / / 1 / /

~ ~
0 ( / ) ( / )

a b f b a f a b a f a
c d g c d g d c b a g c f a
     
     − −     

 

  The quantity d – c(b/a) must be nonzero, in order for the system to be consistent when the quantity  
g – c( f /a) is nonzero (which can certainly happen). The condition that d – c(b/a) ≠ 0 can also be written 
as ad – bc ≠ 0, or ad ≠ bc. 

29. Swap R1 and R2; swap R1 and R2. 

30. Multiply R2 by –1/2; multiply R2 by –2. 

31. Replace R3 by R3 + (–4)R1; replace R3 by R3 + (4)R1. 

32. Replace R3 by R3 + (3)R2; replace R3 by R3 + (–3)R2. 

33. The first equation was given. The others are: 
   2 1 3 2 1 3( 20 40 )/4, or 4 60T T T T T T= + + + − − =  

   3 4 2 3 4 2( 40 30)/4, or 4 70T T T T T T= + + + − − =  

   4 1 3 4 1 3(10 30)/4, or 4 40T T T T T T= + + + − − =  
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  Rearranging, 

   

1 2 4

1 2 3

2 3 4

1 3 4

4 30
4 60

4 70
4 40

T T T
T T T

T T T
T T T

− − =
− + − =

− + − =
− − + =

 

34. Begin by interchanging R1 and R4, then create zeros in the first column: 

   

4 1 0 1 30 1 0 1 4 40 1 0 1 4 40
1 4 1 0 60 1 4 1 0 60 0 4 0 4 20

~ ~
0 1 4 1 70 0 1 4 1 70 0 1 4 1 70
1 0 1 4 40 4 1 0 1 30 0 1 4 15 190

− − − − − −     
     − − − − −     
     − − − − − −
     − − − − − −     

 

  Scale R1 by –1 and R2 by 1/4, create zeros in the second column, and replace R4 by R4 + R3: 

   

1 0 1 4 40 1 0 1 4 40 1 0 1 4 40
0 1 0 1 5 0 1 0 1 5 0 1 0 1 5

~ ~ ~
0 1 4 1 70 0 0 4 2 75 0 0 4 2 75
0 1 4 15 190 0 0 4 14 195 0 0 0 12 270

− − − − − −     
     − − −     
     − − − −
     − − −     

 

  Scale R4 by 1/12, use R4 to create zeros in column 4, and then scale R3 by 1/4: 

   

1 0 1 4 40 1 0 1 0 50 1 0 1 0 50
0 1 0 1 5 0 1 0 0 27.5 0 1 0 0 27.5

~ ~ ~
0 0 4 2 75 0 0 4 0 120 0 0 1 0 30
0 0 0 1 22.5 0 0 0 1 22.5 0 0 0 1 22.5

− −     
     −     
     −
     
     

 

  The last step is to replace R1 by R1 + (–1)R3: 

   

1 0 0 0 20.0
0 1 0 0 27.5

~ .
0 0 1 0 30.0
0 0 0 1 22.5

 
 
 
 
 
 

 The solution is (20, 27.5, 30, 22.5). 

Notes: The Study Guide includes a “Mathematical Note” about statements, “If … , then … .” 
This early in the course, students typically use single row operations to reduce a matrix. As a result, even 

the small grid for Exercise 34 leads to about 25 multiplications or additions (not counting operations with 
zero). This exercise should give students an appreciation for matrix programs such as MATLAB. Exercise 14 
in Section 1.10 returns to this problem and states the solution in case students have not already solved the 
system of equations. Exercise 31 in Section 2.5 uses this same type of problem in connection with an LU 
factorization. 

For instructors who wish to use technology in the course, the Study Guide provides boxed MATLAB 
notes at the ends of many sections. Parallel notes for Maple, Mathematica, and the TI-83+/86/89 and HP-48G 
calculators appear in separate appendices at the end of the Study Guide. The MATLAB box for Section 1.1 
describes how to access the data that is available for all numerical exercises in the text. This feature has the 
ability to save students time if they regularly have their matrix program at hand when studying linear algebra. 
The MATLAB box also explains the basic commands replace, swap, and scale. These commands are 
included in the text data sets, available from the text web site, www.laylinalgebra.com. 
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1.2 SOLUTIONS 

Notes: The key exercises are 1–20 and 23–28. (Students should work at least four or five from Exercises 
7–14, in preparation for Section 1.5.)  

 1. Reduced echelon form: a and b. Echelon form: d. Not echelon: c. 

 2.  Reduced echelon form: a. Echelon form: b and d. Not echelon: c. 

 3. 
1 2 3 4 1 2 3 4 1 2 3 4
4 5 6 7 ~ 0 3 6 9 ~ 0 1 2 3
6 7 8 9 0 5 10 15 0 5 10 15

     
     − − −     
     − − − − − −     

 

   
1 2 3 4 1 0 1 2

~ 0 1 2 3 ~ 0 1 2 3
0 0 0 0 0 0 0 0

− −   
   
   
      

.  Pivot cols 1 and 2.  
1 2 3 4
4 5 6 7
6 7 8 9

 
 
 
  

 

 4. 
1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
3 5 7 9 ~ 0 4 8 12 ~ 0 1 2 3 ~ 0 1 2 3
5 7 9 1 0 8 16 34 0 8 16 34 0 0 0 10

       
       − − −       
       − − − − − − −       

 

   
1 3 5 7 1 3 5 0 1 0 1 0

~ 0 1 2 3 ~ 0 1 2 0 ~ 0 1 2 0
0 0 0 1 0 0 0 1 0 0 0 1

−     
     
     
          

.  Pivot cols
1, 2, and 4    

1 3 5 7
3 5 7 9
5 7 9 1

 
 
 
  

 

 5. 
* * 0

, ,
0 0 0 0 0
     
     
     

 6.
* * 0

0 , 0 0 , 0 0
0 0 0 0 0 0

     
     
     
          

 

 7. 
1 3 4 7 1 3 4 7 1 3 4 7 1 3 0 5

~ ~ ~
3 9 7 6 0 0 5 15 0 0 1 3 0 0 1 3

−       
       − −       

 

  Corresponding system of equations:  1 2

3

3 5
3

x x
x

+ = −
=

 

  The basic variables (corresponding to the pivot positions) are x1 and x3. The remaining variable x2 is free. 
Solve for the basic variables in terms of the free variable. The general solution is 

   
1 2

2

3

5 3
 is free

3

x x
x
x

= − −


 =

 

Note: Exercise 7 is paired with Exercise 10. 
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 8. 
1 4 0 7 1 4 0 7 1 4 0 7 1 0 0 9

~ ~ ~
2 7 0 10 0 1 0 4 0 1 0 4 0 1 0 4

−       
       − −       

 

  Corresponding system of equations:  1

2

9
4

x
x

= −
=

 

  The basic variables (corresponding to the pivot positions) are x1 and x2. The remaining variable x3 is free. 
Solve for the basic variables in terms of the free variable. In this particular problem, the basic variables 
do not depend on the value of the free variable.  

  General solution:  
1

2

3

9
4

 is free

x
x
x

= −
 =



 

Note: A common error in Exercise 8 is to assume that x3 is zero. To avoid this, identify the basic variables 
first. Any remaining variables are free. (This type of computation will arise in Chapter 5.) 

 9. 
0 1 6 5 1 2 7 6 1 0 5 4

~ ~
1 2 7 6 0 1 6 5 0 1 6 5

− − − −     
     − − − −     

 

  Corresponding system:  1 3

2 3

5 4
6 5

x x
x x

− =
− =

 

  Basic variables: x1, x2; free variable: x3. General solution: 
1 3

2 3

3

4 5
5 6

is free

x x
x x
x

= +
 = +



 

 10. 
1 2 1 3 1 2 1 3 1 2 0 4

~ ~
3 6 2 2 0 0 1 7 0 0 1 7

− − − − − −     
     − − − −     

 

  Corresponding system:  1 2

3

2 4
7

x x
x

− = −
= −

 

  Basic variables: x1, x3; free variable: x2. General solution: 
1 2

2

3

4 2
 is free

7

x x
x
x

= − +


 = −

 

 11. 
3 4 2 0 3 4 2 0 1 4 / 3 2 / 3 0
9 12 6 0 ~ 0 0 0 0 ~ 0 0 0 0
6 8 4 0 0 0 0 0 0 0 0 0

− − −     
     − −     
     − −     

 

  Corresponding system:  

1 2 3
4 2 0
3 3

0 0
0 0

x x x− + =

=
=
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  Basic variable: x1; free variables x2, x3. General solution: 

1 2 3

2

3

4 2

3 3
 is free
 is free

x xx

x
x

 = −






 

 12. 
1 7 0 6 5 1 7 0 6 5 1 7 0 6 5
0 0 1 2 3 ~ 0 0 1 2 3 ~ 0 0 1 2 3
1 7 4 2 7 0 0 4 8 12 0 0 0 0 0

− − −     
     − − − − − −     
     − − −     

 

  Corresponding system:  
1 2 4

3 4

7 6 5
2 3

0 0

x x x
x x

− + =
− = −

=
 

  Basic variables: x1 and x3; free variables: x2, x4. General solution: 

1 2 4

2

3 4

4

5 7 6
 is free

3 2
 is free

x x x
x
x x
x

= + −


 = − +


 

 13. 

1 3 0 1 0 2 1 3 0 0 9 2 1 0 0 0 3 5
0 1 0 0 4 1 0 1 0 0 4 1 0 1 0 0 4 1

~ ~
0 0 0 1 9 4 0 0 0 1 9 4 0 0 0 1 9 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − −     
     − − −     
     
     
     

 

  Corresponding system:  

1 5

2 5

4 5

3 5
4 1
9 4

0 0

x x
x x

x x

− =
− =
+ =

=

   

  Basic variables: x1, x2, x4; free variables: x3, x5. General solution: 

1 5

2 5

3

4 5

5

5 3
1 4

is free
4 9

is free

x x
x x
x
x x
x

= +
 = +

 = −


 

Note: The Study Guide discusses the common mistake x3 = 0. 

 14. 

1 2 5 6 0 5 1 0 7 0 0 9
0 1 6 3 0 2 0 1 6 3 0 2

~
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0

− − − −   
   − − − −   
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  Corresponding system:  

1 3

2 3 4

5

7 9
6 3 2

0
0 0

x x
x x x

x

+ = −
− − =

=
=

 

  Basic variables: x1, x2, x5; free variables: x3, x4. General solution: 

1 3

2 3 4

3

4

5

9 7
2 6 3

 is free
 is free

0

x x
x x x
x
x
x

= − −
 = + +




=

 

 15. a. The system is consistent, with a unique solution. 
b. The system is inconsistent. (The rightmost column of the augmented matrix is a pivot column). 

 16. a. The system is consistent, with a unique solution. 
b. The system is consistent. There are many solutions because x2 is a free variable. 

 17. 
2 3 2 3

~
4 6 7 0 0 7 2

h h
h

   
   −   

 The system has a solution only if 7 – 2h = 0, that is, if h = 7/2. 

 18. 
1 3 2 1 3 2

~
5 7 0 15 3h h

− − − −   
   − +   

 If h +15 is zero, that is, if h = –15, then the system has no solution, 

because 0 cannot equal 3. Otherwise, when 15,h ≠ −  the system has a solution. 

 19. 
1 2 1 2

~
4 8 0 8 4 8

h h
k h k

   
   − −   

  

a. When h = 2 and 8,k ≠  the augmented column is a pivot column, and the system is inconsistent. 
b. When 2,h ≠  the system is consistent and has a unique solution. There are no free variables.  
c. When h = 2 and k = 8, the system is consistent and has many solutions.  

 20. 
1 3 2 1 3 2

~
3 0 9 6h k h k
   
   − −   

 

a. When h = 9 and 6,k ≠  the system is inconsistent, because the augmented column is a pivot column. 
b. When 9,h ≠  the system is consistent and has a unique solution. There are no free variables. 
c. When h = 9 and k = 6, the system is consistent and has many solutions. 

 21. a. False. See Theorem 1. 
b. False. See the second paragraph of the section. 
c. True. Basic variables are defined after equation (4). 
d. True. This statement is at the beginning of Parametric Descriptions of Solution Sets. 
e. False. The row shown corresponds to the equation 5x4 = 0, which does not by itself lead to a 

contradiction. So the system might be consistent or it might be inconsistent. 
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 22. a. False. See the statement preceding Theorem 1. Only the reduced echelon form is unique. 
b. False. See the beginning of the subsection Pivot Positions. The pivot positions in a matrix are 

determined completely by the positions of the leading entries in the nonzero rows of any echelon 
form obtained from the matrix. 

c. True. See the paragraph after Example 3. 
d. False. The existence of at least one solution is not related to the presence or absence of free variables. 

If the system is inconsistent, the solution set is empty. See the solution of Practice Problem 2. 
e. True. See the paragraph just before Example 4. 

 23. Yes. The system is consistent because with three pivots, there must be a pivot in the third (bottom) row 
of the coefficient matrix. The reduced echelon form cannot contain a row of the form 
[0   0   0   0   0   1]. 

 24. The system is inconsistent because the pivot in column 5 means that there is a row of the form 
[0   0   0   0   1]. Since the matrix is the augmented matrix for a system, Theorem 2 shows that the system 
has no solution. 

 25. If the coefficient matrix has a pivot position in every row, then there is a pivot position in the bottom 
row, and there is no room for a pivot in the augmented column. So, the system is consistent, by  
Theorem 2. 

 26. Since there are three pivots (one in each row), the augmented matrix must reduce to the form 

   
1

2

3

1 0 0
0 1 0    and so   
0 0 1

a x a
b x b
c x c

= 
  = 
  = 

 

  No matter what the values of a, b, and c, the solution exists and is unique. 

 27. “If a linear system is consistent, then the solution is unique if and only if every column in the coefficient 
matrix is a pivot column; otherwise there are infinitely many solutions. ”  

  This statement is true because the free variables correspond to nonpivot columns of the coefficient 
matrix. The columns are all pivot columns if and only if there are no free variables. And there are no free 
variables if and only if the solution is unique, by Theorem 2. 

 28. Every column in the augmented matrix except the rightmost column is a pivot column, and the rightmost 
column is not a pivot column. 

 29. An underdetermined system always has more variables than equations. There cannot be more basic 
variables than there are equations, so there must be at least one free variable. Such a variable may be 
assigned infinitely many different values. If the system is consistent, each different value of a free 
variable will produce a different solution. 

 30. Example: 1 2 3

1 2 3

4
2 2 2 5

x x x
x x x

+ + =
+ + =

 

 31. Yes, a system of linear equations with more equations than unknowns can be consistent. 

  Example (in which x1 = x2 = 1): 
1 2

1 2

1 2

2
0

3 2 5

x x
x x
x x

+ =
− =
+ =
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 32. According to the numerical note in Section 1.2, when n = 30 the reduction to echelon form takes about 
2(30)3/3 = 18,000 flops, while further reduction to reduced echelon form needs at most (30)2 = 900 flops. 
Of the total flops, the “backward phase” is about 900/18900 = .048 or about 5%.  

   When n = 300, the estimates are 2(300)3/3 = 18,000,000 phase for the reduction to echelon form and 
(300)2 = 90,000 flops for the backward phase. The fraction associated with the backward phase is about 
(9×104) /(18×106) = .005, or about .5%. 

 33. For a quadratic polynomial p(t) = a0 + a1t + a2t2 to exactly fit the data (1, 12), (2, 15), and (3, 16), the 
coefficients a0, a1, a2 must satisfy the systems of equations given in the text. Row reduce the augmented 
matrix: 

   
1 1 1 12 1 1 1 12 1 1 1 12 1 1 1 12
1 2 4 15 ~ 0 1 3 3 ~ 0 1 3 3 ~ 0 1 3 3
1 3 9 16 0 2 8 4 0 0 2 2 0 0 1 1

       
       
       
       − −       

 

   
1 1 0 13 1 0 0 7

~ 0 1 0 6 ~ 0 1 0 6
0 0 1 1 0 0 1 1

   
   
   
   − −   

 

  The polynomial is p(t) = 7 + 6t – t2. 

 34. [M] The system of equations to be solved is: 

   

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3
0 1 2 3

0 0 0 0 0 0

2 2 2 2 2 2.90

4 4 4 4 4 14.8

6 6 6 6 6 39.6

8 8 8 8 8 74.3

10 10 10

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + 4 5
4 510 10 119a a⋅ + ⋅ =

 

  The unknowns are a0, a1, …, a5. Use technology to compute the reduced echelon of the augmented 
matrix: 

   

2 3 4 5

1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9
1 4 16 64 256 1024 14.8 0 0 8 48 224 960 9

~
1 6 36 216 1296 7776 39.6 0 0 24 192 1248 7680 30.9
1 8 64 512 4096 32768 74.3 0 0 48 480 4032 32640 62.7

0 0 80 960 9920 99840 101 10 10 10 10 10 119

 
 
 
 
 
 
 
 
   4.5

 
 
 
 
 
 
 
 
  

 

   

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9
0 0 8 48 224 960 9 0 0 8 48 224 960 9

~ ~
0 0 0 48 576 4800 3.9 0 0 0 48 576 4800 3.9
0 0 0 192 2688 26880 8.7 0 0 0 0 384 7680 6.9
0 0 0 480 7680 90240 14.5 0 0 0 0 1920 42240 24.5

   
   
   
   
   
   
   −
  

−     
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1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9
0 0 8 48 224 960 9 0 0 8 48 224 960 9

~ ~
0 0 0 48 576 4800 3.9 0 0 0 48 576 4800 3.9
0 0 0 0 384 7680 6.9 0 0 0 0 384 7680 6.9
0 0 0 0 0 3840 10 0 0 0 0 0 1 .0026

   
   
   
   
   
   
   − −
   
      

 

   

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 2 4 8 16 0 2.8167 0 1 0 0 0 0 1.7125
0 0 8 48 224 0 6.5000 0 0 1 0 0 0 1.1948

~ ~ ~
0 0 0 48 576 0 8.6000 0 0 0 1 0 0 .6615
0 0 0 0 384 0 26.900 0 0 0 0 1 0 .0701
0 0 0 0 0 1 .002604 0 0 0 0 0 1 .0026

   
   
   
   −
   −   
   − −
   
      

 

  Thus p(t) = 1.7125t – 1.1948t2 + .6615t3 – .0701t4 + .0026t5, and p(7.5) = 64.6 hundred lb. 

Notes: In Exercise 34, if the coefficients are retained to higher accuracy than shown here, then p(7.5) = 64.8. 
If a polynomial of lower degree is used, the resulting system of equations is overdetermined. The augmented 
matrix for such a system is the same as the one used to find p, except that at least column 6 is missing. When 
the augmented matrix is row reduced, the sixth row of the augmented matrix will be entirely zero except for a 
nonzero entry in the augmented column, indicating that no solution exists. 

Exercise 34 requires 25 row operations. It should give students an appreciation for higher-level 
commands such as gauss and bgauss, discussed in Section 1.4 of the Study Guide. The command ref 
(reduced echelon form) is available, but I recommend postponing that command until Chapter 2. 

The Study Guide includes a “Mathematical Note” about the phrase, “If and only if,” used in Theorem 2. 

1.3 SOLUTIONS 

Notes: The key exercises are 11–14, 17–22, 25, and 26. A discussion of Exercise 25 will help students 
understand the notation [a1   a2   a3], {a1, a2, a3}, and Span{a1, a2, a3}. 

 1. 
1 3 1 ( 3) 4
2 1 2 ( 1) 1

− − − + − −       
+ = + = =       − + −       

u v .  

  Using the definitions carefully, 

   
1 3 1 ( 2)( 3) 1 6 5

2 ( 2)
2 1 2 ( 2)( 1) 2 2 4

− − − − − − +           
− = + − = + = =           − − − +           

u v , or, more quickly, 

   
1 3 1 6 5

2 2
2 1 2 2 4

− − − +       
− = − = =       − +       

u v . The intermediate step is often not written. 

 2. 
3 2 3 2 5
2 1 2 ( 1) 1

+       
+ = + = =       − + −       

u v .  

  Using the definitions carefully, 
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3 2 3 ( 2)(2) 3 ( 4) 1

2 ( 2)
2 1 2 ( 2)( 1) 2 2 4

− + − −           
− = + − = + = =           − − − +           

u v , or, more quickly, 

   
3 2 3 4 1

2 2
2 1 2 2 4

− −       
− = − = =       − +       

u v . The intermediate step is often not written. 

 3.  

  

x2

x1

u – 2v

– 2v

u – v

– v

v

u

u + v

 

 4.  

  

x2

x1

u – v

u

v

u + v
– v

– 2v

u – 2v

 

 5. 1 2

6 3 1
1 4 7
5 0 5

x x
−     

     − + = −     
     −     

,    
1 2

1 2

1

6 3 1
4 7

5 0 5

x x
x x
x

−     
     − + = −     
     −    

,    
1 2

1 2

1

6 3 1
4 7

5 5

x x
x x

x

−   
   − + = −   
   −  

 

   
1 2

1 2

1

6 3 1
4 7

5 5

x x
x x
x

− =
− + = −

= −
 

  Usually the intermediate steps are not displayed. 

 6. 1 2 3
2 8 1 0
3 5 6 0

x x x
−       

+ + =       −       
,    31 2

31 2

2 8 0
63 5 0
xx x

xx x
−       

+ + =      −       
,    1 2 3

1 2 3

2 8 0
3 5 6 0

x x x
x x x

− + +   
=   + −   

 

   2 2 3

1 2 3

2 8 0
3 5 6 0
x x x
x x x

− + + =
+ − =

 

  Usually the intermediate steps are not displayed. 

 7. See the figure below. Since the grid can be extended in every direction, the figure suggests that every 
vector in R2 can be written as a linear combination of u and v. 

  To write a vector a as a linear combination of u and v, imagine walking from the origin to a along the 
grid "streets" and keep track of how many "blocks" you travel in the u-direction and how many in the  
v-direction.  
a. To reach a from the origin, you might travel 1 unit in the u-direction and –2 units in the v-direction 

(that is, 2 units in the negative v-direction). Hence a = u – 2v. 
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b. To reach b from the origin, travel 2 units in the u-direction and –2 units in the v-direction. So  
b = 2u – 2v. Or, use the fact that b is 1 unit in the u-direction from a, so that  

   b = a + u = (u – 2v) + u = 2u – 2v 
c. The vector c is –1.5 units from b in the v-direction, so 
   c = b – 1.5v = (2u – 2v) – 1.5v = 2u – 3.5v 
d. The “map” suggests that you can reach d if you travel 3 units in the u-direction and –4 units in the  

v-direction. If you prefer to stay on the paths displayed on the map, you might travel from the origin 
to –3v, then move 3 units in the u-direction, and finally move –1 unit in the v-direction. So 

   d = –3v + 3u – v = 3u – 4v 
  Another solution is 
   d = b – 2v + u = (2u – 2v) – 2v + u = 3u – 4v 

    

w

x

v

u

a
c

d

2v
b

z

y
–2v –u

–v
0

 
Figure for Exercises 7 and 8 

 8. See the figure above. Since the grid can be extended in every direction, the figure suggests that every 
vector in R2 can be written as a linear combination of u and v. 
w. To reach w from the origin, travel –1 units in the u-direction (that is, 1 unit in the negative  

u-direction) and travel 2 units in the v-direction. Thus, w = (–1)u + 2v, or w = 2v – u. 
x. To reach x from the origin, travel 2 units in the v-direction and –2 units in the u-direction. Thus, 

x = –2u + 2v. Or, use the fact that x is –1 units in the u-direction from w, so that 
   x = w – u = (–u + 2v) – u = –2u + 2v 
y. The vector y is 1.5 units from x in the v-direction, so 
   y = x + 1.5v = (–2u + 2v) + 1.5v = –2u + 3.5v 
z. The map suggests that you can reach z if you travel 4 units in the v-direction and –3 units in the 

u-direction. So z = 4v – 3u = –3u + 4v. If you prefer to stay on the paths displayed on the “map,” you 
might travel from the origin to –2u, then 4 units in the v-direction, and finally move –1 unit in  
the u-direction. So  

   z = –2u + 4v – u = –3u + 4v 

 9. 
2 3

1 2 3

1 2 3

5 0
4 6 0

3 8 0

x x
x x x
x x x

+ =
+ − =

− + − =
, 

2 3

1 2 3

1 2 3

5 0
4 6 0

3 8 0

x x
x x x
x x x

+   
   + − =   
   − + −   

 

  
2 3

1 2 3

1 2 3

0 5 0
4 6 0

3 8 0

x x
x x x
x x x

       
       + + − =       
       − −       

, 1 2 3

0 1 5 0
4 6 1 0
1 3 8 0

x x x
       
       + + − =       
       − −       

 

  Usually, the intermediate calculations are not displayed. 
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Note: The Study Guide says, “Check with your instructor whether you need to “show work” on a problem 
such as Exercise 9.” 

 10. 
1 2 3

1 2 3

1 2 3

4 3 9
7 2 2

8 6 5 15

x x x
x x x
x x x

+ + =
− − =
+ − =

 , 
1 2 3

1 2 3

1 2 3

4 3 9
7 2 2

8 6 5 15

x x x
x x x
x x x

+ +   
   − − =   
   + −   

 

  
1 2 3

1 2 3

1 2 3

4 3 9
7 2 2

8 6 5 15

x x x
x x x
x x x

      
      + − + − =      
      −       

 , 1 2 3

4 1 3 9
1 7 2 2
8 6 5 15

x x x
       
       + − + − =       
       −       

 

  Usually, the intermediate calculations are not displayed. 

 11. The question 
   Is b a linear combination of a1, a2, and a3? 
  is equivalent to the question 
   Does the vector equation x1a1 + x2a2 + x3a3 = b have a solution? 
  The equation 

   

1 2 3

1 2 3

1 0 5 2
2 1 6 1
0 2 8 6

x x x
       
       − + + − = −       
              

↑ ↑ ↑ ↑
a a a b

  (*)

 

  has the same solution set as the linear system whose augmented matrix is 

   
1 0 5 2
2 1 6 1
0 2 8 6

M
 
 = − − − 
  

   

  Row reduce M until the pivot positions are visible: 

   
1 0 5 2 1 0 5 2

~ 0 1 4 3 ~ 0 1 4 3
0 2 8 6 0 0 0 0

M
   
   
   
      

 

  The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and 
therefore b is a linear combination of a1, a2, and a3. 

 12. The equation 

   

1 2 3

1 2 3

1 0 2 5
2 5 0 11
2 5 8 7

x x x
−       

       − + + =       
       −       

↑ ↑ ↑ ↑
a a a b

 (*)

 

  has the same solution set as the linear system whose augmented matrix is 
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1 0 2 5
2 5 0 11
2 5 8 7

M
− 

 = − 
 − 

 

  Row reduce M until the pivot positions are visible: 

  
1 0 2 5 1 0 2 5

~ 0 5 4 1 ~ 0 5 4 1
0 5 4 3 0 0 0 2

M
− −   

   
   
      

 

  The linear system corresponding to M has no solution, so the vector equation (*) has no solution, and 
therefore b is not a linear combination of a1, a2, and a3. 

 13. Denote the columns of A by a1, a2, a3. To determine if b is a linear combination of these columns, use the 
boxed fact on page 34. Row reduced the augmented matrix until you reach echelon form: 

   
1 4 2 3 1 4 2 3
0 3 5 7 ~ 0 3 5 7
2 8 4 3 0 0 0 3

− −   
   − −   
   − − −   

 

  The system for this augmented matrix is inconsistent, so b is not a linear combination of the columns  
of A. 

 14. [a1   a2   a3   b] = 
1 2 6 11 1 2 6 11
0 3 7 5 ~ 0 3 7 5
1 2 5 9 0 0 11 2

− − − −   
   − −   
   − −   

. The linear system corresponding to this 

matrix has a solution, so b is a linear combination of the columns of A. 

 15. Noninteger weights are acceptable, of course, but some simple choices are 0·v1 + 0·v2 = 0, and 

   1·v1 + 0·v2 = 
7
1
6

 
 
 
 − 

,   0·v1 + 1·v2 = 
5
3
0

− 
 
 
  

 

   1·v1 + 1·v2 = 
2
4
6

 
 
 
 − 

,   1·v1 – 1·v2 = 
12

2
6

 
 − 
 − 

 

 16. Some likely choices are 0·v1 + 0·v2 = 0, and 

  1·v1 + 0·v2 = 
3
0
2

 
 
 
  

,   0·v1 + 1·v2 = 
2
0
3

− 
 
 
  

 

  1·v1 + 1·v2 = 
1
0
5

 
 
 
  

,   1·v1 – 1·v2 = 
5
0
1

 
 
 
 − 
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 17. [a1   a2   b]  = 
1 2 4 1 2 4 1 2 4 1 2 4
4 3 1 ~ 0 5 15 ~ 0 1 3 ~ 0 1 3
2 7 0 3 8 0 3 8 0 0 17h h h h

− − − −       
       − − − −       
       − + + +       

. The vector b is 

in Span{a1, a2} when h + 17 is zero, that is, when h = –17. 

 18. [v1   v2   y] = 
1 3 1 3 1 3
0 1 5 ~ 0 1 5 ~ 0 1 5
2 8 3 0 2 3 2 0 0 7 2

h h h

h h

− − −     
     − − −     
     − − − + +     

. The vector y is in   

Span{v1, v2} when 7 + 2h is zero, that is, when h = –7/2. 

 19. By inspection, v2 = (3/2)v1. Any linear combination of v1 and v2 is actually just a multiple of v1. For 
instance, 

   av1 + bv2 = av1 + b(3/2)v2 = (a + 3b/2)v1 
  So Span{v1, v2} is the set of points on the line through v1 and 0. 

Note: Exercises 19 and 20 prepare the way for ideas in Sections 1.4 and 1.7.  

 20. Span{v1, v2} is a plane in R3 through the origin, because the neither vector in this problem is a multiple 
of the other. Every vector in the set has 0 as its second entry and so lies in the xz-plane in ordinary  
3-space. So Span{v1, v2} is the xz-plane. 

 21. Let y = 
h
k
 
 
 

. Then [u   v   y] = 
2 2 2 2

~
1 1 0 2 / 2

h h
k k h

   
   − +   

. This augmented matrix corresponds to 

a consistent system for all h and k. So y is in Span{u, v} for all h and k. 

 22. Construct any 3×4 matrix in echelon form that corresponds to an inconsistent system. Perform sufficient 
row operations on the matrix to eliminate all zero entries in the first three columns. 

 23. a. False. The alternative notation for a (column) vector is (–4, 3), using parentheses and commas. 

b. False. Plot the points to verify this. Or, see the statement preceding Example 3. If 
5
2

− 
 
 

 were on 

the line through 
2
5

− 
 
 

 and the origin, then 
5
2

− 
 
 

 would have to be a multiple of 
2
5

− 
 
 

, which is not 

the case. 
c. True. See the line displayed just before Example 4. 
d. True. See the box that discusses the matrix in (5). 
e. False. The statement is often true, but Span{u, v} is not a plane when v is a multiple of u, or when 

u is the zero vector. 

 24. a. True. See the beginning of the subsection Vectors in Rn. 
b. True. Use Fig. 7 to draw the parallelogram determined by u – v and v. 
c. False. See the first paragraph of the subsection Linear Combinations. 
d. True. See the statement that refers to Fig. 11. 
e. True. See the paragraph following the definition of Span{v1, …, vp}. 
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25. a. There are only three vectors in the set {a1, a2, a3}, and b is not one of them. 
b. There are infinitely many vectors in W = Span{a1, a2, a3}. To determine if b is in W, use the method 

of Exercise 13. 

  

1 2 3

1 0 4 4 1 0 4 4 1 0 4 4
0 3 2 1 ~ 0 3 2 1 ~ 0 3 2 1
2 6 3 4 0 6 5 4 0 0 1 2

− − −     
     − − −     
     − − − −     

↑ ↑ ↑ ↑
a a a b

 

  The system for this augmented matrix is consistent, so b is in W. 
c. a1 = 1a1 + 0a2 + 0a3. See the discussion in the text following the definition of Span{v1, …, vp}. 

 26. a. [a1   a2   a3   b] = 
2 0 6 10 1 0 3 5 1 0 3 5 1 0 3 5

1 8 5 3 ~ 1 8 5 3 ~ 0 8 8 8 ~ 0 8 8 8

1 2 1 3 1 2 1 3 0 2 2 2 0 0 0 0

− −

− − − − −

       
       
       
              

 

  Yes, b is a linear combination of the columns of A, that is, b is in W.    
b. The third column of A is in W because a3 = 0·a1 + 0·a2 + 1·a3. 

 27. a. 5v1 is the output of 5 days’ operation of mine #1. 

b. The total output is x1v1 + x2v2, so x1 and x2 should satisfy 1 1 2 2
150

2825
x x

 
+ =  

 
v v . 

c. [M] Reduce the augmented matrix 
20 30 150 1 0 1.5

~
550 500 2825 0 1 4.0
   
   
   

.  

  Operate mine #1 for 1.5 days and mine #2 for 4 days. (This is the exact solution.) 

 28. a. The amount of heat produced when the steam plant burns x1 tons of anthracite and x2 tons of 
bituminous coal is 27.6x1 + 30.2x2 million Btu.   

b. The total output produced by x1 tons of anthracite and x2 tons of bituminous coal is given by the 

vector 1 2

27.6 30.2
3100 6400
250 360

x x
   
   +   
      

. 

c. [M] The appropriate values for x1 and x2 satisfy 1 2

27.6 30.2 162
3100 6400 23,610
250 360 1,623

x x
     
     + =     
          

.  

  To solve, row reduce the augmented matrix: 

   
27.6 30.2 162 1.000 0 3.900

3100 6400 23610 ~ 0 1.000 1.800
250 360 1623 0 0 0

   
   
   
      

 

The steam plant burned 3.9 tons of anthracite coal and 1.8 tons of bituminous coal. 
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 29. The total mass is 2 + 5 + 2 + 1 = 10. So v = (2v1 +5v2 + 2v3 + v4)/10. That is, 

   
5 4 4 9 10 20 8 9 1.3

1 12 4 5 3 2 3 8 8 15 6 8 .9
10 10

3 2 1 6 6 10 2 6 0

 − − + − −           
            = − + + − + = − + − + =                        − − − − +            

v  

 30. Let m be the total mass of the system. By definition, 

   1
1 1 1

1 ( ) k
k k k

mmm m
m m m

= + + = + +v v v v v  

  The second expression displays v as a linear combination of v1, …, vk, which shows that v is in  
Span{v1, …, vk}. 

 31. a. The center of mass is 
0 8 2 10 / 31 1 1 1
1 1 4 23

        
⋅ + ⋅ + ⋅ =        
        

. 

b. The total mass of the new system is 9 grams. The three masses added, w1, w2, and w3, satisfy the 
equation 

   ( ) ( ) ( )1 2 3
0 8 2 21 1 1 1
1 1 4 29

w w w
        

+ ⋅ + + ⋅ + + ⋅ =        
        

 

  which can be rearranged to  

   ( ) ( ) ( )1 2 3
0 8 2 18

1 1 1
1 1 4 18

w w w
       

+ ⋅ + + ⋅ + + ⋅ =       
       

 

  and 

   1 2 3
0 8 2 8
1 1 4 12

w w w
       

⋅ + ⋅ + ⋅ =       
       

 

  The condition w1 + w2 + w3 = 6 and the vector equation above combine to produce a system of three 
equations whose augmented matrix is shown below, along with a sequence of row operations: 

   
1 1 1 6 1 1 1 6 1 1 1 6
0 8 2 8 ~ 0 8 2 8 ~ 0 8 2 8
1 1 4 12 0 0 3 6 0 0 1 2

     
     
     
          

 

    
1 1 0 4 1 0 0 3.5 1 0 0 3.5

~ 0 8 0 4 ~ 0 8 0 4 ~ 0 1 0 .5
0 0 1 2 0 0 1 2 0 0 1 2

     
     
     
          

 

  Answer: Add 3.5 g at (0, 1), add .5 g at (8, 1), and add 2 g at (2, 4). 

Extra problem: Ignore the mass of the plate, and distribute 6 gm at the three vertices to make the center of 
mass at (2, 2). Answer: Place 3 g at (0, 1), 1 g at (8, 1), and 2 g at (2, 4).  

 32. See the parallelograms drawn on Fig. 15 from the text. Here c1, c2, c3, and c4 are suitable scalars. The 
darker parallelogram shows that b is a linear combination of v1 and v2, that is  

   c1v1 + c2v2 + 0·v3 = b 
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  The larger parallelogram shows that b is a linear combination of v1 and v3, that is,  
   c4v1 + 0·v2 + c3v3 = b 
  So the equation x1v1 + x2v2 + x3v3 = b has at least two solutions, not just one solution. (In fact, the 

equation has infinitely many solutions.) 

    

c2v2

c3v3

0

v3

c4v1

c1v1

v1

v2

b

 

 33. a. For j = 1,…, n, the jth entry of (u + v) + w is (uj + vj) + wj. By associativity of addition in R, this 
entry equals uj + (vj + wj), which is the jth entry of u + (v + w). By definition of equality of vectors, 
(u + v) + w = u + (v + w). 

b. For any scalar c, the jth entry of c(u + v) is c(uj + vj), and the jth entry of cu + cv is cuj + cvj (by 
definition of scalar multiplication and vector addition). These entries are equal, by a distributive law 
in R. So c(u + v) = cu + cv. 

 34. a. For j = 1,…, n, uj + (–1)uj = (–1)uj + uj = 0, by properties of R. By vector equality, 
   u + (–1)u = (–1)u + u = 0. 
b. For scalars c and d, the jth entries of c(du) and (cd )u are c(duj) and (cd )uj, respectively. These 

entries in R are equal, so the vectors c(du) and (cd)u are equal. 

Note: When an exercise in this section involves a vector equation, the corresponding technology data (in the 
data files on the web) is usually presented as a set of (column) vectors. To use MATLAB or other technology, 
a student must first construct an augmented matrix from these vectors. The MATLAB note in the Study Guide 
describes how to do this. The appendices in the Study Guide give corresponding information about Maple, 
Mathematica, and the TI and HP calculators. 

1.4 SOLUTIONS 

Notes: Key exercises are 1–20, 27, 28, 31 and 32. Exercises 29, 30, 33, and 34 are harder. Exercise 34 
anticipates the Invertible Matrix Theorem but is not used in the proof of that theorem. 

 1. The matrix-vector product Ax product is not defined because the number of columns (2) in the 3×2 

matrix 
4 2
1 6
0 1

− 
 
 
  

 does not match the number of entries (3) in the vector 
3
2
7

 
 − 
  

. 
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 2. The matrix-vector product Ax product is not defined because the number of columns (1) in the 3×1 

matrix 
2
6
1

 
 
 
 − 

 does not match the number of entries (2) in the vector 
5
1

 
 − 

. 

 3. 
6 5 6 5 12 15 3

2
4 3 2 4 3 3 8 9 1

3
7 6 7 6 14 18 4

A
− −           

            = − − = − − − = − + =            −            − −           

x , and 

  
6 5 6 2 5 ( 3) 3

2
4 3 ( 4) 2 ( 3) ( 3) 1

3
7 6 7 2 6 ( 3) 4

A
⋅ + ⋅ − −     

      = − − = − ⋅ + − ⋅ − =      −      ⋅ + ⋅ − −     

x  

 4. 
1

8 3 4 8 3 4 8 3 4 7
1 1 1 1

5 1 2 5 1 2 5 1 2 8
1

A
 

− − + −            = = ⋅ + ⋅ + ⋅ = =             + +             

x , and 

  
1

8 3 4 8 1 3 1 ( 4) 1 7
1

5 1 2 5 1 1 1 2 1 8
1

A
 

− ⋅ + ⋅ + − ⋅      = = =       ⋅ + ⋅ + ⋅       

x  

 5. On the left side of the matrix equation, use the entries in the vector x as the weights in a linear 
combination of the columns of the matrix A: 

   
5 1 8 4 8

5 1 3 2
2 7 3 5 16

− −         
⋅ − ⋅ + ⋅ − ⋅ =         − − −         

 

 6. On the left side of the matrix equation, use the entries in the vector x as the weights in a linear 
combination of the columns of the matrix A: 

   

7 3 1
2 1 9

2 5
9 6 12
3 2 4

−     
     −     − ⋅ − ⋅ =
     −
     − −     

 

 7. The left side of the equation is a linear combination of three vectors. Write the matrix A whose columns 
are those three vectors, and create a variable vector x with three entries: 

   

4 5 7 4 5 7
1 3 8 1 3 8
7 5 0 7 5 0
4 1 2 4 1 2

A

 − −       
        − − − −        = =
        − −
        − −         

 and 
1

2

3

x
x
x

 
 =  
  

x . Thus the equation Ax = b is  

   
1

2

3

4 5 7 6
1 3 8 8
7 5 0 0
4 1 2 7

x
x
x

−   
    − − −    =    −
     − −   
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  For your information: The unique solution of this equation is (5, 7, 3). Finding the solution by hand 
would be time-consuming. 

Note: The skill of writing a vector equation as a matrix equation will be important for both theory and 
application throughout the text. See also Exercises 27 and 28. 

 8. The left side of the equation is a linear combination of four vectors. Write the matrix A whose columns 
are those four vectors, and create a variable vector with four entries: 

  
4 4 5 3 4 4 5 3
2 5 4 0 2 5 4 0

A
 − − − −         

= =          − −          
, and 

1

2

3

4

z
z
z
z

 
 
 =
 
 
  

z . Then the equation Az = b  

is 

1

2

3

4

4 4 5 3 4
2 5 4 0 13

z
z
z
z

 
 − −     =    −   
 
  

. 

  For your information: One solution is (7, 3, 3, 1). The general solution is z1 = 6 + .75z3 – 1.25z4,            
z2 = 5 – .5z3 – .5z4, with z3 and z4 free.  

 9. The system has the same solution set as the vector equation 

   1 2 3
3 1 5 9
0 1 4 0

x x x
−       

+ + =       
       

 

  and this equation has the same solution set as the matrix equation 

   
1

2

3

3 1 5 9
0 1 4 0

x
x
x

 
−     =         

 

 10. The system has the same solution set as the vector equation 

   1 2

8 1 4
5 4 1
1 3 2

x x
−     

     + =     
     −     

 

  and this equation has the same solution set as the matrix equation 

   1

2

8 1 4
5 4 1
1 3 2

x
x

−   
    =        −   

 

 11. To solve Ax = b, row reduce the augmented matrix [a1   a2   a3   b] for the corresponding linear system: 

  
1 2 4 2 1 2 4 2 1 2 4 2 1 2 0 6 1 0 0 0
0 1 5 2 ~ 0 1 5 2 ~ 0 1 5 2 ~ 0 1 0 3 ~ 0 1 0 3
2 4 3 9 0 0 5 5 0 0 1 1 0 0 1 1 0 0 1 1

− − − −         
         − −         
         − − −         
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  The solution is 
1

2

3

0
3
1

x
x
x

=
 = −
 =

. As a vector, the solution is x = 
1

2

3

0
3
1

x
x
x

   
   = −   
     

. 

 12. To solve Ax = b, row reduce the augmented matrix [a1   a2   a3   b] for the corresponding linear system: 

   
1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0
3 1 2 1 ~ 0 5 5 1 ~ 0 5 5 1 ~ 0 5 5 1
0 5 3 1 0 5 3 1 0 0 2 2 0 0 1 1

       
       − −       
       − − − −       

 

   
1 2 0 1 1 2 0 1 1 0 0 3/ 5

~ 0 5 0 4 ~ 0 1 0 4 / 5 ~ 0 1 0 4 / 5
0 0 1 1 0 0 1 1 0 0 1 1

− −     
     − − −     
          

 

  The solution is 
1

2

3

3/ 5
4 /5
1

x
x
x

=
 = −
 =

. As a vector, the solution is x = 
1

2

3

3/ 5
4 / 5
1

x
x
x

   
   = −   
     

. 

 13. The vector u is in the plane spanned by the columns of A if and only if u is a linear combination of the 
columns of A. This happens if and only if the equation Ax = u has a solution. (See the box preceding 
Example 3 in Section 1.4.) To study this equation, reduce the augmented matrix [A   u] 

  
3 5 0 1 1 4 1 1 4 1 1 4
2 6 4 ~ 2 6 4 ~ 0 8 12 ~ 0 8 12
1 1 4 3 5 0 0 8 12 0 0 0

−       
       − −       
       − − −       

 

  The equation Ax = u has a solution, so u is in the plane spanned by the columns of A. 
  For your information: The unique solution of Ax = u is (5/2, 3/2). 

 14. Reduce the augmented matrix [A   u] to echelon form: 

  
5 8 7 2 1 3 0 2 1 3 0 2 1 3 0 2
0 1 1 3 ~ 0 1 1 3 ~ 0 1 1 3 ~ 0 1 1 3
1 3 0 2 5 8 7 2 0 7 7 8 0 0 0 29

       
       − − − − − − − −       
       − − −       

 

  The equation Ax = u has no solution, so u is not in the subset spanned by the columns of A. 

 15. The augmented matrix for Ax = b is 1

2

2 1
6 3

b
b

− 
 − 

, which is row equivalent to 1

2 1

2 1
0 0 3

b
b b

− 
 + 

. 

This shows that the equation Ax = b is not consistent when 3b1 + b2 is nonzero. The set of b for which the 
equation is consistent is a line through the origin–the set of all points (b1, b2) satisfying b2 = –3b1. 

 16. Row reduce the augmented matrix [A   b]: 
1

2

3

1 3 4
3 2 6 , .
5 1 8

b
A b

b

− −   
  = − =   
  − −   

b  

  
1 1

2 2 1

3 3 1

1 3 4 1 3 4
3 2 6 ~ 0 7 6 3
5 1 8 0 14 12 5

b b
b b b
b b b

− − − −   
   − − − +   
   − − −   
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1 1

2 1 2 1

3 1 2 1 1 2 3

1 3 4 1 3 4
~ 0 7 6 3 0 7 6 3

0 0 0 5 2( 3 ) 0 0 0 2

b b
b b b b

b b b b b b b

− − − −   
   − − + = − − +   
   − + + + +   

 

  The equation Ax = b is consistent if and only if b1 + 2b2 + b3 = 0. The set of such b is a plane through the 
origin in R3. 

 17. Row reduction shows that only three rows of A contain a pivot position: 

  

1 3 0 3 1 3 0 3 1 3 0 3 1 3 0 3
1 1 1 1 0 2 1 4 0 2 1 4 0 2 1 4

~ ~ ~
0 4 2 8 0 4 2 8 0 0 0 0 0 0 0 5
2 0 3 1 0 6 3 7 0 0 0 5 0 0 0 0

A

       
       − − − − − −       =
       − − − −
       − − −       

 

  Because not every row of A contains a pivot position, Theorem 4 in Section 1.4 shows that the equation 
Ax = b does not have a solution for each b in R4. 

 18. Row reduction shows that only three rows of B contain a pivot position: 

  

1 3 2 2 1 3 2 2 1 3 2 2 1 3 2 2
0 1 1 5 0 1 1 5 0 1 1 5 0 1 1 5

~ ~ ~
1 2 3 7 0 1 1 5 0 0 0 0 0 0 0 7
2 8 2 1 0 2 2 3 0 0 0 7 0 0 0 0

B

− − − −       
       − − − −       =
       − − − −
       − − − − − −       

 

  Because not every row of B contains a pivot position, Theorem 4 in Section 1.4 shows that the equation 
Bx = y does not have a solution for each y in R4. 

 19. The work in Exercise 17 shows that statement (d) in Theorem 4 is false. So all four statements in 
Theorem 4 are false. Thus, not all vectors in R4 can be written as a linear combination of the columns  
of A. Also, the columns of A do not span R4. 

 20. The work in Exercise 18 shows that statement (d) in Theorem 4 is false. So all four statements in 
Theorem 4 are false. Thus, not all vectors in R4 can be written as a linear combination of the columns  
of B. The columns of B certainly do not span R3, because each column of B is in R4, not R3. (This 
question was asked to alert students to a fairly common misconception among students who are just 
learning about spanning.)  

 21. Row reduce the matrix [v1   v2   v3] to determine whether it has a pivot in each row. 

  

1 0 1 1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0 0 1 0

~ ~ ~ .
1 0 0 0 0 1 0 0 1 0 0 1
0 1 1 0 1 1 0 0 1 0 0 0

       
       − − −       
       −
       − − −       

 

  The matrix [v1   v2   v3] does not have a pivot in each row, so the columns of the matrix do not span R4, 
by Theorem 4. That is, {v1, v2, v3} does not span R4. 

Note: Some students may realize that row operations are not needed, and thereby discover the principle 
covered in Exercises 31 and 32. 
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 22. Row reduce the matrix [v1   v2   v3] to determine whether it has a pivot in each row. 

  
0 0 4 2 8 5
0 3 1 ~ 0 3 1
2 8 5 0 0 4

− −   
   − − − −   
   − −   

 

  The matrix [v1   v2   v3] has a pivot in each row, so the columns of the matrix span R4, by Theorem 4. 
That is, {v1, v2, v3} spans R4. 

 23. a. False. See the paragraph following equation (3). The text calls Ax = b a matrix equation. 
b. True. See the box before Example 3. 
c. False. See the warning following Theorem 4. 
d. True. See Example 4. 
e. True. See parts (c) and (a) in Theorem 4. 
f. True. In Theorem 4, statement (a) is false if and only if statement (d) is also false. 

 24. a. True. This statement is in Theorem 3. However, the statement is true without any "proof" because, by 
definition, Ax is simply a notation for x1a1 + ⋅ ⋅ ⋅ + xnan, where a1, …, an are the columns of A. 

b. True. See Example 2. 
c.  True, by Theorem 3. 
d. True. See the box before Example 2. Saying that b is not in the set spanned by the columns of A is the 

same a saying that b is not a linear combination of the columns of A. 
e. False. See the warning that follows Theorem 4. 
f. True. In Theorem 4, statement (c) is false if and only if statement (a) is also false. 

 25. By definition, the matrix-vector product on the left is a linear combination of the columns of the matrix, 
in this case using weights –3, –1, and 2. So c1 = –3, c2 = –1, and c3 = 2. 

 26. The equation in x1 and x2 involves the vectors u, v, and w, and it may be viewed as 

  [ ] 1

2
.

x
x
 

= 
 

u v w  By definition of a matrix-vector product, x1u + x2v = w. The stated fact that  

3u – 5v – w = 0 can be rewritten as 3u – 5v = w. So, a solution is x1 = 3, x2 = –5. 

 27. Place the vectors q1, q2, and q3 into the columns of a matrix, say, Q and place the weights x1, x2, and x3 
into a vector, say, x. Then the vector equation becomes 

   Qx = v, where Q = [q1   q2   q3] and 
1

2

3

x
x
x

 
 =  
  

x  

  Note: If your answer is the equation Ax = b, you need to specify what A and b are. 

 28. The matrix equation can be written as c1v1 + c2v2 + c3v3 + c4v4 + c5v5 = v6, where 
  c1 = –3, c2 = 2, c3 = 4, c4 = –1, c5 = 2, and  

  1 2 3 4 5 6
3 5 4 9 7 8

, , , , ,
5 8 1 2 4 1

− −           
= = = = = =           − − −           

v v v v v v  



28 CHAPTER 1 • Linear Equations in Linear Algebra 

 29. Start with any 3×3 matrix B in echelon form that has three pivot positions. Perform a row operation  
(a row interchange or a row replacement) that creates a matrix A that is not in echelon form. Then A has 
the desired property. The justification is given by row reducing A to B, in order to display the pivot 
positions. Since A has a pivot position in every row, the columns of A span R3, by Theorem 4. 

 30. Start with any nonzero 3×3 matrix B in echelon form that has fewer than three pivot positions. Perform  
a row operation that creates a matrix A that is not in echelon form. Then A has the desired property. Since 
A does not have a pivot position in every row, the columns of A do not span R3, by Theorem 4. 

 31. A 3×2 matrix has three rows and two columns. With only two columns, A can have at most two pivot 
columns, and so A has at most two pivot positions, which is not enough to fill all three rows. By  
Theorem 4, the equation Ax = b cannot be consistent for all b in R3. Generally, if A is an m×n matrix 
with m > n, then A can have at most n pivot positions, which is not enough to fill all m rows. Thus, the 
equation Ax = b cannot be consistent for all b in R3. 

 32. A set of three vectors in cannot span R4. Reason: the matrix A whose columns are these three vectors has 
four rows. To have a pivot in each row, A would have to have at least four columns (one for each pivot), 
which is not the case. Since A does not have a pivot in every row, its columns do not span R4, by 
Theorem 4. In general, a set of n vectors in Rm cannot span Rm when n is less than m. 

 33. If the equation Ax = b has a unique solution, then the associated system of equations does not have any 
free variables. If every variable is a basic variable, then each column of A is a pivot column. So the 

reduced echelon form of A must be 

1 0 0

0 1 0

0 0 1

0 0 0

� �
� �
� �
� �
� �
� �� �

. 

Note: Exercises 33 and 34 are difficult in the context of this section because the focus in Section 1.4 is on 
existence of solutions, not uniqueness. However, these exercises serve to review ideas from Section 1.2, and 
they anticipate ideas that will come later. 

 34. If the equation Ax = b has a unique solution, then the associated system of equations does not have any 
free variables. If every variable is a basic variable, then each column of A is a pivot column. So the 

reduced echelon form of A must be 

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �� �

. Now it is clear that A has a pivot position in each row. 

By Theorem 4, the columns of A span R3. 

 35. Given Ax1 = y1 and Ax2 = y2, you are asked to show that the equation Ax = w has a solution, where 
w = y1 + y2. Observe that w = Ax1 + Ax2 and use Theorem 5(a) with x1 and x2 in place of u and v, 
respectively. That is, w = Ax1 + Ax2 = A(x1 + x2). So the vector x = x1 + x2 is a solution of w = Ax. 

 36. Suppose that y and z satisfy Ay = z. Then 4z = 4Ay. By Theorem 5(b), 4Ay = A(4y). So 4z = A(4y), 
which shows that 4y is a solution of Ax = 4z. Thus, the equation Ax = 4z is consistent. 

 37. [M] 

7 2 5 8 7 2 5 8 7 2 5 8

5 3 4 9 0 11/ 7 3/ 7 23/ 7 0 11/ 7 3/ 7 23/ 7
~ ~

6 10 2 7 0 58/ 7 16 / 7 1/ 7 0 0 50 /11 189 /11

7 9 2 15 0 11 3 23 0 0 0 0

� � �� � � � � �
� � � � � �� � � � � � �� � � � � �
� � � � � �� �
� � � � � �� �� � � � � �� � � � � �
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  or, approximately 

7 2 5 8
0 1.57 .429 3.29
0 0 4.55 17.2
0 0 0 0

− 
 − − 
 −
 
  

, to three significant figures. The original matrix does not 

have a pivot in every row, so its columns do not span R4, by Theorem 4. 

 38. [M] 

5 7 4 9 5 7 4 9 5 7 4 9
6 8 7 5 0 2 / 5 11/ 5 29 / 5 0 2 / 5 11/ 5 29 / 5

~ ~
4 4 9 9 0 8/ 5 29 / 5 81/ 5 0 0 3 7
9 11 16 7 0 8/ 5 44 / 5 116 / 5 0 0 * *

− − − − − −     
     − − − − − −     
     − − − − −
     − −     

 

  MATLAB shows starred entries for numbers that are essentially zero (to many decimal places). So, with 
pivots only in the first three rows, the original matrix has columns that do not span R4, by Theorem 4. 

 39. [M] 

12 7 11 9 5 12 7 11 9 5
9 4 8 7 3 0 5/ 4 1/ 4 1/ 4 3/ 4

~
6 11 7 3 9 0 15/ 2 3/ 2 3/ 2 13/ 2
4 6 10 5 12 0 11/ 3 19 / 3 2 31/ 3

− − − −   
   − − − −   
   − − − − − −
   − − − −   

 

  

12 7 11 9 5 12 7 11 9 5
0 5/ 4 1/ 4 1/ 4 3/ 4 0 5/ 4 1/ 4 1/ 4 3/ 4

~ ~
0 0 0 0 2 0 0 28/ 5 41/15 122 /15
0 0 28/ 5 41/15 122 /15 0 0 0 0 2

− − − −   
   − −   
   − −
   − −   

 

  The original matrix has a pivot in every row, so its columns span R4, by Theorem 4. 

 40. [M] 

8 11 6 7 13 8 11 6 7 13
7 8 5 6 9 0 13/8 1/ 4 1/8 19 /8

~
11 7 7 9 6 0 65/8 5/ 4 5/8 191/8

3 4 1 8 7 0 65/8 5/ 4 43/8 95/8

− − − −   
   − − − − −   
   − − − − −
   − −   

 

  

8 11 6 7 13 8 11 6 7 13
0 13/8 1/ 4 1/8 19 /8 0 13/8 1/ 4 1/8 19 /8

~ ~
0 0 0 0 12 0 0 0 6 0
0 0 0 6 0 0 0 0 0 12

− − − −   
   − − − −   
   −
   −   

 

  The original matrix has a pivot in every row, so its columns span R4, by Theorem 4. 

 41. [M] Examine the calculations in Exercise 39. Notice that the fourth column of the original matrix, say A, 
is not a pivot column. Let Ao be the matrix formed by deleting column 4 of A, let B be the echelon form 
obtained from A, and let Bo be the matrix obtained by deleting column 4 of B. The sequence of row 
operations that reduces A to B also reduces Ao to Bo. Since Bo is in echelon form, it shows that Ao has a 
pivot position in each row. Therefore, the columns of Ao span R4. 

  It is possible to delete column 3 of A instead of column 4. In this case, the fourth column of A becomes a 
pivot column of Ao, as you can see by looking at what happens when column 3 of B is deleted. For later 
work, it is desirable to delete a nonpivot column. 
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Note: Exercises 41 and 42 help to prepare for later work on the column space of a matrix. (See Section 2.9 or 
4.6.) The Study Guide points out that these exercises depend on the following idea, not explicitly mentioned 
in the text: when a row operation is performed on a matrix A, the calculations for each new entry depend only 
on the other entries in the same column. If a column of A is removed, forming a new matrix, the absence of 
this column has no affect on any row-operation calculations for entries in the other columns of A. (The 
absence of a column might affect the particular choice of row operations performed for some purpose, but that 
is not being considered here.) 

 42. [M] Examine the calculations in Exercise 40. The third column of the original matrix, say A, is not a 
pivot column. Let Ao be the matrix formed by deleting column 3 of A, let B be the echelon form obtained 
from A, and let Bo be the matrix obtained by deleting column 3 of B. The sequence of row operations that 
reduces A to B also reduces Ao to Bo. Since Bo is in echelon form, it shows that Ao has a pivot position in 
each row. Therefore, the columns of Ao span R4. 

  It is possible to delete column 2 of A instead of column 3. (See the remark for Exercise 41.) However, 
only one column can be deleted. If two or more columns were deleted from A, the resulting matrix would 
have fewer than four columns, so it would have fewer than four pivot positions. In such a case, not every 
row could contain a pivot position, and the columns of the matrix would not span R4, by Theorem 4. 

Notes: At the end of Section 1.4, the Study Guide gives students a method for learning and mastering linear 
algebra concepts. Specific directions are given for constructing a review sheet that connects the basic 
definition of “span” with related ideas: equivalent descriptions, theorems, geometric interpretations, special 
cases, algorithms, and typical computations. I require my students to prepare such a sheet that reflects their 
choices of material connected with “span”, and I make comments on their sheets to help them refine their 
review. Later, the students use these sheets when studying for exams. 

The MATLAB box for Section 1.4 introduces two useful commands gauss and bgauss that allow a 
student to speed up row reduction while still visualizing all the steps involved. The command 
B = gauss(A,1) causes MATLAB to find the left-most nonzero entry in row 1 of matrix A, and use that 
entry as a pivot to create zeros in the entries below, using row replacement operations. The result is a matrix 
that a student might write next to A as the first stage of row reduction, since there is no need to write a new 
matrix after each separate row replacement. I use the gauss command frequently in lectures to obtain an 
echelon form that provides data for solving various problems. For instance, if a matrix has 5 rows, and if row 
swaps are not needed, the following commands produce an echelon form of A: 

 B = gauss(A,1),  B = gauss(B,2),  B = gauss(B,3),  B = gauss(B,4)  

If an interchange is required, I can insert a command such as B = swap(B,2,5) . The command bgauss 
uses the left-most nonzero entry in a row to produce zeros above that entry. This command, together with 
scale, can change an echelon form into reduced echelon form. 

The use of gauss and bgauss creates an environment in which students use their computer program 
the same way they work a problem by hand on an exam. Unless you are able to conduct your exams in a 
computer laboratory, it may be unwise to give students too early the power to obtain reduced echelon forms 
with one command—they may have difficulty performing row reduction by hand during an exam. Instructors 
whose students use a graphic calculator in class each day do not face this problem. In such a case, you may 
wish to introduce rref earlier in the course than Chapter 4 (or Section 2.8), which is where I finally allow 
students to use that command.  

1.5 SOLUTIONS  

Notes: The geometry helps students understand Span{u, v}, in preparation for later discussions of subspaces. 
The parametric vector form of a solution set will be used throughout the text. Figure 6 will appear again in 
Sections 2.9 and 4.8.  
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For solving homogeneous systems, the text recommends working with the augmented matrix, although no 
calculations take place in the augmented column. See the Study Guide comments on Exercise 7 that illustrate 
two common student errors. 

All students need the practice of Exercises 1–14. (Assign all odd, all even, or a mixture. If you do not 
assign Exercise 7, be sure to assign both 8 and 10.) Otherwise, a few students may be unable later to find a 
basis for a null space or an eigenspace. Exercises 29–34 are important. Exercises 33 and 34 help students later 
understand how solutions of Ax = 0 encode linear dependence relations among the columns of A. Exercises 
35–38 are more challenging. Exercise 37 will help students avoid the standard mistake of forgetting that 
Theorem 6 applies only to a consistent equation Ax = b. 

 1. Reduce the augmented matrix to echelon form and circle the pivot positions. If a column of the 
coefficient matrix is not a pivot column, the corresponding variable is free and the system of equations 
has a nontrivial solution. Otherwise, the system has only the trivial solution. 

  
2 5 8 0 2 5 8 0 2 5 8 0
2 7 1 0 ~ 0 12 9 0 ~ 0 12 9 0
4 2 7 0 0 12 9 0 0 0 0 0

− − −     
     − − − −     
     −     

 

  The variable x3 is free, so the system has a nontrivial solution. 

 2. 
1 3 7 0 1 3 7 0 1 3 7 0
2 1 4 0 ~ 0 5 10 0 ~ 0 5 10 0
1 2 9 0 0 5 2 0 0 0 12 0

− − −     
     − − − −     
          

 

  There is no free variable; the system has only the trivial solution. 

 3. 
3 5 7 0 3 5 7 0

~
6 7 1 0 0 3 15 0

− − − −   
   − −   

. The variable x3 is free; the system has nontrivial solutions. 

An alert student will realize that row operations are unnecessary. With only two equations, there can be 
at most two basic variables. One variable must be free. Refer to Exercise 31 in Section 1.2. 

 4. 
5 7 9 0 1 2 6 0 1 2 6 0

~ ~
1 2 6 0 5 7 9 0 0 3 39 0

− − −     
     − − −     

. x3 is a free variable; the system has 

nontrivial solutions. As in Exercise 3, row operations are unnecessary. 

 5. 
1 3 1 0 1 3 1 0 1 0 5 0 1 0 5 0
4 9 2 0 ~ 0 3 6 0 ~ 0 3 6 0 ~ 0 1 2 0
0 3 6 0 0 3 6 0 0 0 0 0 0 0 0 0

− −       
       − −       
       − − − −       

 

  
1 3

2 3

5 0
2 0

0 0

x x
x x

− =
+ =

=
. The variable x3 is free, x1 = 5x3, and x2 = –2x3.  

  In parametric vector form, the general solution is 
1 3

2 3 3

3 3

5 5
2 2

1

x x
x x x
x x

     
     = = − = −     
          

x . 
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 6. 
1 3 5 0 1 3 5 0 1 3 5 0 1 0 4 0
1 4 8 0 ~ 0 1 3 0 ~ 0 1 3 0 ~ 0 1 3 0
3 7 9 0 0 2 6 0 0 0 0 0 0 0 0 0

− − −       
       − − − −       
       − − −       

 

  
1 3

2 3

4 0
3 0

0 0

x x
x x

+ =
− =

=
. The variable x3 is free, x1 = –4x3, and x2 = 3x3.  

  In parametric vector form, the general solution is 
1 3

2 3 3

3 3

4 4
3 3

1

x x
x x x
x x

− −     
     = = =     
          

x . 

 7. 
1 3 3 7 0 1 0 9 8 0

~
0 1 4 5 0 0 1 4 5 0

− −   
   − −   

.   1 3 4

2 3 4

9 8 0
4 5 0

x x x
x x x

+ − =
− + =

 

  The basic variables are x1 and x2, with x3 and x4 free. Next, x1 = –9x3 + 8x4, and x2 = 4x3 – 5x4. The 
general solution is 

  

1 3 4 43

2 3 4 43
3 4

3 3 3

4 4 4

9 8 89 9 8
4 5 54 4 5

0 1 0
0 0 1

x x x xx
x x x xx

x x
x x x
x x x

− + − −          
          − − −          = = = + = +
          
          

                    

x  

 8. 
1 2 9 5 0 1 0 5 7 0

~
0 1 2 6 0 0 1 2 6 0

− − − −   
   − −   

.   1 3 4

2 3 4

5 7 0
2 6 0

x x x
x x x

− − =
+ − =

 

  The basic variables are x1 and x2, with x3 and x4 free. Next, x1 = 5x3 + 7x4 and x2 = –2x3 + 6x4. The general 
solution in parametric vector form is 

  

1 3 4 43

2 3 4 43
3 4

3 3 3

4 4 4

5 7 75 5 7
2 6 62 2 6

0 1 0
0 0 1

x x x xx
x x x xx

x x
x x x
x x x

+          
          − + − −          = = = + = +
          
          

                    

x  

 9. 
3 9 6 0 1 3 2 0 1 3 2 0

~ ~
1 3 2 0 3 9 6 0 0 0 0 0

− − −     
     − − −     

   1 2 33 2 0
0 0

x x x− + =
=

. 

  The solution is x1 = 3x2 – 2x3, with x2 and x3 free. In parametric vector form, 

  
2 3 2 3

2 2 2 3

3 3

3 2 3 2 3 2
0 1 0

0 0 1

x x x x
x x x x
x x

− − −         
         = = + = +         
                  

x . 

 10. 
1 3 0 4 0 1 3 0 4 0

~
2 6 0 8 0 0 0 0 0 0

− −   
   −   

  1 2 43 4 0
0 0

x x x− − =
=

. 

  The only basic variable is x1, so x2, x3, and x4 are free. (Note that x3 is not zero.) Also, x1 = 3x2 + 4x4. The 
general solution is 
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1 2 4 42

2 2 2
2 3 4

3 3 3

4 4 4

3 4 43 0 3 0 4
00 1 0 0
00 0 1 0

0 0 0 0 1

x x x xx
x x x

x x x
x x x
x x x

+              
              
              = = = + + = + +
              
              

                            

x  

 11. 

1 4 2 0 3 5 0 1 4 2 0 0 7 0 1 4 0 0 0 5 0
0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0

~ ~
0 0 0 0 1 4 0 0 0 0 0 1 4 0 0 0 0 0 1 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − − −     
     − − −     
     − − −
     
          

 

  

1 2 6

3 6

5 6

4 5 0
0

4 0
0 0

x x x
x x

x x

− + =
− =
− =

=

.  The basic variables are x1, x3, and x5. The remaining variables are free. 

In particular, x4 is free (and not zero as some may assume). The solution is x1 = 4x2 – 5x6, x3 = x6, 
x5 = 4x6, with x2, x4, and x6 free. In parametric vector form, 

  

1 2 6 62

2 2 2

3 6 6
2 4

4 4 4

5 6 6

6 6 6

4 5 54 0 4 0
00 1 0

0 0 0 0
00 0

4 40 0 0
0 0 0

x x x xx
x x x
x x x

x x
x x x
x x x
x x x

− −          
          
          
          

= = = + + = +          
          
          
          

                    

x 6

5
0
1

1 0
0 4
0 1

x

−   
   
   
   

+   
   
   
   
      

↑ ↑ ↑
u v w

 

Note: The Study Guide discusses two mistakes that students often make on this type of problem. 

 12. 

1 5 2 6 9 0 0 1 5 2 6 9 0 0 1 5 0 8 1 0 0
0 0 1 7 4 8 0 0 0 1 7 4 0 0 0 0 1 7 4 0 0

~ ~
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− −     
     − − − −     
     
     
          

 

  

1 2 4 5

3 4 5

6

5 8 0
7 4 0

0
0 0

x x x x
x x x

x

+ + + =
− + =

=
=

. 

  The basic variables are x1, x3, and x6; the free variables are x2, x4, and x5. The general solution is 
x1 = –5x2 – 8x4 – x5, x3 = 7x4 – 4x5, and x6 = 0. In parametric vector form, the solution is 



34 CHAPTER 1 • Linear Equations in Linear Algebra 

  

1 2 4 5 2 4 5

2 2 2

3 4 5 4 5
2

4 4 4

5 5 5

6

5 8 5 8 5
0 0 1

7 4 0 7 4 0
0 0 0
0 0 0

0 0 0 0 0

x x x x x x x
x x x
x x x x x

x
x x x
x x x
x

− − − − − − −           
           
          
          − −

= = = + + =          
          
          
          

                    

x 4 5

8 1
0 0
7 4
1 0
0 1
0 0

x x

− −   
   

    
    −

+ +    
    
    
    
       

 

13. To write the general solution in parametric vector form, pull out the constant terms that do not involve 
the free variable: 

  

1 3 3

2 3 3 3 3

3 3 3

5 4 5 4 5 4
2 7 2 7 2 7 .

0 0 1

x x x
x x x x x
x x x

+          
          = = − − = − + − = − + − = +          
                    

↑ ↑

x p q

p q
 

  Geometrically, the solution set is the line through 
5
2
0

 
 − 
  

 in the direction of 
4
7
1

 
 − 
  

. 

14. To write the general solution in parametric vector form, pull out the constant terms that do not involve 
the free variable: 

  

1 4 4

2 4 4
4 4

3 4 4

4 4 4

3 30 0 3
8 8 8 1
2 5 52 2 5

0 0 1

x x x
x x x

x x
x x x
x x x

          
          +          = = = + = + = +
          − − −
          
               

↑ ↑

x p q

p q
 

  The solution set is the line through p in the direction of q. 

15. Row reduce the augmented matrix for the system: 

  
1 3 1 1 1 3 1 1 1 3 1 1
4 9 2 1 ~ 0 3 6 3 ~ 0 3 6 3
0 3 6 3 0 3 6 3 0 0 0 0

     
     − − −     
     − − − − − −     

 

  
1 3 1 1 1 0 5 2

~ 0 1 2 1 ~ 0 1 2 1
0 0 0 0 0 0 0 0

− −   
   
   
      

.   
1 3

2 3

5 2
2 1
0 0

x x
x x

− = −
+ =

=
. 

  Thus x1 = –2 + 5x3, x2 = 1 – 2x3, and x3 is free. In parametric vector form, 

  
1 3 3

2 3 3 3

3 3 3

2 5 2 5 2 5
1 2 1 2 1 2

0 0 1

x x x
x x x x
x x x

− + − −           
           = = − = + − = + −           
                      

x  
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  The solution set is the line through 
2
1
0

− 
 
 
  

, parallel to the line that is the solution set of the homogeneous 

system in Exercise 5. 

16. Row reduce the augmented matrix for the system: 

  
1 3 5 4 1 3 5 4 1 3 5 4 1 0 4 5
1 4 8 7 ~ 0 1 3 3 ~ 0 1 3 3 ~ 0 1 3 3
3 7 9 6 0 2 6 6 0 0 0 0 0 0 0 0

− − − −       
       − − − −       
       − − − −       

 

  
1 3

2 3

4 5
3 3
0 0

x x
x x

+ = −
− =

=
. Thus x1 = –5 – 4x3, x2 = 3 + 3x3, and x3 is free. In parametric vector form,  

  
1 3 3

2 3 3 3

3 3 3

5 4 5 4 5 4
3 3 3 3 3 3

0 0 1

x x x
x x x x
x x x

− − − − − −           
           = = + = + = +           
                      

x  

  The solution set is the line through 
5
3
0

− 
 
 
  

, parallel to the line that is the solution set of the homogeneous 

system in Exercise 6. 

17. Solve x1 + 9x2 – 4x3 = –2 for the basic variable: x1 = –2 – 9x2 + 4x3, with x2 and x3 free. In vector form, 
the solution is 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

2 9 4 2 9 4 2 9 4
0 0 0 1 0
0 0 0 0 1

x x x x x
x x x x x
x x x

− − + − − − −               
               = = = + + = + +               
                              

x  

  The solution of x1 + 9x2 – 4x3 = 0 is x1 = –9x2 + 4x3, with x2 and x3 free. In vector form, 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

9 4 9 4 9 4
0 1 0

0 0 1

x x x x x
x x x x x
x x x

− + − −           
           = = = + = +           
                      

x  = x2u + x3v 

  The solution set of the homogeneous equation is the plane through the origin in R3 spanned by 
u and v. The solution set of the nonhomogeneous equation is parallel to this plane and passes through the 

point p = 
2
0
0

− 
 
 
  

. 

18. Solve x1 – 3x2 + 5x3 = 4 for the basic variable: x1 = 4 + 3x2 – 5x3, with x2 and x3 free. In vector form, the 
solution is 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

4 3 5 4 3 5 4 3 5
0 0 0 1 0
0 0 0 0 1

x x x x x
x x x x x
x x x

+ − − −               
               = = = + + = + +               
                              

x  
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  The solution of x1 – 3x2 + 5x3 = 0 is x1 = 3x2 – 5x3, with x2 and x3 free. In vector form, 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

3 5 3 5 3 5
0 1 0

0 0 1

x x x x x
x x x x x
x x x

− − −           
           = = = + = +           
                      

x  = x2u + x3v 

  The solution set of the homogeneous equation is the plane through the origin in R3 spanned by u and v. 
The solution set of the nonhomogeneous equation is parallel to this plane and passes through the 

point p = 
4
0
0

 
 
 
  

. 

19. The line through a parallel to b can be written as x = a + t b, where t represents a parameter: 

  x = 1

2

2 5
0 3

x
t

x
− −     

= +     
    

, or 1

2

2 5
3

x t
x t

= − −
 =

 

20. The line through a parallel to b can be written as x = a + tb, where t represents a parameter:  

  x = 1

2

3 7
4 8

x
t

x
−     

= +     −    
, or 1

2

3 7
4 8

x t
x t

= −
 = − +

 

21. The line through p and q is parallel to q – p. So, given  
2 3

 and
5 1

−   
= =   −   

p q , form 

3 2 5
1 ( 5) 6
− − −   

− = =   − −   
q p , and write the line as x = p + t(q – p) = 

2 5
5 6

t
−   

+   −   
. 

22. The line through p and q is parallel to q – p. So, given 
6 0

 and 
3 4

−   
= =   −   

p q , form 

0 ( 6) 6
4 3 7

− −   
− = =   − − −   

q p , and write the line as x = p + t(q – p) = 
6 6
3 7

t
−   

+   −   
 

Note: Exercises 21 and 22 prepare for Exercise 27 in Section 1.8. 

23. a. True. See the first paragraph of the subsection titled Homogeneous Linear Systems. 
b. False. The equation Ax = 0 gives an implicit description of its solution set. See the subsection entitled 

Parametric Vector Form. 
c. False. The equation Ax = 0 always has the trivial solution. The box before Example 1 uses the word 

nontrivial instead of trivial. 
d. False. The line goes through p parallel to v. See the paragraph that precedes Fig. 5. 
e. False. The solution set could be empty! The statement (from Theorem 6) is true only when there 

exists a vector p such that Ap = b. 

24. a. False. A nontrivial solution of Ax = 0 is any nonzero x that satisfies the equation. See the 
 sentence before Example 2. 
b. True. See Example 2 and the paragraph following it. 
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c. True. If the zero vector is a solution, then b = Ax = A0 = 0. 
d. True. See the paragraph following Example 3. 
e. False. The statement is true only when the solution set of Ax = 0 is nonempty. Theorem 6 applies  

only to a consistent system. 

25. Suppose p satisfies Ax = b. Then Ap = b. Theorem 6 says that the solution set of Ax = b equals the  
set S ={w : w = p + vh for some vh such that Avh = 0}. There are two things to prove: (a) every vector  
in S satisfies Ax = b, (b) every vector that satisfies Ax = b is in S. 
a. Let w have the form w = p + vh, where Avh = 0. Then 
   Aw = A(p + vh) = Ap + Avh. By Theorem 5(a) in section 1.4 
        = b + 0 = b 
  So every vector of the form p + vh satisfies Ax = b. 
b. Now let w be any solution of Ax = b, and set vh = w − p. Then 
   Avh = A(w – p) = Aw – Ap = b – b = 0 
  So vh satisfies Ax = 0. Thus every solution of Ax = b has the form w = p + vh. 

26. (Geometric argument using Theorem 6.) Since Ax = b is consistent, its solution set is obtained by 
translating the solution set of Ax = 0, by Theorem 6. So the solution set of Ax = b is a single vector if  
and only if the solution set of Ax = 0 is a single vector, and that happens if and only if Ax = 0 has only 
the trivial solution. 

   (Proof using free variables.) If Ax = b has a solution, then the solution is unique if and only if there 
are no free variables in the corresponding system of equations, that is, if and only if every column of A is 
a pivot column. This happens if and only if the equation Ax = 0 has only the trivial solution. 

27. When A is the 3×3 zero matrix, every x in R3 satisfies Ax = 0. So the solution set is all vectors in R3. 

28. No. If the solution set of Ax = b contained the origin, then 0 would satisfy A0= b, which is not true 
since b is not the zero vector. 

29. a. When A is a 3×3 matrix with three pivot positions, the equation Ax = 0 has no free variables and 
hence has no nontrivial solution.  

b. With three pivot positions, A has a pivot position in each of its three rows. By Theorem 4 in 
Section 1.4, the equation Ax = b has a solution for every possible b. The term "possible" in the 
exercise means that the only vectors considered in this case are those in R3, because A has three rows. 

30.  a. When A is a 3×3 matrix with two pivot positions, the equation Ax = 0 has two basic variables and 
   one free variable.  So Ax = 0 has a nontrivial solution.   

b. With only two pivot positions, A cannot have a pivot in every row, so by Theorem 4 in Section 1.4, 
the equation Ax = b cannot have a solution for every possible b (in R3). 

31. a. When A is a 3×2 matrix with two pivot positions, each column is a pivot column. So the equation 
  Ax = 0 has no free variables and hence no nontrivial solution. 
b. With two pivot positions and three rows, A cannot have a pivot in every row. So the equation Ax = b 

cannot have a solution for every possible b (in R3), by Theorem 4 in Section 1.4. 

32. a. When A is a 2×4 matrix with two pivot positions, the equation Ax = 0 has two basic variables and 
  two free variables. So Ax = 0 has a nontrivial solution. 
b. With two pivot positions and only two rows, A has a pivot position in every row. By Theorem 4 in 

Section 1.4, the equation Ax = b has a solution for every possible b (in R2). 
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33. Look at 1 2

2 6
7 21
3 9

x x
− −   
   +   
   − −   

 and notice that the second column is 3 times the first. So suitable values for 

x1 and x2 would be 3 and –1 respectively. (Another pair would be 6 and –2, etc.) Thus 
3
1

 
=  − 

x  

satisfies Ax = 0.  

34. Inspect how the columns a1 and a2 of A are related. The second column is –3/2 times the first. Put 

another way, 3a1 + 2a2 = 0. Thus 
3
2
 
 
 

 satisfies Ax = 0. 

Note: Exercises 33 and 34 set the stage for the concept of linear dependence. 

35. Look for A = [a1   a2   a3] such that 1·a1 + 1a2 + 1·a3 = 0. That is, construct A so that each row sum (the 
sum of the entries in a row) is zero. 

36. Look for A = [a1   a2   a3] such that 1·a1 – 2·a2 + 1·a3 = 0. That is, construct A so that the sum of the 
first and third columns is twice the second column. 

37. Since the solution set of Ax = 0 contains the point (4,1), the vector x = (4,1) satisfies Ax = 0. Write this 
equation as a vector equation, using a1 and a2 for the columns of A: 

   4·a1 + 1·a2 = 0 
  Then a2 = –4a1. So choose any nonzero vector for the first column of A and multiply that column by – 4 

to get the second column of A. For example, set 
1 4
1 4

A
− 

=  − 
.  

  Finally, the only way the solution set of Ax = b could not be parallel to the line through (1,4) and the 
origin is for the solution set of Ax = b to be empty. This does not contradict Theorem 6, because that 
theorem applies only to the case when the equation Ax = b has a nonempty solution set. For b, take any 
vector that is not a multiple of the columns of A. 

Note: In the Study Guide, a “Checkpoint” for Section 1.5 will help students with Exercise 37. 

38. No. If Ax = y has no solution, then A cannot have a pivot in each row. Since A is 3×3, it has at most two 
pivot positions. So the equation Ax = z for any z has at most two basic variables and at least one free 
variable. Thus, the solution set for Ax = z is either empty or has infinitely many elements. 

39. If u satisfies Ax = 0, then Au = 0. For any scalar c, Theorem 5(b) in Section 1.4 shows that A(cu) =  
cAu = c·0 = 0. 

40. Suppose Au = 0 and Av = 0. Then, since A(u + v) = Au + Av by Theorem 5(a) in Section 1.4, 
   A(u + v) = Au + Av = 0 + 0 = 0.  
  Now, let c and d be scalars. Using both parts of Theorem 5,  
   A(cu + dv) = A(cu) + A(dv) = cAu + dAv = c0 + d0 = 0. 

Note: The MATLAB box in the Study Guide introduces the zeros command, in order to augment a matrix 
with a column of zeros. 
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1.6 SOLUTIONS 

 1. Fill in the exchange table one column at a time. The entries in a column describe where a sector's output 
goes. The decimal fractions in each column sum to 1. 

   

Distribution of 
Output From:

Goods Services Purchased by:
output input

.2 .7 Goods

.8 .3 Services

↓ ↓
→
→

 

  Denote the total annual output (in dollars) of the sectors by pG and pS. From the first row, the total input 
to the Goods sector is .2 pG + .7 pS. The Goods sector must pay for that. So the equilibrium prices must 
satisfy 

   
G G S

income expenses
= .2 .7p p p+

 

  From the second row, the input (that is, the expense) of the Services sector is .8 pG + .3 pS.  
The equilibrium equation for the Services sector is 

   
S G S

income expenses
= .8 .3p p p+

 

  Move all variables to the left side and combine like terms: 

  G S

G S

.8 .7 0

.8 .7 0
p p
p p

− =
− + =

 

  Row reduce the augmented matrix: 
.8 .7 0 .8 .7 0 1 .875 0

~ ~
.8 .7 0 0 0 0 0 0 0

− − −     
     −     

 

  The general solution is pG = .875 pS, with pS free. One equilibrium solution is pS = 1000 and pG = 875.  
If one uses fractions instead of decimals in the calculations, the general solution would be written  
pG = (7/8) pS, and a natural choice of prices might be pS = 80 and pG = 70. Only the ratio of the prices 
is important: pG = .875 pS. The economic equilibrium is unaffected by a proportional change in prices. 

 2. Take some other value for pS, say 200 million dollars. The other equilibrium prices are then  
pC = 188 million, pE = 170 million. Any constant nonnegative multiple of these prices is a set of 
equilibrium prices, because the solution set of the system of equations consists of all multiples of one 
vector. Changing the unit of measurement to, say, European euros has the same effect as multiplying 
all equilibrium prices by a constant. The ratios of the prices remain the same, no matter what currency 
is used. 

 3. a. Fill in the exchange table one column at a time. The entries in a column describe where a sector’s 
   output goes. The decimal fractions in each column sum to 1. 
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Distribution of Output From: Purchased
Chemicals Fuels Machinery  by:

output input
.2 .8 .4 Chemicals
.3 .1 .4 Fuels
.5 .1 .2 Machinery

↓ ↓ ↓
 

b. Denote the total annual output (in dollars) of the sectors by pC, pF, and pM. From the first row of the 
table, the total input to the Chemical & Metals sector is .2 pC + .8 pF + .4 pM. So the equillibrium 
prices must satisfy 

   
C C F M

income expenses
= .2 .8 .4p p p p+ +

 

  From the second and third rows of the table, the income/expense requirements for the Fuels & Power 
sector and the Machinery sector are, respectively, 

   F C F M

M C F M

.3 .1 .4
.5 .1 .2

p p p p
p p p p

= + +
= + +

 

  Move all variables to the left side and combine like terms: 

  
C F M

C F M

C F M

.8 – .8 – .4 0
–.3 .9 – .4 0
–.5 – .1 .8 0

p p p
p p p
p p p

=
+ =

+ =
 

c. [M] You can obtain the reduced echelon form with a matrix program. Actually, hand calculations are 
not too messy. To simplify the calculations, first scale each row of the augmented matrix by 10, then 
continue as usual. 

   

8 8 4 0 1 1 .5 0 1 1 .5 0
3 9 4 0 ~ 3 9 4 0 ~ 0 6 5.5 0
5 1 8 0 5 1 8 0 0 6 5.5 0

1 1 .5 0 1 0 1.417 0 The number of decimal
~ 0 1 .917 0 ~ 0 1 .917 0 places displayed is

0 0 0 0 0 0 0 0 somewhat arbit

− − − − − −     
     − − − − −     
     − − − − −     

− − −   
   − −   
       rary.

 

  The general solution is pC = 1.417 pM, pF = .917 pM, with pM free. If pM is assigned the value 100, then 
pC = 141.7 and pF = 91.7. Note that only the ratios of the prices are determined. This makes sense, for 
if the were converted from, say, dollars to yen or Euros, the inputs and outputs of each sector would 
still balance. The economic equilibrium is not affected by a proportional change in prices. 
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 4. a. Fill in the exchange table one column at a time. The entries in each column must sum to 1. 

  

Distribution of Output From  :

Purchased by :Agric. Energy Manuf . Transp.
output input

.65 .30 .30 .20 Agric.

.10 .10 .15 .10 Energy

.25 .35 .15 .30 Manuf .
0 .25 .40 .40 Transp.

↓ ↓ ↓ ↓
→
→
→
→

 

b. Denote the total annual output of the sectors by pA, pE, pM, and pT, respectively. From the first row of 
the table, the total input to Agriculture is .65pA + .30pE + .30pM + .20 pT. So the equilibrium prices 
must satisfy 

  
A A E M T

income expenses
.65 .30 .30 .20p p p p p= + + +

 

  From the second, third, and fourth rows of the table, the equilibrium equations are 

   
E A E M T

M A E M T

T E M T

.10 .10 .15 .10

.25 .35 .15 .30
.25 .40 .40

p p p p p
p p p p p
p p p p

= + + +
= + + +
= + +

 

  Move all variables to the left side and combine like terms: 

   

A E M T

A E M T

A E M T

E M T

.35 .30 .30 .20 0

.10 .90 .15 .10 0

.25 .35 .85 .30 0
.25 .40 .60 0

p p p p
p p p p
p p p p

p p p

− − − =
− + − − =
− − + − =

− − + =

 

  Use gauss, bgauss, and scale operations to reduce the augmented matrix to reduced echelon form 

  

.35 .3 .3 .2 0 .35 .3 0 .55 0 .35 0 0 .71 0
0 .81 .24 .16 0 0 .81 0 .43 0 0 1 0 .53 0

~ ~
0 0 1.0 1.17 0 0 0 1 1.17 0 0 0 1 1.17 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − − −     
     − − − −     
     − − −
     
     

 

  Scale the first row and solve for the basic variables in terms of the free variable pT, and obtain  
pA = 2.03pT, pE = .53pT, and pM = 1.17pT. The data probably justifies at most two significant figures, 
so take pT = 100 and round off the other prices to pA = 200, pE = 53, and pM = 120. 

 5. The following vectors list the numbers of atoms of boron (B), sulfur (S), hydrogen (H), and oxygen (O): 

   2 3 2 3 3 2

2 0 1 0 boron
3 0 0 1 sulfur

B S : , H O: , H BO : , H S:
0 2 3 2 hydrogen
0 1 3 0 oxygen

       
       
       
       
       
       

 

  The coefficients in the equation x1⋅B2S3 + x2⋅H20  →   x3⋅H3BO3 + x4⋅H2S satisfy 
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   1 2 3 4

2 0 1 0
3 0 0 1
0 2 3 2
0 1 3 0

x x x x

       
       
       + = +
       
       
       

 

  Move the right terms to the left side (changing the sign of each entry in the third and fourth vectors) and 
row reduce the augmented matrix of the homogeneous system: 

  

2 0 1 0 0 2 0 1 0 0 2 0 1 0 0 2 0 1 0 0
3 0 0 1 0 0 0 3/ 2 1 0 0 1 3 0 0 0 1 3 0 0

~ ~ ~
0 2 3 2 0 0 2 3 2 0 0 0 3/ 2 1 0 0 0 3/ 2 1 0
0 1 3 0 0 0 1 3 0 0 0 2 3 2 0 0 0 3 2 0

− − − −       
       − − − −       
       − − − − − −
       − − − − −              

 

  

2 0 1 0 0 2 0 0 2 / 3 0 1 0 0 1/ 3 0
0 1 3 0 0 0 1 0 2 0 0 1 0 2 0

~ ~ ~
0 0 1 2 / 3 0 0 0 1 2 / 3 0 0 0 1 2 / 3 0
0 0 3 2 0 0 0 0 0 0 0 0 0 0 0

− − −     
     − − −     
     − − −
     −          

 

  The general solution is x1 = (1/3) x4, x2 = 2x4, x3 = (2/3) x4, with x4 free. Take x4 = 3. Then x1 = 1,  
x2 = 6, and x3 = 2. The balanced equation is 

   B2S3  +  6H20   →    2H3BO3 + 3H2S 

 6. The following vectors list the numbers of atoms of sodium (Na), phosphorus (P), oxygen (O), 
barium (Ba), and nitrogen(N): 

   3 4 3 2 3 4 2 3

3 0 0 1 sodium
1 0 2 0 phosphorus

Na PO : , Ba(NO ) : , Ba (PO ) : , NaNO :4 6 8 3 oxygen
0 1 3 0 barium
0 2 0 1 nitrogen

       
       
       
       
       
       
              

 

  The coefficients in the equation x1⋅Na3PO4  +  x2⋅Ba(NO3)2   →    x3⋅Ba3(PO4)2  +  x4⋅NaNO3 satisfy 

   1 2 3 4

3 0 0 1
1 0 2 0
4 6 8 3
0 1 3 0
0 2 0 1

x x x x

       
       
       
       + = +
       
       
              

 

  Move the right terms to the left side (changing the sign of each entry in the third and fourth vectors) and 
row reduce the augmented matrix of the homogeneous system: 

   

3 0 0 1 0 1 0 2 0 0 1 0 2 0 0 1 0 2 0 0
1 0 2 0 0 3 0 0 1 0 0 0 6 1 0 0 1 3 0 0

~ ~ ~4 6 8 3 0 4 6 8 3 0 0 6 0 3 0 0 6 0 3 0
0 1 3 0 0 0 1 3 0 0 0 1 3 0 0 0 0 6 1 0
0 2 0 1 0 0 2 0 1 0 0 2 0 1 0 0 2 0 1 0

− − − −       
       − − − −       
       − − − − − −
       − − − −       
       − − − −       
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1 0 2 0 0 1 0 2 0 0 1 0 0 1/ 3 0
0 1 3 0 0 0 1 3 0 0 0 1 0 1/ 2 0

~ ~ ~0 0 18 3 0 0 0 1 1/ 6 0 0 0 1 1/ 6 0
0 0 6 1 0 0 0 0 0 0 0 0 0 0 0
0 0 6 1 0 0 0 0 0 0 0 0 0 0 0

− − −     
     − − −     
     − − −
     −     
     −     

 

  The general solution is x1 = (1/3)x4, x2 = (1/2)x4, x3 = (1/6)x4, with x4 free. Take x4 = 6. Then x1 = 2, 
x2 = 3, and x3 = 1. The balanced equation is 

   2Na3PO4  +  3Ba(NO3)2   →    Ba3(PO4)2  +  6NaNO3 

 7. The following vectors list the numbers of atoms of sodium (Na), hydrogen (H), carbon (C), and 
oxygen (O): 

   3 3 6 5 7 3 6 5 7 2 2

1 0 3 0 0 sodium
1 8 5 2 0 hydrogen

NaHCO : , H C H O : , Na C H O : , H O : , CO :
1 6 6 0 1 carbon
3 7 7 1 2 oxygen

         
         
         
         
         
         

 

  The order of the various atoms is not important. The list here was selected by writing the elements in the 
order in which they first appear in the chemical equation, reading left to right: 

   x1 · NaHCO3  + x2 · H3C6H5O7   →   x3 · Na3C6H5O7  +  x4 · H2O  +  x5 · CO2. 
  The coefficients x1, …, x5 satisfy the vector equation 

   1 2 3 4 5

1 0 3 0 0
1 8 5 2 0
1 6 6 0 1
3 7 7 1 2

x x x x x

         
         
         + = + +
         
         
                  

 

  Move all the terms to the left side (changing the sign of each entry in the third, fourth, and fifth vectors) 
and reduce the augmented matrix: 

   

1 0 3 0 0 0 1 0 0 0 1 0
1 8 5 2 0 0 0 1 0 0 1/ 3 0

~ ~
1 6 6 0 1 0 0 0 1 0 1/ 3 0
3 7 7 1 2 0 0 0 0 1 1 0

− −   
   − − −   ⋅ ⋅ ⋅
   − − −
   − − − −   

 

  The general solution is x1 = x5, x2 = (1/3)x5, x3 = (1/3)x5, x4 = x5, and x5 is free. Take x5 = 3. Then x1 = x4 = 
3, and x2 = x3 = 1. The balanced equation is 

   3NaHCO3  + H3C6H5O7   →   Na3C6H5O7  +  3H2O  +  3CO2 

 8. The following vectors list the numbers of atoms of potassium (K), manganese (Mn), oxygen (O), 
sulfur (S), and hydrogen (H): 

   4 4 2 2 2 4 2 4

1 0 0 0 2 0

1 1 0 1 0 0

KMnO : ,   MnSO : ,   H O: ,   MnO : ,   K SO : ,   H SO : 4 4 1 2 4 4

0 1 0 0 1 1

0 0 2 0 0 2

potassium
manganese
oxyg

           
           
           
           
           
           
                      

en
sulfur
hydrogen

 

  The coefficients in the chemical equation 
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   x1⋅KMnO4  +  x2⋅MnSO4  +  x3⋅H2O   →    x4⋅MnO2  +  x5⋅K2SO4  +  x6⋅H2SO4 
  satisfy the vector equation 

  1 2 3 4 5 6

1 0 0 0 2 0
1 1 0 1 0 0
4 4 1 2 4 4
0 1 0 0 1 1
0 0 2 0 0 2

x x x x x x

           
           
           
           + + = + +
           
           
                      

 

  Move the terms to the left side (changing the sign of each entry in the last three vectors) and reduce the 
augmented matrix: 

  

1 0 0 0 2 0 0 1 0 0 0 0 1.0 0
1 1 0 1 0 0 0 0 1 0 0 0 1.5 0

~4 4 1 2 4 4 0 0 0 1 0 0 1.0 0
0 1 0 0 1 1 0 0 0 0 1 0 2.5 0
0 0 2 0 0 2 0 0 0 0 0 1 .5 0

− −   
   − −   
   − − − −
   − − −   
   − −   

 

  The general solution is x1 = x6, x2 = (1.5)x6, x3 = x6, x4 = (2.5)x6, x5 = .5x6, and x6 is free.  
Take x6 = 2. Then x1 = x3 = 2, and x2 = 3, x4 = 5, and x5 = 1. The balanced equation is 

   2KMnO4  +  3MnSO4  +  2H2O   →    5MnO2  +  K2SO4  +  2H2SO4 

 9. [M] Set up vectors that list the atoms per molecule. Using the order lead (Pb), nitrogen (N), chromium 
(Cr), manganese (Mn), and oxygen (O), the vector equation to be solved is 

   1 2 3 4 5 6

1 0 3 0 0 0 lead
6 0 0 0 0 1 nitrogen
0 1 0 2 0 0 chromium
0 2 0 0 1 0 manganese
0 8 4 3 2 1 oxygen

x x x x x x

           
           
           
           + = + + +
           
           
                      

 

  The general solution is x1 = (1/6)x6, x2 = (22/45)x6, x3 = (1/18)x6, x4 = (11/45)x6, x5 = (44/45)x6, and 
x6 is free. Take x6 = 90. Then x1 = 15, x2 = 44, x3 = 5, x4 = 22, and x5 = 88. The balanced equation is 

   15PbN6 + 44CrMn2O8   →    5Pb3O4 + 22Cr2O3 + 88MnO2 + 90NO 

 10. [M] Set up vectors that list the atoms per molecule. Using the order manganese (Mn), sulfur (S), arsenic 
(As), chromium (Cr), oxygen (O), and hydrogen (H), the vector equation to be solved is 

  1 2 3 4 5 6 7

1 0 0 1 0 0 0
1 0 1 0 0 3 0
0 2 0 0 1 0 0
0 10 0 0 0 1 0
0 35 4 4 0 12 1
0 0 2 1 3 0 2

x x x x x x x

             
             
             
             

+ + = + + +            
            
            
            
                         

manganese
sulfur
arsenic
chromium
oxygen
hydrogen







  

  In rational format, the general solution is x1 = (16/327)x7, x2 = (13/327)x7, x3 = (374/327)x7, 
x4 = (16/327)x7, x5 = (26/327)x7, x6 = (130/327)x7, and x7 is free. Take x7 = 327 to make the other 
variables whole numbers. The balanced equation is 

  16MnS + 13As2Cr10O35 + 374H2SO4  →   16HMnO4 + 26AsH3 + 130CrS3O12 + 327H2O 
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  Note that some students may use decimal calculation and simply "round off" the fractions that relate x1, 
..., x6 to x7. The equations they construct may balance most of the elements but miss an atom or two. Here 
is a solution submitted by two of my students: 

  5MnS + 4As2Cr10O35 + 115H2SO4  →   5HMnO4 + 8AsH3 + 40CrS3O12 + 100H2O 
  Everything balances except the hydrogen. The right side is short 8 hydrogen atoms. Perhaps the students 

thought that the 4H2 (hydrogen gas) escaped! 

 11. Write the equations for each node: 

   
1 3

2 3 4

1 2

4

Node Flow in Flow out
A 20
B
C 80

Total flow: 80 = x 20

x x
x x x

x x

+ =
= +
= +

+

 

  Rearrange the equations: 

   

1 3

2 3 4

1 2

4

20
0

80
60

x x
x x x

x x
x

+ =
− − =

+ =
=

 

  Reduce the augmented matrix: 

   

1 0 1 0 20 1 0 1 0 20
0 1 1 1 0 0 1 1 0 60

~ ~
1 1 0 0 80 0 0 0 1 60
0 0 0 1 60 0 0 0 0 0

   
   − − −   ⋅ ⋅ ⋅
   
   
      

 

  For this type of problem, the best description of the general solution uses the style of 
Section 1.2 rather than parametric vector form: 

   

1 3

2 3

3

4

20
60

 is free
x 60

x x
x x
x

= −
 = +


 =

. Since x1 cannot be negative, the largest value of x3 is 20.   

12. Write the equations for each intersection: 

   

1 3 4

1 2

2 3 5

4 5

Intersection Flow in Flow out
A 40
B 200
C 100
D 60

Total flow: 200 = 200

x x x
x x

x x x
x x

= + +
= +

+ = +
+ =

 40

x1 x2

x3

200

100

60

x4 x5

A

B

C

D

20

80

x1

x2

x3

x4

A

C

B
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Rearrange the equations: 

   

1 3 4

1 2

2 3 5

4 5

40
200
100

60

x x x
x x

x x x
x x

− − =
+ =

+ − =
+ =

 

  Reduce the augmented matrix: 

  

1 0 1 1 0 40 1 0 1 0 1 100
1 1 0 0 0 200 0 1 1 0 1 100

~
0 1 1 0 1 100 0 0 0 1 1 60
0 0 0 1 1 60 0 0 0 0 0 0

− − −   
   −   
   −
   
      

 

  The general solution (written in the style of Section 1.2) is 

   

1 3 5

2 3 5

3

4 5

5

100
100

 is free
60

 is free

x x x
x x x
x
x x
x

= + −
 = − +

 = −


 b. When x4 = 0, x5 must be 60, and 

1 3

2 3

3

4

5

40
160

 is free
0
60

x x
x x
x
x
x

= +
 = −

 =

=

 

c. The minimum value of x1 is 40 cars/minute, because x3 cannot be negative. 

 13. Write the equations for each intersection: 

   

2 1

3 5 2 4

6 5

4 6

1 3

Intersection Flow in Flow out
A 30 80
B
C 100 40
D 40 90
E 60 20

Total flow: 230 230

x x
x x x x

x x
x x
x x

+ = +
+ = +
+ = +
+ = +
+ = +

=

 

  Rearrange the equations: 

   

1 2

2 3 4 5

5 6

4 6

1 3

50
0

60
50
40

x x
x x x x

x x
x x

x x

− = −
− + − =

− =
− =

− −

 

  Reduce the augmented matrix: 

   

1 1 0 0 0 0 50 1 1 0 0 0 0 50
0 1 1 1 1 0 0 0 1 1 1 1 0 0

~ ~0 0 0 0 1 1 60 0 0 0 1 0 1 50
0 0 0 1 0 1 50 0 0 0 0 1 1 60
1 0 1 0 0 0 40 0 0 0 0 0 0 0

− − − −   
   − − − −   
   ⋅ ⋅ ⋅− −
   − −   
   − −   

 

60

80

90

100
x1 x6

x2

x3

x5

x4

20 40

30 40

A

E

C

D

B
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1 0 1 0 0 0 40
0 1 1 0 0 0 10

~ ~ 0 0 0 1 0 1 50
0 0 0 0 1 1 60
0 0 0 0 0 0 0

− − 
 − 
 ⋅ ⋅ ⋅ −
 − 
  

 

a. The general solution is 

1 3

2 3

3

4 6

5 6

6

40
10

 is free
50
60

 is free

x x
x x
x
x x
x x
x

= −
 = +

 = +
 = +



   

b. To find minimum flows, note that since x1 cannot be negative, x3 > 40. This implies that 
x2 > 50. Also, since x6 cannot be negative, x4 > 50 and x5 > 60. The minimum flows are 
x2 = 50, x3 = 40, x4 = 50, x5 = 60 (when x1 = 0 and x6 = 0). 

 14. Write the equations for each intersection. 

   

1 2

2 3

3 4

4 5

5 6

6 1

Intersection Flow in Flow out
A 100
B 50
C 120
D 150
E 80
F 100

x x
x x

x x
x x

x x
x x

= +
+ =

= +
+ =

= +
+ =

 

  Rearrange the equations: 

   

1 2

2 3

3 4

4 5

5 6

1 6

100
50

120
150

80
100

x x
x x

x x
x x

x x
x x

− =
− = −

− =
− = −

− =
− + = −

 

  Reduce the augmented matrix: 

   

1 1 0 0 0 0 100 1 1 0 0 0 0 100
0 1 1 0 0 0 50 0 1 1 0 0 0 50
0 0 1 1 0 0 120 0 0 1 1 0 0 120

~ ~
0 0 0 1 1 0 150 0 0 0 1 1 0 150
0 0 0 0 1 1 80 0 0 0 0 1 1 80
1 0 0 0 0 1 100 0 0 0 0 0 0 0

− −   
   − − − −   
   − −

⋅⋅ ⋅   − − − −   
   − −
   
− −      

 

100

50

x3

80

100

120 150

x2

x1

x6

x5
x4

A

B E

F

C D
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1 0 0 0 0 1 100
0 1 0 0 0 1 0
0 0 1 0 0 1 50

~ ~
0 0 0 1 0 1 70
0 0 0 0 1 1 80
0 0 0 0 0 0 0

− 
 − 
 −

⋅⋅ ⋅  − − 
 −
 
  

. The general solution is 

1 6

2 6

3 6

4 6

5 6

6

100

50
70

80
 is free

x x
x x
x x
x x
x x
x

= +
 =
 = +
 = − +
 = +



. 

  Since x4 cannot be negative, the minimum value of x6 is 70. 

Note: The MATLAB box in the Study Guide discusses rational calculations, needed for balancing the 
chemical equations in Exercises 9 and 10. As usual, the appendices cover this material for Maple, 
Mathematica, and the TI and HP graphic calculators. 

1.7 SOLUTIONS 

Note: Key exercises are 9–20 and 23–30. Exercise 30 states a result that could be a theorem in the text. There 
is a danger, however, that students will memorize the result without understanding the proof, and then later 
mix up the words row and column. Exercises 37 and 38 anticipate the discussion in Section 1.9 of one-to-one 
transformations. Exercise 44 is fairly difficult for my students. 

 1. Use an augmented matrix to study the solution set of x1u + x2v + x3w = 0 (*), where u, v, and w are the 

three given vectors. Since 
5 7 9 0 5 7 9 0
0 2 4 0 ~ 0 2 4 0
0 6 8 0 0 0 4 0

   
   
   
   − −   

, there are no free variables. So the 

homogeneous equation (*) has only the trivial solution. The vectors are linearly independent. 

 2. Use an augmented matrix to study the solution set of x1u + x2v + x3w = 0 (*), where u, v, and w are the 

three given vectors.  Since 
0 0 3 0 2 8 1 0
0 5 4 0 ~ 0 5 4 0
2 8 1 0 0 0 3 0

− −   
   
   
   − −   

, there are no free variables. So the 

homogeneous equation (*) has only the trivial solution. The vectors are linearly independent. 

 3. Use the method of Example 3 (or the box following the example). By comparing entries of the vectors, 
one sees that the second vector is –3 times the first vector. Thus, the two vectors are linearly dependent. 

 4. From the first entries in the vectors, it seems that the second vector of the pair 
1 2

,
4 8

− −   
   −   

 may be 2 

times the first vector. But there is a sign problem with the second entries. So neither of the vectors is a 
multiple of the other. The vectors are linearly independent. 

 5. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0: 

  

0 8 5 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0
3 7 4 0 3 7 4 0 0 2 2 0 0 2 2 0 0 2 2 0

~ ~ ~ ~
1 5 4 0 1 5 4 0 0 2 2 0 0 0 0 0 0 0 3 0
1 3 2 0 0 8 5 0 0 8 5 0 0 0 3 0 0 0 0 0

− − − − −         
         − − − − −         
         − − − − − −
         − − − −                  

 



1.7 • Solutions   49 

 

  There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of A are 
linearly independent. 

 6. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0: 

  

4 3 0 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0
0 1 4 0 0 1 4 0 0 1 4 0 0 1 4 0 0 1 4 0

~ ~ ~ ~
1 0 3 0 4 3 0 0 0 3 12 0 0 0 0 0 0 0 7 0
5 4 6 0 5 4 6 0 0 4 9 0 0 0 7 0 0 0 0 0

− −         
         − − − − −         
         − − −
         −                  

 

  There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of A are 
linearly independent. 

 7. Study the equation Ax = 0. Some people may start with the method of Example 2: 

  
1 4 3 0 0 1 4 3 0 0 1 4 3 0 0
2 7 5 1 0 ~ 0 1 1 1 0 ~ 0 1 1 1 0
4 5 7 5 0 0 11 5 5 0 0 0 6 6 0

− − −     
     − − − −     
     − − − −     

 

  But this is a waste of time. There are only 3 rows, so there are at most three pivot positions. Hence, at 
least one of the four variables must be free. So the equation Ax = 0 has a nontrivial solution and the 
columns of A are linearly dependent. 

 8. Same situation as with Exercise 7. The (unnecessary) row operations are 

  
1 3 3 2 0 1 3 3 2 0 1 3 3 2 0
3 7 1 2 0 ~ 0 2 8 4 0 ~ 0 2 8 4 0
0 1 4 3 0 0 1 4 3 0 0 0 0 1 0

− − − − − −     
     − − − − − −     
     − −     

 

  Again, because there are at most three pivot positions yet there are four variables, the equation Ax = 0 
has a nontrivial solution and the columns of A are linearly dependent. 

 9. a. The vector v3 is in Span{v1, v2} if and only if the equation x1v1 + x2v2 = v3 has a solution. To find out, 
row reduce [v1   v2   v3], considered as an augmented matrix: 

  
1 3 5 1 3 5
3 9 7 ~ 0 0 8
2 6 0 0 10h h

− −   
   − −   
   − −   

 

  At this point, the equation 0 = 8 shows that the original vector equation has no solution. So v3 is in 
Span{v1, v2} for no value of h. 

b. For {v1, v2, v3} to be linearly independent, the equation x1v1 + x2v2 + x3v3 = 0 must have only the 
trivial solution. Row reduce the augmented matrix [v1   v2   v3   0]  

  
1 3 5 0 1 3 5 0 1 3 5 0
3 9 7 0 ~ 0 0 8 0 ~ 0 0 8 0
2 6 0 0 0 10 0 0 0 0 0h h

− − −     
     − −     
     − −     

 

  For every value of h, x2 is a free variable, and so the homogeneous equation has a nontrivial solution. 
Thus {v1, v2, v3} is a linearly dependent set for all h. 
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 10. a.  The vector v3 is in Span{v1, v2} if and only if the equation x1v1 + x2v2 = v3 has a solution. To find out, 
row reduce [v1   v2   v3], considered as an augmented matrix: 

  
1 2 2 1 2 2
5 10 9 ~ 0 0 1
3 6 0 0 6h h

− −   
   − −   
   − +   

 

  At this point, the equation 0 = 1 shows that the original vector equation has no solution. So v3 is in 
Span{v1, v2} for no value of h. 

b. For {v1, v2, v3} to be linearly independent, the equation x1v1 + x2v2 + x3v3 = 0 must have only the 
trivial solution. Row reduce the augmented matrix [v1   v2   v3   0]  

  
1 2 2 0 1 2 2 0 1 2 2 0
5 10 9 0 ~ 0 0 1 0 ~ 0 0 1 0
3 6 0 0 0 6 0 0 0 0 0h h

− − −     
     − −     
     − +     

 

  For every value of h, x2 is a free variable, and so the homogeneous equation has a nontrivial solution. 
Thus {v1, v2, v3} is a linearly dependent set for all h. 

 11. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  
1 3 1 0 1 3 1 0 1 3 1 0
1 5 5 0 ~ 0 2 4 0 ~ 0 2 4 0
4 7 0 0 5 4 0 0 0 6 0h h h

− − −     
     − − − −     
     − + −     

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a nontrivial solution if and only if h – 6 = 0 (which corresponds to 
x3 being a free variable). Thus, the vectors are linearly dependent if and only if h = 6. 

 12. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  
2 6 8 0 2 6 8 0
4 7 0 ~ 0 5 16 0
1 3 4 0 0 0 0 0

h h
− −   

   − − +   
   −   

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a free variable and hence a nontrivial solution no matter what the 
value of h. So the vectors are linearly dependent for all values of h. 

 13. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  
1 2 3 0 1 2 3 0
5 9 0 ~ 0 1 15 0
3 6 9 0 0 0 0 0

h h
− −   

   − −   
   − −   

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a free variable and hence a nontrivial solution no matter what the 
value of h. So the vectors are linearly dependent for all values of h. 
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 14. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  
1 5 1 0 1 5 1 0 1 5 1 0
1 7 1 0 ~ 0 2 2 0 ~ 0 2 2 0
3 8 0 0 7 3 0 0 0 10 0h h h

− − −     
     −     
     − − + +     

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a nontrivial solution if and only if h + 10 = 0 (which corresponds 
to x3 being a free variable). Thus, the vectors are linearly dependent if and only  
if h = –10. 

 15. The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two entries 
in each vector. 

 16. The set is linearly dependent because the second vector is 3/2 times the first vector. 

 17. The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector. 

 18. The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two entries 
in each vector. 

 19. The set is linearly independent because neither vector is a multiple of the other vector. [Two of the 
entries in the first vector are – 4 times the corresponding entry in the second vector. But this multiple 
does not work for the third entries.] 

 20. The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector. 

 21. a. False. A homogeneous system always has the trivial solution. See the box before Example 2. 
b. False. See the warning after Theorem 7. 
c. True. See Fig. 3, after Theorem 8. 
d. True. See the remark following Example 4. 

 22. a. True. See Fig. 1. 

b. False. For instance, the set consisting of 
1 2
2  and –4
3 6

   
   −   
      

 is linearly dependent. See the warning after 

Theorem 8. 
c. True. See the remark following Example 4. 
d. False. See Example 3(a). 

 23. 
* *

0 *
0 0

 
 
 
  

 24. 
* 0 0 0

, ,
0 0 0 0 0 0
     
     
     

 25. 

* 0
0 0 0

 and 
0 0 0 0
0 0 0 0
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 26. 

* *
0 *
0 0
0 0 0

 
 
 
 
 
  

. The columns must linearly independent, by Theorem 7, because the first column is not 

zero, the second column is not a multiple of the first, and the third column is not a linear combination 
of the preceding two columns (because a3 is not in Span{a1, a2}). 

 27. All five columns of the 7×5 matrix A must be pivot columns. Otherwise, the equation Ax = 0 would have 
a free variable, in which case the columns of A would be linearly dependent. 

 28. If the columns of a 5×7 matrix A span R5, then A has a pivot in each row, by Theorem 4. Since each pivot 
position is in a different column, A has five pivot columns. 

 29. A: any 3×2 matrix with two nonzero columns such that neither column is a multiple of the other. In this 
case the columns are linearly independent and so the equation Ax = 0 has only the trivial solution.  

  B: any 3×2 matrix with one column a multiple of the other. 

 30. a. n   
b. The columns of A are linearly independent if and only if the equation Ax = 0 has only the trivial 

solution. This happens if and only if Ax = 0 has no free variables, which in turn happens if and only if 
every variable is a basic variable, that is, if and only if every column of A is a pivot column. 

 31. Think of A = [a1   a2   a3]. The text points out that a3 = a1 + a2. Rewrite this as a1 + a2 – a3 = 0. As a 
matrix equation, Ax = 0 for x = (1, 1, –1). 

 32. Think of A = [a1   a2   a3]. The text points out that a1 + 2a2 = a3. Rewrite this as a1 + 2a2 – a3 = 0. As a 
matrix equation, Ax = 0 for x = (1, 2, –1). 

 33. True, by Theorem 7. (The Study Guide adds another justification.) 

 34. True, by Theorem 9. 

 35. False. The vector v1 could be the zero vector. 

 36. False. Counterexample: Take v1, v2, and v4 all to be multiples of one vector. Take v3 to be not a multiple 
of that vector. For example, 

   1 2 3 4

1 2 1 4
1 2 0 4

, , ,
1 2 0 4
1 2 0 4

       
       
       = = = =
       
       
              

v v v v  

 37. True. A linear dependence relation among v1, v2, v3 may be extended to a linear dependence relation 
among v1, v2, v3, v4 by placing a zero weight on v4. 

 38. True. If the equation x1v1 + x2v2 + x3v3 = 0 had a nontrivial solution (with at least one of x1, x2, x3 
nonzero), then so would the equation x1v1 + x2v2 + x3v3 + 0⋅v4 = 0. But that cannot happen because 
{v1, v2, v3, v4} is linearly independent. So {v1, v2, v3} must be linearly independent. This problem can 
also be solved using Exercise 37, if you know that the statement there is true. 
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 39. If for all b the equation Ax = b has at most one solution, then take b = 0, and conclude that the equation 
Ax = 0 has at most one solution. Then the trivial solution is the only solution, and so the columns of A are 
linearly independent. 

 40. An m×n matrix with n pivot columns has a pivot in each column. So the equation Ax = b has no free 
variables. If there is a solution, it must be unique. 

 41. [M] 

8 3 0 7 2 8 3 0 7 2
9 4 5 11 7 0 5/8 5 25/8 19 / 4

~
6 2 2 4 4 0 1/ 4 2 5/ 4 5/ 2
5 1 7 0 10 0 7 /8 7 35/8 35/ 4

A

− − − −   
   − − −   =
   − −
   −      

 

  

8 3 0 7 2 8 3 0 7 2
0 5/8 5 25/8 19 / 4 0 5/8 5 25/8 19 / 4

~ ~
0 0 0 0 22 / 5 0 0 0 0 22 / 5
0 0 0 0 77 / 5 0 0 0 0 0

− − − −   
   − −   
   
   
      

 

  The pivot columns of A are 1, 2, and 5. Use them to form 

8 3 2
9 4 7
6 2 4
5 1 10

B

− 
 − − =
 −
 −  

.   

  Other likely choices use columns 3 or 4 of A instead of 2: 

8 0 2 8 7 2
9 5 7 9 11 7

,
6 2 4 6 4 4
5 7 10 5 0 10

−   
   − − − −   
   −
   
      

. 

  Actually, any set of three columns of A that includes column 5 will work for B, but the concepts needed 
to prove that are not available now. (Column 5 is not in the two-dimensional subspace spanned by the 
first four columns.) 

 42. [M] 

  

12 10 6 3 7 10 12 10 6 3 7 10
7 6 4 7 9 5 0 1/ 6 1/ 2 21/ 4 59 /12 65/ 6

~ ~9 9 9 5 5 1 0 0 0 89 / 2 89 / 2 89
4 3 1 6 8 9 0 0 0 0 0 3
8 7 5 9 11 8 0 0 0 0 0 0

− − − −   
   − − − − −   
   ⋅ ⋅ ⋅− − − −
   − − −   
   − − −   

 

  The pivot columns of A are 1, 2, 4, and 6. Use them to form 

12 10 3 10
7 6 7 5
9 9 5 1
4 3 6 9
8 7 9 8

B

− 
 − − 
 = − −
 − − 
 − − 

. 

  Other likely choices might use column 3 of A instead of 2, and/or use column 5 instead of 4. 
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 43. [M] Make v any one of the columns of A that is not in B and row reduce the augmented matrix [B   v]. 
The calculations will show that the equation Bx = v is consistent, which means that v is a linear 
combination of the columns of B. Thus, each column of A that is not a column of B is in the set spanned 
by the columns of B. 

 44. [M] Calculations made as for Exercise 43 will show that each column of A that is not a column of B is in 
the set spanned by the columns of B. Reason: The original matrix A has only four pivot columns. If one 
or more columns of A are removed, the resulting matrix will have at most four pivot columns. (Use 
exactly the same row operations on the new matrix that were used to reduce A to echelon form.) If v is a 
column of A that is not in B, then row reduction of the augmented matrix [B   v] will display at most four 
pivot columns. Since B itself was constructed to have four pivot columns, adjoining v cannot produce a 
fifth pivot column. Thus the first four columns of [B   v] are the pivot columns. This implies that the 
equation Bx = v has a solution. 

Note: At the end of Section 1.7, the Study Guide has another note to students about “Mastering Linear 
Algebra Concepts.” The note describes how to organize a review sheet that will help students form a mental 
image of linear independence. The note also lists typical misuses of terminology, in which an adjective is 
applied to an inappropriate noun. (This is a major problem for my students.) I require my students to prepare a 
review sheet as described in the Study Guide, and I try to make helpful comments on their sheets. I am 
convinced, through personal observation and student surveys, that the students who prepare many of these 
review sheets consistently perform better than other students. Hopefully, these students will remember 
important concepts for some time beyond the final exam. 

1.8 SOLUTIONS 

Notes: The key exercises are 17–20, 25 and 31. Exercise 20 is worth assigning even if you normally assign 
only odd exercises. Exercise 25 (and 27) can be used to make a few comments about computer graphics, even 
if you do not plan to cover Section 2.6. For Exercise 31, the Study Guide encourages students not to look at 
the proof before trying hard to construct it. Then the Guide explains how to create the proof.  

Exercises 19 and 20 provide a natural segue into Section 1.9. I arrange to discuss the homework on these 
exercises when I am ready to begin Section 1.9. The definition of the standard matrix in Section 1.9 follows 
naturally from the homework, and so I’ve covered the first page of Section 1.9 before students realize we are 
working on new material. 

The text does not provide much practice determining whether a transformation is linear, because the time 
needed to develop this skill would have to be taken away from some other topic. If you want your students to 
be able to do this, you may need to supplement Exercises 29, 30, 32 and 33. 

If you skip the concepts of one-to-one and “onto” in Section 1.9, you can use the result of Exercise 31 to 
show that the coordinate mapping from a vector space onto Rn (in Section 4.4) preserves linear independence 
and dependence of sets of vectors. (See Example 6 in Section 4.4.) 

 1. T(u) = Au = 
2 0 1 2
0 2 3 6
     

=     − −     
, T(v) = 

2 0 2
0 2 2

a a
b b

     
=     

     
 

 2. T(u) = Au =
.5 0 0 1 .5
0 .5 0 0 0
0 0 .5 4 2

     
     =     
     − −     

, T(v) = 
.5 0 0 .5
0 .5 0 .5
0 0 .5 .5

a a
b b
c c

     
     =     
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 3. [ ]
1 0 2 1 1 0 2 1 1 0 2 1
2 1 6 7 ~ 0 1 2 5 ~ 0 1 2 5
3 2 5 3 0 2 1 0 0 0 5 10

A
− − − − − −     

     = −     
     − − − −     

b  

  
1 0 2 1 1 0 0 3 3

~ 0 1 2 5 ~ 0 1 0 1 1 ,
0 0 1 2 0 0 1 2 2

− −     
     =     
          

x  unique solution 

 4. [ ]
1 3 2 6 1 3 2 6 1 3 2 6
0 1 4 7 ~ 0 1 4 7 ~ 0 1 4 7
3 5 9 9 0 4 15 27 0 0 1 1

A
− − −     

     = − − − − − −     
     − − − − −     

b  

  
1 3 0 4 1 0 0 5 5

~ 0 1 0 3 ~ 0 1 0 3 3
0 0 1 1 0 0 1 1 1

− − −     
     − − = −     
          

x , unique solution 

 5. [ ] 1 5 7 2 1 5 7 2 1 0 3 3
~ ~

3 7 5 2 0 1 2 1 0 1 2 1
A

− − − − − −     
=      − −     

b  

  Note that a solution is not 
3
1

 
 
 

. To avoid this common error, write the equations: 

  1 3

2 3

3 3
2 1

x x
x x

+ =
+ =

 and solve for the basic variables: 
1 3

2 3

3

3 3
1 2

is free

x x
x x
x

= −
 = −



  

  General solution 
1 3

2 3 3

3 3

3 3 3 3
1 2 1 2

0 1

x x
x x x
x x

− −       
       = = − = + −       
             

x . For a particular solution, one might choose  

x3 = 0 and 
3
1
0

 
 =  
  

x . 

 6. [ ]

1 2 1 1 1 2 1 1 1 2 1 1 1 0 3 7
3 4 5 9 0 2 2 6 0 1 1 3 0 1 1 3

~ ~ ~
0 1 1 3 0 1 1 3 0 0 0 0 0 0 0 0
3 5 4 6 0 1 1 3 0 0 0 0 0 0 0 0

A

− − −       
       −       =
       
       − − − − − −              

b  

  1 3

2 3

3 7
3

x x
x x

+ =
+ =

.      
1 3

2 3

3

7 3
3

 is free

x x
x x
x

= −
 = −



  

  General solution: 
1 3

2 3 3

3 3

7 3 7 3
3 3 1

0 1

x x
x x x
x x

− −       
       = = − = + −       
              

x , one choice: 
7
3
0

 
 
 
  

. 
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 7. a = 5; the domain of T is R5, because a 6×5 matrix has 5 columns and for Ax to be defined, x must be in 
R5. b = 6; the codomain of T is R6, because Ax is a linear combination of the columns of A, and each 
column of A is in R6. 

 8. A must have 5 rows and 4 columns. For the domain of T to be R4, A must have four columns so that Ax is 
defined for x in R4. For the codomain of T to be R5, the columns of A must have five entries (in which 
case A must have five rows), because Ax is a linear combination of the columns of A. 

 9. Solve Ax = 0. 
1 4 7 5 0 1 4 7 5 0 1 4 7 5 0
0 1 4 3 0 ~ 0 1 4 3 0 ~ 0 1 4 3 0
2 6 6 4 0 0 2 8 6 0 0 0 0 0 0

− − − − − −     
     − − −     
     − − −     

 

  
1 0 9 7 0

~ 0 1 4 3 0
0 0 0 0 0

− 
 − 
  

   
1 3 4

2 3 4

9 7 0
4 3 0

0 0

x x x
x x x

− + =
− + =

=
,  

1 3 4

2 3 4

3

4

9 7
4 3

 is free
 is free

x x x
x x x
x
x

= −
 = −




 

  x = 

1 3 4

2 3 4
3 4

3 3

4 4

9 7 9 7
4 3 4 3

1 0
0 1

x x x
x x x

x x
x x
x x

− −       
       − −       = = +
       
       

             

 

 10. Solve Ax = 0. 

1 3 9 2 0 1 3 9 2 0 1 3 9 2 0
1 0 3 4 0 0 3 6 6 0 0 1 2 3 0

~ ~
0 1 2 3 0 0 1 2 3 0 0 3 6 6 0
2 3 0 5 0 0 9 18 9 0 0 9 18 9 0

     
     − − − −     
     − − −
     −          

 

  

1 3 9 2 0 1 3 9 0 0 1 0 3 0 0
0 1 2 3 0 0 1 2 0 0 0 1 2 0 0

~ ~ ~
0 0 0 3 0 0 0 0 1 0 0 0 0 1 0
0 0 0 18 0 0 0 0 0 0 0 0 0 0 0

     
     
     
     
     −          

 

  
1 3

2 3

4

3 0
2 0

0

x x
x x

x

+ =
+ =

=
     

1 3

2 3

3

4

3
2

 is free
0

x x
x x
x
x

= −
 = −


 =

     

3

3
3

3

3 3
2 2

1
0 0

x
x

x
x

− −   
   − −   = =
   
   
      

x  

 11. Is the system represented by [A   b] consistent? Yes, as the following calculation shows. 

  
1 4 7 5 1 1 4 7 5 1 1 4 7 5 1
0 1 4 3 1 ~ 0 1 4 3 1 ~ 0 1 4 3 1
2 6 6 4 0 0 2 8 6 2 0 0 0 0 0

− − − − − − − − −     
     − − −     
     − − −     

 

  The system is consistent, so b is in the range of the transformation Ax x . 
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 12. Is the system represented by [A   b] consistent? 

  

1 3 9 2 1 1 3 9 2 1 1 3 9 2 1
1 0 3 4 3 0 3 6 6 4 0 1 2 3 1

~ ~
0 1 2 3 1 0 1 2 3 1 0 3 6 6 4
2 3 0 5 4 0 9 18 9 2 0 9 18 9 2

− − −     
     − − − − −     
     − − − − −
     −          

 

  

1 3 9 2 1 1 3 9 2 1
0 1 2 3 1 0 1 2 3 1

~ ~
0 0 0 3 1 0 0 0 3 1
0 0 0 18 11 0 0 0 0 17

− −   
   − −   
   
   −      

  

  The system is inconsistent, so b is not in the range of the transformation Ax x . 

 13.  14. 

  

x2

u

v

T(u)

T(v)

x1

 

x1

x2

u

v

T(v)

T(u)

 
   A reflection through the origin.  A contraction by the factor .5. 

  The transformation in Exercise 13 may also be described as a rotation of π radians about the origin or 
a rotation of –π radians about the origin. 

 15.  16.  

  

x1

x2

u

v T(v)

T(u)

 

x1

x2

u

v

T(u)

T(v)

 
   A projection onto the x2-axis  A reflection through the line x2 = x1. 

 17. T(3u) = 3T(u) = 
2 6

3
1 3

   
=   

   
, T(2v) = 2T(v) = 

1 2
2

3 6
− −   

=   
   

, and  

  T(3u + 2v) = 3T(u) = 2T(v) = 
6 2 4
3 6 9

−     
+ =     

     
. 
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18. Draw a line through w parallel to v, and draw a line through w parallel to u. See the left part of the figure 
below. From this, estimate that w = u + 2v. Since T is linear, T(w) = T(u) + 2T(v). Locate T(u) and 2T(v) 
as in the right part of the figure and form the associated parallelogram to locate T(w).  

  

x1

x2

x1

x2

uw

v2v

T(v)

2T(v)

T(u)

T(w)

 

 19. All we know are the images of e1 and e2 and the fact that T is linear. The key idea is to write 

  x = 1 2
5 1 0

5 3 5 3
3 0 1

.= − = −
−
     
     
     

e e  Then, from the linearity of T, write 

   T(x) = T(5e1 – 3e2) = 5T(e1) – 3T(e2) = 5y1 – 3y2 = 
2 1 13

5 3 .
5 6 7

−
− =

     
     
     

 

  To find the image of 1

2

x
x
 
 
 

, observe that 1
1 2 1 1 2 2

2

1 0
0 1

x
x x x x

x
     

= = + = +     
    

x e e . Then 

   T(x) = T(x1e1 + x2e2) = x1T(e1) + x2T(e2) = 1 2
1 2

1 2

22 1
5 65 6

x x
x x

x x
−−     

+ =      +     
 

 20. Use the basic definition of Ax to construct A. Write 

   [ ] 1
1 1 2 2 1 2

2

2 7 2 7
( ) ,    

5 3 5 3
x

T x x A
x

− −     
= + = = =     − −    

x v v v v x  

 21. a. True. Functions from Rn to Rm are defined before Fig. 2. A linear transformation is a function with 
certain properties. 

b. False. The domain is R5. See the paragraph before Example 1. 
c. False. The range is the set of all linear combinations of the columns of A. See the paragraph before 

Example 1. 
d. False. See the paragraph after the definition of a linear transformation. 
e. True. See the paragraph following the box that contains equation (4). 

 22. a. True. See the paragraph following the definition of a linear transformation. 
b. False. If A is an m×n matrix, the codomain is Rm. See the paragraph before Example 1. 
c. False. The question is an existence question. See the remark about Example 1(d), following the 

solution of Example 1. 
d. True. See the discussion following the definition of a linear transformation. 
e. True. See the paragraph following equation (5). 
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23. 

  

x1

x2

u

cu

T (cu)
T(u)

T(u)

T(u + v)

u + v

x1

x2

T(v)

v
u

 

 24. Given any x in Rn, there are constants c1, …, cp such that x = c1v1 + ··· cpvp, because v1, …, vp span Rn. 
Then, from property (5) of a linear transformation, 

   T(x) = c1T(v1) + ··· + cpT(vp) = c10 + ·· + cp0 = 0 

 25. Any point x on the line through p in the direction of v satisfies the parametric equation  
  x = p + tv for some value of t. By linearity, the image T(x) satisfies the parametric equation  
   T(x) = T(p + tv) = T(p) + tT(v)  (*) 
  If T(v) = 0, then T(x) = T(p) for all values of t, and the image of the original line is just a single point. 

Otherwise, (*) is the parametric equation of a line through T(p) in the direction of T(v). 

 26. Any point x on the plane P satisfies the parametric equation x = su + tv for some values of s and t.  
By linearity, the image T(x) satisfies the parametric equation 

   T(x) = sT(u) + tT(v) (s, t in R)  (*) 
  The set of images is just Span{T(u), T(v)}. If T(u) and T(v) are linearly independent, Span{T(u), T(v)} is 

a plane through T(u), T(v), and 0. If T(u) and T(v) are linearly dependent and not both zero, then 
Span{T(u), T(v)} is a line through 0. If T(u) = T(v) = 0, then Span{T(u), T(v)} is {0}.  

 27. a. From Fig. 7 in the exercises for Section 1.5, the line through T(p) and T(q) is in the direction of q – p, 
and so the equation of the line is x = p + t(q – p) = p + tq – tp = (1 – t)p + tq. 

b. Consider x = (1 – t)p + tq for t such that 0 < t < 1. Then, by linearity of T,  
   T(x) = T((1 – t)p + tq) = (1 – t)T(p) + tT(q)      0 < t < 1  (*) 
  If T(p) and T(q) are distinct, then (*) is the equation for the line segment between T(p) and T(q), as 

shown in part (a) Otherwise, the set of images is just the single point T(p), because 
   (1 – t)T(p) + tT(q) =(1 – t)T(p) + tT(p) = T(p) 

 28. Consider a point x in the parallelogram determined by u and v, say x = au + bv for 0 < a < 1, 0 < b < 1. 
By linearity of T, the image of x is 

   T(x) = T(au + bv) = aT(u) + bT(v), for 0 < a < 1, 0 < b < 1  (*) 
  This image point lies in the parallelogram determined by T(u) and T(v).  
  Special “degenerate” cases arise when T(u) and T(v) are linearly dependent. If one of the images is not 

zero, then the “parallelogram” is actually the line segment from 0 to T(u) + T(v). If both T(u) and T(v) 
are zero, then the parallelogram is just {0}. Another possibility is that even u and v are linearly 
dependent, in which case the original parallelogram is degenerate (either a line segment or the zero 
vector). In this case, the set of images must be degenerate, too. 

 29. a. When b = 0, f (x) = mx. In this case, for all x,y in R and all scalars c and d, 
   f (cx + dy) = m(cx + dy) = mcx + mdy = c(mx) + d(my) = c·f (x) + d·f (y) 
  This shows that f is linear. 
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b. When f (x) = mx + b, with b nonzero, f(0) = m(0) = b = b ≠ 0. This shows that f is not linear, because 
every linear transformation maps the zero vector in its domain into the zero vector in the codomain. 
(In this case, both zero vectors are just the number 0.) Another argument, for instance, would be to 
calculate f (2x) = m(2x) + b and 2f (x) = 2mx + 2b. If b is nonzero, then f (2x) is not equal to 2f (x) and 
so f is not a linear transformation. 

c. In calculus, f is called a “linear function” because the graph of f is a line. 

 30. Let T(x) = Ax + b for x in Rn. If b is not zero, T(0) = A0 + b = b ≠  0. Actually, T fails both properties  
of a linear transformation. For instance, T(2x) = A(2x) + b = 2Ax + b, which is not the same as 2T(x) = 
2(Ax + b) = 2Ax + 2b. Also,  

   T(x + y) = A(x + y) + b = Ax + Ay + b 
  which is not the same as 
   T(x) + T(y) = Ax + b + Ay + b 

 31. (The Study Guide has a more detailed discussion of the proof.) Suppose that {v1, v2, v3} is linearly 
dependent. Then there exist scalars c1, c2, c3, not all zero, such that 

   c1v1 + c2v2 + c3v3 = 0 
  Then T(c1v1 + c2v2 + c3v3) = T(0) = 0. Since T is linear, 
   c1T(v1) + c2T(v2) + c3T(v3) = 0 
  Since not all the weights are zero, {T(v1), T(v2), T(v3)} is a linearly dependent set. 

 32. Take any vector (x1, x2) with x2 ≠  0, and use a negative scalar. For instance, T(0, 1) = (–2, 3), but 
T(–1·(0, 1)) = T(0, –1) = (2, 3) ≠  (–1)·T(0, 1). 

 33. One possibility is to show that T does not map the zero vector into the zero vector, something that every 
linear transformation does do. T(0, 0) = (0, 4, 0). 

 34. Suppose that {u, v} is a linearly independent set in Rn and yet T(u) and T(v) are linearly dependent. Then 
there exist weights c1, c2, not both zero, such that  

  c1T(u) + c2T(v) = 0  
  Because T is linear, T(c1u + c2v) = 0. That is, the vector x = c1u + c2v satisfies T(x) = 0. Furthermore, 

x cannot be the zero vector, since that would mean that a nontrivial linear combination of u and v is zero, 
which is impossible because u and v are linearly independent. Thus, the equation T(x) = 0 has a 
nontrivial solution. 

 35. Take u and v in R3 and let c and d be scalars. Then 
  cu + dv = (cu1 + dv1, cu2 + dv2, cu3 + dv3). The transformation T is linear because 
  T(cu + dv) = (cu1 + dv1, cu2 + dv2, – (cu3 + dv3)) = (cu1 + dv1, cu2 + dv2,  cu3  dv3) 
   = (cu1, cu2,   cu3) + (dv1, dv2,  dv3) = c(u1, u2,     u3) + d(v1, v2,   v3) 
   = cT(u) + dT(v) 

 36. Take u and v in R3 and let c and d be scalars. Then 
  cu + dv = (cu1 + dv1, cu2 + dv2, cu3 + dv3). The transformation T is linear because 
  T(cu + dv) = (cu1 + dv1, 0, cu3 + dv3) = (cu1, 0, cu3) + (dv1, 0, dv3)  
   = c(u1, 0, u3) + d(v1, 0, v3) 
   = cT(u) + dT(v) 
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 37. [M] 

4 2 5 5 0 1 0 0 7 / 2 0
9 7 8 0 0 0 1 0 9 / 2 0

~ ,
6 4 5 3 0 0 0 1 0 0
5 3 8 4 0 0 0 0 0 0

− − −   
   − − −   
   −
   − −      

  

1 4

2 4

3

4

(7 / 2)
(9 / 2)
0

 is free

x x
x x
x
x

=
 =
 =


    4

7 / 2
9 / 2

0
1

x

 
 
 =
 
 
 

x  

 38. [M] 

9 4 9 4 0 1 0 0 3/ 4 0
5 8 7 6 0 0 1 0 5/ 4 0

~
7 11 16 9 0 0 0 1 7 / 4 0
9 7 4 5 0 0 0 0 0 0

− − −   
   − −   
   − −
   − −      

,  

1 4

2 4

3 4

4

(3/ 4)
(5/ 4)

(7 / 4)
 is free

x x
x x
x x
x

= −
 = −
 =


    4

3/ 4
5/ 4

7 / 4
1

x

− 
 − =
 
 
  

x  

 39. [M] 

4 2 5 5 7 1 0 0 7 / 2 4
9 7 8 0 5 0 1 0 9 / 2 7

~
6 4 5 3 9 0 0 1 0 1
5 3 8 4 7 0 0 0 0 0

− − −   
   − − −   
   −
   − −      

,  yes, b is in the range of the transformation, 

because the augmented matrix shows a consistent system. In fact, 

  the general solution is 

1 4

2 4

3

4

4 (7 / 2)
7 (9 / 2)
1

 is free

x x
x x
x
x

= +
 = +
 =


; when x4 = 0 a solution is 

4
7
1
0

 
 
 =
 
 
  

x . 

 40. [M] 

9 4 9 4 7 1 0 0 3/ 4 5/ 4
5 8 7 6 7 0 1 0 5/ 4 11/ 4

~
7 11 16 9 13 0 0 1 7 / 4 13/ 4
9 7 4 5 5 0 0 0 0 0

− − − − −   
   − − − −   
   − −
   − − −      

,  yes, b is in the range of the 

transformation, because the augmented matrix shows a consistent system. In fact, 

  the general solution is 

1 4

2 4

3 4

4

5 / 4 (3/ 4)
11/ 4 (5/ 4)

13/ 4 (7 / 4)
 is free

x x
x x
x x
x

= − −
 = − −
 = +


; when x4 = 1 a solution is 

2
4
5
1

− 
 − =
 
 
  

x . 

Notes: At the end of Section 1.8, the Study Guide provides a list of equations, figures, examples,  
and connections with concepts that will strengthen a student’s understanding of linear transformations.  
I encourage my students to continue the construction of review sheets similar to those for “span” and “linear 
independence,” but I refrain from collecting these sheets. At some point the students have to assume the 
responsibility for mastering this material. 

If your students are using MATLAB or another matrix program, you might insert the definition of matrix 
multiplication after this section, and then assign a project that uses random matrices to explore properties of 
matrix multiplication. See Exercises 34–36 in Section 2.1. Meanwhile, in class you can continue with your 
plans for finishing Chapter 1. When you get to Section 2.1, you won’t have much to do. The Study Guide’s 
MATLAB note for Section 2.1 contains the matrix notation students will need for a project on matrix 
multiplication. The appendices in the Study Guide have the corresponding material for Mathematica, Maple, 
and the T-83+/86/89 and HP-48G graphic calculators. 
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1.9 SOLUTIONS 

Notes: This section is optional if you plan to treat linear transformations only lightly, but many instructors 
will want to cover at least Theorem 10 and a few geometric examples. Exercises 15 and 16 illustrate a fast 
way to solve Exercises 17–22 without explicitly computing the images of the standard basis. 

The purpose of introducing one-to-one and onto is to prepare for the term isomorphism (in Section 4.4) 
and to acquaint math majors with these terms. Mastery of these concepts would require a substantial 
digression, and some instructors prefer to omit these topics (and Exercises 25–40). In this case, you can use 
the result of Exercise 31 in Section 1.8 to show that the coordinate mapping from a vector space onto Rn (in 
Section 4.4) preserves linear independence and dependence of sets of vectors. (See Example 6 in Section 4.4.) 
The notions of one-to-one and onto appear in the Invertible Matrix Theorem (Section 2.3), but can be omitted 
there if desired 

Exercises 25–28 and 31–36 offer fairly easy writing practice. Exercises 31, 32, and 35 provide important 
links to earlier material. 

 1. A = [T(e1)   T(e2)] = 

3 5
1 2
3 0
1 0

− 
 
 
 
 
  

 

 2. A = [T(e1)   T(e2)   T(e3)] = 
1 4 5
3 7 4

− 
 − 

 

 3. T(e1) = –e2, T(e2) = e1. A = [ ]2 1
0 1
1 0

− =
 
 − 

e e    

 4. T(e1) = 
1/ 2

1/ 2

 
 
−  

, T(e2) = 
1/ 2

1/ 2

 
 
  

, A = 
1/ 2 1/ 2

1/ 2 1/ 2

 
 
−  

 

 5. T(e1) = e1 – 2e2 = 
1
2

 
 − 

, T(e2) = e2, A = 
1 0
2 1

 
 − 

 

 6. T(e1) = e1, T(e2) = e2 + 3e1 = 
3
1
 
 
 

, A = 
1 3
0 1
 
 
 

 

 7. Follow what happens to e1 and e2. Since e1 is on the unit 
circle in the plane, it rotates through –3 /4π  radians into a 
point on the unit circle that lies in the third quadrant and 
on the line 2 1x x=  (that is, y x=  in more familiar notation). 
The point (–1,–1) is on the ine 2 1x x= , but its distance 
from the origin is 2.  So the rotational image of e1 is 
(–1/ 2, –1/ 2) . Then this image reflects in the horizontal 
axis to (–1/ 2,1/ 2) . 

  Similarly, e2 rotates into a point on the unit circle that lies in 
the second quadrant and on the line 2 1x x= , namely, 
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(–1/ 2, –1/ 2) . Then this image reflects in the horizontal 
axis to (–1/ 2,1/ 2) . 

  When the two calculations described above are written in vertical vector notation, the transformation’s 
standard matrix [T(e1)   T(e2)] is easily seen: 

  1 2
1/ 2 1/ 2 1/ 2 1/ 2

,
1/ 2 1/ 2 1/ 2 1/ 2

       − −
→ → → →       

− −              
e e ,  

1/ 2 1/ 2

1/ 2 1/ 2
A

 −
=  
  

 

 8. [ ]1 1 2 2 2 1 2 1
0 1

 and ,  so 
1 0

A
− 

→ → → − → − = − =  
 

e e e e e e e e  

 9. The horizontal shear maps e1 into e1, and then the reflection in the line x2 = –x1 maps e1 into –e2.   
(See Table 1.) The horizontal shear maps e2 into e2 into e2 – 2e1. To find the image of e2 – 2e1 when it is 
reflected in the line x2 = –x1, use the fact that such a reflection is a linear transformation. So, the image of 
e2 – 2e1 is the same linear combination of the images of e2 and e1, namely, –e1 – 2(–e2) = – e1 + 2e2. 
To summarize, 

  1 1 2 2 2 1 1 2
0 1

  and 2 2 ,  so 
1 2

A
− 

→ → − → − → − + =  − 
e e e e e e e e  

  To find the image of e2 – 2e1 when it is reflected through the vertical axis use the fact that such a 
reflection is a linear transformation. So, the image of e2 – 2e1 is the same linear combination of the 
images of e2 and e1, namely, e2 + 2e1. 

10. 1 1 2 2 2 1 ,
0 1

 and   so
1 0

A→ → → →
− 

− − − =  − 
e e e e e e  

11. The transformation T described maps 1 1 1→ → −e e e  and maps 2 2 2.→ − → −e e e  A rotation through 
π radians also maps e1 into –e1 and maps e2 into –e2. Since a linear transformation is completely 
determined by what it does to the columns of the identity matrix, the rotation transformation has the 
same effect as T on every vector in 2.R  

12. The transformation T in Exercise 8 maps 1 1 2→ →e e e  and maps 2 2 1→ − → −e e e . A rotation about the 
origin through / 2π  radians also maps e1 into e2 and maps e2 into –e1. Since a linear transformation is 
completely determined by what it does to the columns of the identity matrix, the rotation transformation 
has the same effect as T on every vector in 2.R  

13. Since (2, 1) = 2e1 + e2, the image of (2, 1) under T is 2T(e1) + T(e2), by linearity of T. On the figure in the 
exercise, locate 2T(e1) and use it with T(e2) to form the parallelogram shown below.  

 
x1

x2

T(e2)
2T(e1)

T(e1)

T(2, 1)
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14. Since T(x) = Ax = [a1   a2]x = x1a1 + x2a2 = –a1 + 3a2, when x = (–1, 3), the image of x is located by 
forming the parallelogram shown below. 

  

x1

x2

T(–1, 3)

a2

a1

–a1

 

15. By inspection, 
1 1 3

2 1

3 1 2 3

3 0 2 3 2
4 0 0 4
1 1 1

x x x
x x
x x x x

− −     
     =     
     − − +     

 

16. By inspection, 
1 2

1
1 2

2
1

1 1
2 1 2
1 0

x x
x

x x
x

x

− −   
    − = − +           

 

17. To express T(x) as Ax , write T(x) and x as column vectors, and then fill in the entries in A by inspection, 
as done in Exercises 15 and 16. Note that since T(x) and x have four entries, A must be a 4×4 matrix. 

  T(x) = 

1 1

1 2 2 2

2 3 3 3

3 4 4 4

0 0 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

x x
x x x x

A
x x x x
x x x x

        
        +        = =
        +
        +                

 

18. As in Exercise 17, write T(x) and x as column vectors. Since x has 2 entries, A has 2 columns. Since T(x) 
has 4 entries, A has 4 rows. 

  

2 1

1 2 1 1

2 2

2

2 3 3 2
4 1 4

0 0 0
0 1

x x
x x x x

A
x x

x

− −     
     − −        = =           
     

         

 

19. Since T(x) has 2 entries, A has 2 rows. Since x has 3 entries, A has 3 columns. 

  
1 1

1 2 3
2 2

2 3
3 3

5 4 1 5 4
6 0 1 6

x x
x x x

A x x
x x

x x

   
− + −        = =        − −           

 

20. Since T(x) has 1 entry, A has 1 row. Since x has 4 entries, A has 4 columns. 

  

1 1

2 2
1 3 4

3 3

4 4

[2 3 4 ] [ ] [2 0 3 4]

x x
x x

x x x A
x x
x x

   
   
   + − = = −
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21. T(x) = 1 2 1 1

1 2 2 2

1 1
4 5 4 5

x x x x
A

x x x x
+        

= =        +         
. To solve T(x) = 

3
8
 
 
 

, row reduce the augmented matrix: 

1 1 3 1 1 3 1 0 7 7
~ ~ ,

4 5 8 0 1 4 0 1 4 4
       

=       − − −       
x . 

22. T(x) = 
1 2

1 1
1 2

2 2
1 2

2 1 2
3 1 3

3 2 3 2

x x
x x

x x A
x x

x x

− −     
        − + = = −                − −     

. To solve T(x) = 
1
4
9

− 
 
 
  

, row reduce the augmented 

matrix:  

  
1 2 1 1 2 1 1 2 1 1 0 5
1 3 4 ~ 0 1 3 ~ 0 1 3 ~ 0 1 3
3 2 9 0 4 12 0 0 0 0 0 0

− − − − − −       
       −       
       −       

,  
5

.
3
 

=  
 

x  

23. a. True. See Theorem 10. 
b. True. See Example 3. 
c. False. See the paragraph before Table 1. 
d. False. See the definition of onto. Any function from Rn to Rm maps each vector onto another vector. 
e. False. See Example 5. 

24.  a. False. See the paragraph preceding Example 2. 
b. True. See Theorem 10. 
c. True. See Table 1. 
d. False. See the definition of one-to-one. Any function from Rn to Rm maps a vector onto a single 

(unique) vector. 
e. True. See the solution of Example 5. 

25. Three row interchanges on the standard matrix A of the transformation T in Exercise 17 produce 
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 0

 
 
 
 
 
  

. This matrix shows that A has only three pivot positions, so the equation Ax = 0 has a 

nontrivial solution. By Theorem 11, the transformation T is not one-to-one. Also, since A does not have a 
pivot in each row, the columns of A do not span R4. By Theorem 12, T does not map R4 onto R4. 

26. The standard matrix A of the transformation T in Exercise 2 is 2×3. Its columns are linearly dependent 
because A has more columns than rows. So T is not one-to-one, by Theorem 12. Also, A is row 

equivalent to 
1 4 5
0 19 19

− 
 − 

, which shows that the rows of A span R2. By Theorem 12, T maps R3 

onto R2. 

27. The standard matrix A of the transformation T in Exercise 19 is 
1 5 4
0 1 6

− 
 − 

. The columns of A are 

linearly dependent because A has more columns than rows. So T is not one-to-one, by Theorem 12. Also, 
A has a pivot in each row, so the rows of A span R2. By Theorem 12, T maps R3 onto R2. 
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28. The standard matrix A of the transformation T in Exercise 14 has linearly independent columns, because 
the figure in that exercise shows that a1 and a2 are not multiples. So T is one-to-one, by Theorem 12. 
Also, A must have a pivot in each column because the equation Ax = 0 has no free variables. Thus, the 

echelon form of A is 
*

0
. 

 
 

 Since A has a pivot in each row, the columns of A span R2. So T maps R2 

onto R2. An alternate argument for the second part is to observe directly from the figure in Exercise 14 
that a1 and a2 span R2. This is more or less evident, based on experience with grids such as those in 
Figure 8 and Exercise 7 of Section 1.3. 

29. By Theorem 12, the columns of the standard matrix A must be linearly independent and hence the 

equation Ax = 0 has no free variables. So each column of A must be a pivot column: 

* *
0 *

~ .
0 0
0 0 0

A

 
 
 
 
 
  

 

Note that T cannot be onto because of the shape of A. 

30. By Theorem 12, the columns of the standard matrix A must span R3. By Theorem 4, the matrix must 

have a pivot in each row. There are four possibilities for the echelon form: 

  
* * * * * * * * * 0 * *

0 * * , 0 * * , 0 0 * , 0 0 *
0 0 * 0 0 0 0 0 0 0 0 0

       
       
       
              

 

  Note that T cannot be one-to-one because of the shape of A. 

31. “T is one-to-one if and only if A has n pivot columns.” By Theorem 12(b), T is one-to-one if and only if 
the columns of A are linearly independent. And from the statement in Exercise 30 in Section 1.7, the 
columns of A are linearly independent if and only if A has n pivot columns. 

32. The transformation T maps Rn onto Rm if and only if the columns of A span Rm, by Theorem 12. This 
happens if and only if A has a pivot position in each row, by Theorem 4 in Section 1.4. Since A has  
m rows, this happens if and only if A has m pivot columns. Thus, “T maps Rn onto Rm if and only A has 
m pivot columns.” 

33. Define : n mT →R R  by T(x) = Bx for some m×n matrix B, and let A be the standard matrix for T.  
By definition, A = [T(e1)   ⋅ ⋅ ⋅   T(en)], where ej is the jth column of In. However, by matrix-vector 
multiplication, T(ej) = Bej = bj, the jth column of B. So A = [b1   ⋅ ⋅ ⋅   bn] = B. 

34. The transformation T maps Rn onto Rm if and only if for each y in Rm there exists an x in Rn such that  
y = T(x). 

35. If : n mT →R R  maps nR  onto mR , then its standard matrix A has a pivot in each row, by Theorem 12 
and by Theorem 4 in Section 1.4. So A must have at least as many columns as rows. That is, m < n. When 
T is one-to-one, A must have a pivot in each column, by Theorem 12, so m > n. 

36. Take u and v in Rp and let c and d be scalars. Then 
  T(S(cu + dv)) = T(c⋅S(u) + d⋅S(v)) because S is linear 
     = c⋅T(S(u)) + d⋅T(S(v)) because T is linear 
  This calculation shows that the mapping x →  T(S(x)) is linear. See equation (4) in Section 1.8. 
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37. [M]  

5 10 5 4 1 0 0 44 / 35 1 0 0 1.2571
8 3 4 7 0 1 0 79 / 35 0 1 0 2.2571

~ ~ ~
4 9 5 3 0 0 1 86 / 35 0 0 1 2.4571
3 2 5 4 0 0 0 0 0 0 0 0

− −     
     −     ⋅ ⋅ ⋅
     − −
     − −          

. There is no pivot in the 

fourth column of the standard matrix A, so the equation Ax = 0 has a nontrivial solution. By Theorem 11, 
the transformation T is not one-to-one. (For a shorter argument, use the result of Exercise 31.) 

38. [M]  

7 5 4 9 1 0 7 0
10 6 16 4 0 1 9 0

~ ~
12 8 12 7 0 0 0 1

8 6 2 5 0 0 0 0

−   
   − −   ⋅ ⋅ ⋅
   
   − − −      

. No. There is no pivot in the third column of the 

standard matrix A, so the equation Ax = 0 has a nontrivial solution. By Theorem 11, the transformation T 
is not one-to-one. (For a shorter argument, use the result of Exercise 31.) 

39. [M]  

4 7 3 7 5 1 0 0 5 0
6 8 5 12 8 0 1 0 1 0

~ ~7 10 8 9 14 0 0 1 2 0
3 5 4 2 6 0 0 0 0 1
5 6 6 7 3 0 0 0 0 0

−   
   − −   
   ⋅ ⋅ ⋅− − − −
   − −   
   − − −   

. There is not a pivot in every row, so 

the columns of the standard matrix do not span R5. By Theorem 12, the transformation T does not map 
R5 onto R5. 

40. [M]  

9 13 5 6 1 1 0 0 0 5
14 15 7 6 4 0 1 0 0 4

~ ~8 9 12 5 9 0 0 1 0 0
5 6 8 9 8 0 0 0 1 1

13 14 15 2 11 0 0 0 0 0

−   
   − − −   
   ⋅ ⋅ ⋅− − − −
   − − −   
      

. There is not a pivot in every row, so 

the columns of the standard matrix do not span R5. By Theorem 12, the transformation T does not map 
R5 onto R5. 

1.10 SOLUTIONS 

 1. a. If x1 is the number of servings of Cheerios and x2 is the number of servings of 100% Natural Cereal, 
then x1 and x2 should satisfy  

  1 2

nutrients nutrients quantities
per serving per serving of of  nutrients
of Cheerios 100% Natural required

x x
     

+ =     
          

 

  That is, 

  1 2

110 130 295
4 3 9

20 18 48
2 5 8

x x

     
     
     + =
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b. The equivalent matrix equation is 1

2

110 130 295
4 3 9

20 18 48
2 5 8

x
x

   
       =     
   
      

. To solve this, row reduce the augmented 

matrix for this equation. 

  

110 130 295 2 5 8 1 2.5 4
4 3 9 4 3 9 4 3 9

~ ~
20 18 48 20 18 48 10 9 24

2 5 8 110 130 295 110 130 295

     
     
     
     
     
          

 

  

1 2.5 4 1 2.5 4 1 0 1.5
0 7 7 0 1 1 0 1 1

~ ~ ~
0 16 16 0 0 0 0 0 0
0 145 145 0 0 0 0 0 0

     
     − −     
     − −
     − −          

 

  The desired nutrients are provided by 1.5 servings of Cheerios together with 1 serving of 100% 
Natural Cereal. 

 2. Set up nutrient vectors for one serving of Kellogg’s Cracklin’ Oat Bran (COB) and Kellogg's Crispix 
(Crp): 

  

Nutrients: COB Crp

calories 110 110
protein 3 2
carbohydrate 21 25
fat 3 .4

   
   
   
   
   
   

.  

a. Let [ ]

110 110
3 2 3

COB    Crp ,
21 25 2
3 .4

B

 
    = = =     
 
  

u . 

  Then Bu lists the amounts of calories, protein, carbohydrate, and fat in a mixture of three servings of 
Cracklin' Oat Bran and two servings of Crispix. 

b. Let u1 and u2 be the number of servings of Cracklin’ Oat Bran and Crispix, respectively. Can these 

numbers satisfy the equation 1

2

110
2.25
24
1

B
u
u

 
    =    
 
  

? To find out, row reduce the augmented matrix 

  

110 110 110 1 1 1 1 1 1 1 1 1
3 2 2.25 3 2 2.25 0 1 .75 0 1 .75

~ ~ ~
21 25 24 21 25 24 0 4 3 0 0 0
3 .4 1 3 .4 1 0 2.6 2 0 0 .05

       
       − − − −       
       
       − − −              
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  The last row identifies an inconsistent system, because 0 = –.05 is impossible. So, technically, there is 
no mixture of the two cereals that will supply exactly the desired list of nutrients. However, one could 
tentatively ignore the final equation and see what the other equations prescribe. They reduce 
to u1 = .25 and u2 = .75. What does the corresponding mixture provide? 

  COB  +  Crp  =

110 110 110
3 2 2.25

.25 .75  .25 .75
21 25 24
3 .4 1.05

     
     
     ⋅ ⋅ + =
     
     
          

 

  The error of 5% for fat might be acceptable for practical purposes. Actually, the data in COB and Crp 
are certainly not precise and may have some errors even greater than 5%. 

 3. Here are the data, assembled from Table 1 and Exercise 3: 

   

Mg of Nutrients/Unit Nutrients
Requiredsoy soyNutrient (milligrams)milk flour whey prot.

protein 36 51 13 80 33
carboh. 52 34 74 0 45
fat 0 7 1.1 3.4 3
calcium 1.26 .19 .8 .18 .8

 

a. Let x1, x2, x3, x4 represent the number of units of nonfat milk, soy flour, whey, and isolated soy 
protein, respectively. These amounts must satisfy the following matrix equation 

  

1

2

3

4

36 51 13 80 33
52 34 74 0 45
0 7 1.1 3.4 3

1.26 .19 .8 .18 .8

x
x
x
x

    
    
    =
    
    

        

 

b. [M]  

36 51 13 80 33 0 0 0 .641
52 34 74 0 45 0 0 0 .541~ ~
0 7 1.1 3.4 3 0 0 0 .091

1.26 .19 .8 .18 .8 0 0 0 .211

   
   
   ⋅ ⋅ ⋅
   −
   
   −   

 

  The “solution” is x1 = .64, x2 = .54, x3 = –.09, x4 = –.21. This solution is not feasible, because the 
mixture cannot include negative amounts of whey and isolated soy protein. Although the coefficients 
of these two ingredients are fairly small, they cannot be ignored. The mixture of .64 units of nonfat 
milk and .54 units of soy flour provide 50.6 g of protein, 51.6 g of carbohydrate, 3.8 g of fat, and .9 g 
of calcium. Some of these nutrients are nowhere close to the desired amounts. 

 4. Let x1, x2, and x3 be the number of units of foods 1, 2, and 3, respectively, needed for a meal. The values 
of x1, x2, and x3 should satisfy 

   1 2 3

nutrients nutrients nutrients milligrams(in mg) (in mg) (in mg) of  nutrientsper unit per unit per unit requiredof Food 1 of Food 2 of Food 3
x x x
            + + =                    
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  From the given data, 

   1 2 3

10 20 20 100

50 40 10 300

30 10 40 200

x x x
       
       + + =       
              

 

  To solve, row reduce the corresponding augmented matrix: 

   
10 20 20 100 10 20 20 100 1 2 2 10
50 40 10 300 ~ 0 60 90 200 ~ 0 1 3/ 2 10 / 3
30 10 40 200 0 50 20 100 0 5 2 10

     
     − − −     
     − − −     

 

   
1 2 2 10 1 2 0 250 / 33 1 0 0 50 /11

~ 0 1 3/ 2 10 / 3 ~ 0 1 0 50 / 33 ~ 0 1 0 50 / 33
0 0 1 40 / 33 0 0 1 40 / 33 0 0 1 40 /33

     
     
     
          

 

   
50 /11 4.55 units of Food 1
50 / 33 1.52 units of Food 2
40 / 33 1.21 units of Food 3

     
     = = =     
          

x  

 5. Loop 1: The resistance vector is 

  

1

2 2
1

3

4

Total of four RI voltage drops for current 5
Voltage drop for  is negative;  flows in opposite direction2
Current  does not flow in loop 10
Current  does not flow in loop 10

I
I I

I
I

 
 
− =
 
 
 

r  

  Loop 2: The resistance vector is  

  
1 1

2
2

3 3

2 Voltage drop for  is negative;  flows in opposite direction
11 Total of four RI voltage drops for current 

Voltage drop for  is negative;  flows in opposite direction3
Current0

I I
I

I I

 −
 
 =
 −
 
 

r

4
  does not flow in loop 2I

 

  Also, r3 = 

0
3

17
4

 
 − 
 
 −  

, r4 = 

0
0
4

25

 
 
 
 −
 
  

, and R = [r1   r2   r3   r4] = 

5 0 02
3 02 11

0 3 17 4
0 0 254

 −
 

−− 
 − −
 
 − 

. 

  Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current 
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the 
currents in other loops adjacent to loop j to flow in the direction opposite to current Ij.) 

  Next, set v = 

40
30
20
10

 
 
− 
 
 
 − 

. The voltages in loops 2 and 4 are negative because the battery orientation in each 

loop is opposite to the direction chosen for positive current flow. Thus, the equation Ri = v becomes 
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1

2

3

4

5 0 0 402
3 0 302 11

0 3 17 204
0 0 25 104

I
I
I
I

    −
    

− −−     =
    − −
    

     −−    

.    [M]: The solution is i = 

1

2

3

4

7.56
1.10

.93

.25

I
I
I
I

   
   

−   =
   
   

   −  

. 

 6. Loop 1: The resistance vector is 

  
1

2 2
1

3

4

4 Total of four RI voltage drops for current 
1 Voltage drop for  is negative;  flows in opposite direction
0 Current  does not flow in loop 1
0 Current  does not flow in loop 1

I
I I

I
I

 
 
− =
 
 
 

r  

  Loop 2: The resistance vector is  

  
1 1

2
2

3 3

1 Voltage drop for  is negative;  flows in opposite direction
6 Total of four RI voltage drops for current 
2 Voltage drop for  is negative;  flows in opposite direction

Current 0

I I
I

I I

 −
 
 =
 −
 
 

r

4
 does not flow in loop 2I

 

  Also, r3 =

0
2

10
3

 
 − 
 
 −  

, r4 =

0
0
3

12

 
 
 
 −
 
  

, and R = [r1   r2   r3   r4]. Set v = 

40
30
20
10

 
 
 
 
 
  

. Then Ri = v becomes 

  

1

2

3

4

4 1 0 0 40
1 6 2 0 30
0 2 10 3 20
0 0 3 12 10

I
I
I
I

−     
    − −     =
    − −
    −        

.  [M]: The solution is i =

1

2

3

4

12.11
8.44
4.26
1.90

I
I
I
I

   
   
   =
   
   

     

. 

 7. Loop 1: The resistance vector is 

  
1

2 2
1

3

44

12 Total of three RI voltage drops for current 
7 Voltage drop for  is negative;  flows in opposite direction
0 Current  does not flow in loop 1

Voltage drop for  is negative; 4

I
I I

I
I I

 
 
− =
 
 
− 

r

flows in opposite direction

 

  Loop 2: The resistance vector is  

  

11

2
2

3 3

Voltage drop for  is negative;  flows in opposite direction7
15 Total of three RI voltage drops for current 
6 Voltage drop for  is negative;  flows in opposite direction
0 Curren

I I
I

I I

 −
 
 =
 −
 
 

r

4
t  does not flow in loop 2I
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  Also, r3 = 

0
6

14
5

 
 − 
 
 −  

, r4 = 

4
0
5

13

− 
 
 
 −
 
  

, and R = [r1   r2   r3   r4] = 

12 7 0 4
7 15 6 0
0 6 14 5
4 0 5 13

− − 
 − − 
 − −
 − −  

. 

  Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current 
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the 
currents in other loops adjacent to loop j to flow in the direction opposite to current Ij.) 

  Next, set v 

40
30
20
10

 
 
 =
 
 −  

. Note the negative voltage in loop 4. The current direction chosen in loop 4 is 

opposed by the orientation of the voltage source in that loop. Thus Ri = v becomes 

  

1

2

3

4

12 7 0 4 40
7 15 6 0 30
0 6 14 5 20
4 0 5 13 10

I
I
I
I

− −     
    − −     =
    − −
    − − −        

. [M]: The solution is i =

1

2

3

4

11.43
10.55
8.04
5.84

I
I
I
I

   
   
   =
   
   

     

. 

 8. Loop 1: The resistance vector is 

  

1

2 2

1 3

4

Total of four RI voltage drops for current 15
5 Voltage drop for  is negative;  flows in opposite direction
0 Current  does not flow in loop 1
5 Voltage drop for  is negativ
1

I
I I

I
I

 
 
− 
 =
 
− 
 − 

r

4

5 5

e;  flows in opposite direction
Voltage drop for  is negative;  flows in opposite direction

I
I I

 

  Loop 2: The resistance vector is  

  

1 1

2

2
3 3

5 Voltage drop for  is negative; flows in opposite direction
15 Total of four RI voltage drops for current 

5 Voltage drop for  is negative;  flows in opposite direction
0 Cu
2

I I
I

I I

 −
 
 
 = −
 
 
 − 

r

4

5 5

rrent  does not flow in loop 2
Voltage drop for  is negative;  flows in opposite direction

I
I I

 

  Also, r3 = 

0
5

15
5
3

 
 − 
 
 − 
 − 

, r4 = 

5
0
5

15
4

− 
 
 
 −
 
 
 − 

, r5 = 

1
2
3
4

10

− 
 − 
 −
 − 
  

, and R = 

15 5 0 5 1
5 15 5 0 2
0 5 15 5 3
5 0 5 15 4
1 2 3 4 10

− − − 
 − − − 
 − − −
 − − − 
 − − − − 

. Set v = 

40
30
20
10

0

 
 − 
 
 − 
  

. Note the 

negative voltages for loops where the chosen current direction is opposed by the orientation of the 
voltage source in that loop. Thus Ri = v becomes: 
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1

2

3

4

5

15 5 0 5 1 40
5 15 5 0 2 30
0 5 15 5 3 20
5 0 5 15 4 10
1 2 3 4 10 0

I
I
I
I
I

− − −     
    − − − −    
    =− − −
    − − − −    
    − − − −    

.   [M]  The solution is 

1

2

3

4

5

3.37
.11

2.27
1.67
1.70

I
I
I
I
I

   
   
   
   =
   
   
     

. 

 9. The population movement problems in this section assume that the total population is constant, with no 
migration or immigration. The statement that “about 5% of the city’s population moves to the suburbs” 
means also that the rest of the city’s population (95%) remain in the city. This determines the entries in 
the first column of the migration matrix (which concerns movement from the city). 

   
From:

City Suburbs To:
.95 City
.05 Suburbs
 
 
 

 

  Likewise, if 4% of the suburban population moves to the city, then the other 96% remain in the suburbs. 

This determines the second column of the migration matrix:, M = 
.95 .04
.05 .96
 
 
 

. The difference equation is 

xk+1 = Mxk  for k = 0, 1, 2, …. Also, x0 = 
600,000
400,000
 
 
 

 

  The population in 2001 (when k = 1) is x1 = Mx0 = 
.95 .04 600,000 586,000
.05 .96 400,000 414,000
     

=     
     

 

  The population in 2002 (when k = 2) is x2 = Mx1 = 
.95 .04 586,000 573,260
.05 .96 414,000 426,740
     

=     
     

 

 10. The data in the first sentence implies that the migration matrix has the form: 

   
From:

City Suburbs To:
.03 City

.07 Suburbs
 
 
 

 

  The remaining entries are determined by the fact that the numbers in each column must sum to 1. (For 
instance, if 7% of the city people move to the suburbs, then the rest, or 93%, remain in the city.) So the 

migration matrix is M = 
.93 .03
.07 .97
 
 
 

. The initial population is x0 = 
800,000
500,000
 
 
 

. 

  The population in 2001 (when k = 1) is x1 = Mx0 = 
.93 .03 800,000 759,000
.07 .97 500,000 541,000
     

=     
     

 

  The population in 2002 (when k = 2) is x2 = Mx1 = 
.93 .03 759,000 722,100
.07 .97 541,000 577,900
     

=     
     

 

 11. The problem concerns two groups of people–those living in California and those living outside California 
(and in the United States). It is reasonable, but not essential, to consider the people living inside 
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California first. That is, the first entry in a column or row of a vector will concern the people living in 
California. With this choice, the migration matrix has the form: 

   
From:

Calif. Outside To:
Calif.
Outside

 
 
 

 

a. For the first column of the migration matrix M, compute 

  
{ }

{ }

Calif. persons
who moved 509,500 .017146

Total Calif. pop. 29,726,000
= =  

  The other entry in the first column is 1 – .017146 = .982854. The exercise requests that 5 decimal 
places be used. So this number should be rounded to .98285. Whatever number of decimal places 
is used, it is important that the two entries sum to 1. So, for the first fraction, use .01715. 

  For the second column of M, compute 
{ }

{ }

outside persons
who moved 564,100 .00258

Total outside pop. 218,994,000
= = . The other entry 

is 1 – .00258 = .99742. Thus, the migration matrix is 

  
From:

Calif. Outside To:
.98285 .00258 Calif.
.01715 .99742 Outside
 
 
 

 

b. [M] The initial vector is x0 = (29.716, 218.994), with data in millions of persons. Since x0 describes 
the population in 1990, and x1 describes the population in 1991, the vector x10 describes the projected 
population for the year 2000, assuming that the migration rates remain constant and there are no 
deaths, births, or migration. Here are some of the vectors in the calculation, with only the first 4 or 5 
figures displayed. Numbers are in millions of persons: 

  
29.7 29.8 29.8 30.1 30.18 30.223

, , , , , ,
219.0 218.9 218.9 218.6 218.53 218.487
           

⋅ ⋅ ⋅           
           

= x10. 

 12. Set M = 0

.97 .05 .10 305

.00 .90 .05   and  48

.03 .05 .85 98

   
   =   
      

x . Then x1 = 
.97 .05 .10 305 308
.00 .90 .05 48 48
.03 .05 .85 98 95

     
     ≈     
          

, and 

x2 = 
.97 .05 .10 308 311
.00 .90 .05 48 48
.03 .05 .85 95 92

     
     ≈     
          

. The entries in x2 give the approximate distribution of cars on 

Wednesday, two days after Monday. 

 13. [M] The order of entries in a column of a migration matrix must match the order of the columns. For 
instance, if the first column concerns the population in the city, then the first entry in each column must 
be the fraction of the population that moves to (or remains in) the city. In this case, the data in the 

exercise leads to M = 
.95 .03
.05 .97
 
 
 

 and x0 = 
600,000
400,000
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a. Some of the population vectors are 

  5 10 15 20
523,293 472,737 439,417 417,456

, , ,
476,707 527,263 560,583 582,544
       

= = = =       
       

x x x x  

  The data here shows that the city population is declining and the suburban population is increasing, 
but the changes in population each year seem to grow smaller. 

b. When x0 = 
350,000
650,000
 
 
 

, the situation is different. Now 

  5 10 15 20
358,523 364,140 367,843 370,283

, , ,
641,477 635,860 632,157 629,717
       

= = = =       
       

x x x x  

  The city population is increasing slowly and the suburban population is decreasing. No other 
conclusions are expected. (This example will be analyzed in greater detail later in the text.)  

 14. Here are Figs. (a) and (b) for Exercise 13, followed by the figure for Exercise 34 in Section 1.1: 

   

10˚

10˚

40˚

40˚

20˚ 20˚

30˚ 30˚

1 2

4 3

0˚

0˚

0˚

0˚

20˚ 20˚

20˚ 20˚

1 2

4 3

10˚

10˚

40˚

40˚

0˚ 0˚

10˚ 10˚

1 2

4 3

(b) Section 1.1(a)  

  For Fig. (a), the equations are: 

   

1 2 4

2 1 3

3 4 2

4 1 3

4 0 20
4 20 0
4 0 20
4 0 20

T T T
T T T
T T T
T T T

= + + +
= + + +
= + + +
= + + +

 

  To solve the system, rearrange the equations and row reduce the augmented matrix. Interchanging rows 1 
and 4 speeds up the calculations. The first five steps are shown in detail. 

  

4 1 0 1 20 1 0 1 4 20 1 0 1 4 20 1 0 1 4 20

1 4 1 0 20 1 4 1 0 20 0 4 0 4 0 0 1 0 1 0
~ ~ ~

0 1 4 1 20 0 1 4 1 20 0 1 4 1 20 0 1 4 1 20

1 0 1 4 20 4 1 0 1 20 0 1 4 15 100 0 1 4 15 100

− − − − − − − −

− − − − − −

− − − − − − − −

− − − − − − − −

       
       
       
       
              

 

  

1 0 1 4 20 1 0 1 4 20 1 0 0 0 10

0 1 0 1 0 0 1 0 1 0 0 1 0 0 10
~ ~ ~

0 0 4 2 20 0 0 4 2 20 0 0 1 0 10

0 0 4 14 100 0 0 0 12 120 0 0 0 1 10

~

− − − −

− −
⋅ ⋅ ⋅

− −

−
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  For Fig (b), the equations are 

  

1 2 4

2 1 3

3 4 2

4 1 3

4 10 0
4 0 40
4 40 10
4 10 10

T T T
T T T
T T T
T T T

= + + +
= + + +
= + + +
= + + +

 

  Rearrange the equations and row reduce the augmented matrix: 

  

4 1 0 1 10 1 0 0 0 10

1 4 1 0 40 0 1 0 0 17.5

0 1 4 1 50 0 0 1 0 20

1 0 1 4 20 0 0 0 1 12.5

~ ~

− −

− −

− −

− −

   
   
   ⋅ ⋅ ⋅
   
   
   

 

a. Here are the solution temperatures for the three problems studied: 
   Fig. (a) in Exercise 14 of Section 1.10: (10,  10,  10,  10) 
   Fig. (b) in Exercise 14 of Section 1.10: (10, 17.5, 20, 12.5) 
   Figure for Exercises 34 in Section 1.1 (20, 27.5, 30, 22.5) 
  When the solutions are arranged this way, it is evident that the third solution is the sum of the first 

two solutions. What might not be so evident is that list of boundary temperatures of the third problem 
is the sum of the lists of boundary temperatures of the first two problems. (The temperatures are listed 
clockwise, starting at the left of T1.) 

   Fig. (a):   (  0, 20, 20,   0,   0, 20, 20,   0) 
   Fig. (b):  (10,   0,   0, 40, 40, 10, 10, 10) 
   Fig. from Section 1.1: (10, 20, 20, 40, 40, 30, 30, 10) 
b. When the boundary temperatures in Fig. (a) are multiplied by 3, the new interior temperatures are 

also multiplied by 3. 
c. The correspondence from the list of eight boundary temperatures to the list of four interior temper-

atures is a linear transformation. A verification of this statement is not expected. However, it can be 
shown that the solutions of the steady-state temperature problem here satisfy a superposition 
principle. The system of equations that approximate the interior temperatures can be written in the 
form Ax = b, where A is determined by the arrangement of the four interior points on the plate and b 
is a vector in R4 determined by the boundary temperatures.  

Note: The MATLAB box in the Study Guide for Section 1.10 discusses scientific notation and shows how 
to generate a matrix whose columns list the vectors x0, x1, x2, …, determined by an equation xk+1 = Mxk for 
k = 0 , 1, ….   

Chapter 1 SUPPLEMENTARY EXERCISES 

 1. a. False. (The word “reduced” is missing.) Counterexample: 

  
1 2 1 2 1 2

, ,
3 4 0 2 0 1

A B C
     

= = =     −     
 

  The matrix A is row equivalent to matrices B and C, both in echelon form. 
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b. False. Counterexample: Let A be any n×n matrix with fewer than n pivot columns. Then the equation 
Ax = 0 has infinitely many solutions. (Theorem 2 in Section 1.2 says that a system has either zero, 
one, or infinitely many solutions, but it does not say that a system with infinitely many solutions 
exists. Some counterexample is needed.) 

c. True. If a linear system has more than one solution, it is a consistent system and has a free variable. 
By the Existence and Uniqueness Theorem in Section 1.2, the system has infinitely many solutions. 

d. False. Counterexample: The following system has no free variables and no solution: 

  
1 2

2

1 2

1
5
2

x x
x

x x

+ =
=

+ =
 

e. True. See the box after the definition of elementary row operations, in Section 1.1. If [A   b] is 
transformed into [C   d] by elementary row operations, then the two augmented matrices are row 
equivalent. 

f. True. Theorem 6 in Section 1.5 essentially says that when Ax = b is consistent, the solution sets of the 
nonhomogeneous equation and the homogeneous equation are translates of each other. In this case, 
the two equations have the same number of solutions. 

g. False. For the columns of A to span Rm, the equation Ax = b must be consistent for all b in Rm, not for 
just one vector b in Rm. 

h. False. Any matrix can be transformed by elementary row operations into reduced echelon form, but 
not every matrix equation Ax = b is consistent. 

i. True. If A is row equivalent to B, then A can be transformed by elementary row operations first into B 
and then further transformed into the reduced echelon form U of B. Since the reduced echelon form of 
A is unique, it must be U. 

j. False. Every equation Ax = 0 has the trivial solution whether or not some variables are free. 
k. True, by Theorem 4 in Section 1.4. If the equation Ax = b is consistent for every b in Rm, then A must 

have a position in every one of its m rows. If A has m pivot positions, then A has m pivot columns, 
each containing one pivot position. 

l. False. The word “unique” should be deleted. Let A be any matrix with m pivot columns but more than 
m columns altogether. Then the equation Ax = b is consistent and has m basic variables and at least 
one free variable. Thus the equation does not does not have a unique solution. 

m. True. If A has n pivot positions, it has a pivot in each of its n columns and in each of its n rows. The 
reduced echelon form has a 1 in each pivot position, so the reduced echelon form is the n×n identity 
matrix.  

n. True. Both matrices A and B can be row reduced to the 3×3 identity matrix, as discussed in the 
previous question. Since the row operations that transform B into I3 are reversible, A can be 
transformed first into I3 and then into B. 

o. True. The reason is essentially the same as that given for question f. 
p. True. If the columns of A span Rm, then the reduced echelon form of A is a matrix U with a pivot in 

each row, by Theorem 4 in Section 1.4. Since B is row equivalent to A, B can be transformed by row 
operations first into A and then further transformed into U. Since U has a pivot in each row, so does 
B. By Theorem 4, the columns of B span Rm. 

q. False. See Example 5 in Section 1.6. 
r. True. Any set of three vectors in R2 would have to be linearly dependent, by Theorem 8 in 

Section 1.6. 
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s. False. If a set {v1, v2, v3, v4} were to span R5, then the matrix A = [v1   v2   v3   v4] would have 
a pivot position in each of its five rows, which is impossible since A has only four columns. 

t. True. The vector –u is a linear combination of u and v, namely, –u = (–1)u + 0v. 
u. False. If u and v are multiples, then Span{u, v} is a line, and w need not be on that line. 
v. False. Let u and v be any linearly independent pair of vectors and let w = 2v. Then w = 0u + 2v, so w 

is a linear combination of u and v. However, u cannot be a linear combination of v and w because if it 
were, u would be a multiple of v. That is not possible since {u, v} is linearly independent. 

w. False. The statement would be true if the condition v1 is not zero were present. See Theorem 7 in 
Section 1.7. However, if v1 = 0, then {v1, v2, v3} is linearly dependent, no matter what else might be 
true about v2 and v3. 

x. True. “Function” is another word used for “transformation” (as mentioned in the definition of 
“transformation” in Section 1.8), and a linear transformation is a special type of transformation. 

y. True. For the transformation x  Ax to map R5 onto R6, the matrix A would have to have a pivot in 
every row and hence have six pivot columns. This is impossible because A has only five columns. 

z. False. For the transformation x  Ax to be one-to-one, A must have a pivot in each column. Since 
A has n columns and m pivots, m might be less than n.  

 2. If a ≠ 0, then x = b/a; the solution is unique. If a = 0, and b ≠ 0, the solution set is empty, because  
0x = 0 ≠ b. If a = 0 and b = 0, the equation 0x = 0 has infinitely many solutions. 

 3. a. Any consistent linear system whose echelon form is 

   
* * * * * * 0 * *

0 * *  or 0 0 *  or 0 0 *
0 0 0 0 0 0 0 0 0 0 0 0

     
     
     
          

 

b. Any consistent linear system whose coefficient matrix has reduced echelon form I3. 
c. Any inconsistent linear system of three equations in three variables. 

 4. Since there are three pivots (one in each row), the augmented matrix must reduce to the form 

  
* * *

0 * *
0 0 *

 
 
 
  

. A solution of Ax = b exists for all b because there is a pivot in each row of A. Each 

solution is unique because there are no free variables. 

 5. a. 
1 3 1 3

~
4 8 0 12 8 4

k k
h h k

   
   − −   

. If h = 12 and k ≠ 2, the second row of the augmented matrix 

indicates an inconsistent system of the form 0x2 = b, with b nonzero. If h = 12, and k = 2, there is only 
one nonzero equation, and the system has infinitely many solutions. Finally, if h ≠ 12, the coefficient 
matrix has two pivots and the system has a unique solution. 

b. 
2 1 2 1

~
6 2 0 3 1

h h
k k h

− −   
   − +   

. If k + 3h = 0, the system is inconsistent. Otherwise, the 

coefficient matrix has two pivots and the system has a unique solution. 
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 6. a. Set 1 2 3
4 2 7

, ,
8 3 10

−     
= = =     −     

v v v , and 
5
3

− 
=  − 

b . “Determine if b is a linear combination of v1, v2, 

v3.” Or, “Determine if b is in Span{v1, v2, v3}.” To do this, compute 
4 2 7 5 4 2 7 5

~
8 3 10 3 0 1 4 7

− − − −   
   − − −   

. The system is consistent, so b is in Span{v1, v2, v3}. 

b. Set A = 
4 2 7 5

,
8 3 10 3

− −   
=   − −   

b . “Determine if b is a linear combination of the columns of A.” 

c. Define T(x) = Ax. “Determine if b is in the range of T.”  

 7. a. Set 1 2 3

2 4 2
5 , 1 , 1
7 5 3

− −     
     = − = =     
     − −     

v v v  and 
1

2

3

b
b
b

 
 =  
  

b . “Determine if v1, v2, v3 span R3.” To do this, row 

reduce [v1   v2   v3]: 

  
2 4 2 2 4 2 2 4 2
5 1 1 ~ 0 9 4 ~ 0 9 4
7 5 3 0 9 4 0 0 0

− − − − − −     
     − − − − −     
     − −     

. The matrix does not have a pivot in each row, so 

its columns do not span R3, by Theorem 4 in Section 1.4. 

b. Set A = 
2 4 2
5 1 1
7 5 3

− − 
 − 
 − − 

. “Determine if the columns of A span R3.” 

c. Define T(x) = Ax. “Determine if T maps R3 onto R3.” 

 8. a. 
* * * * 0 *

, ,
0 * 0 0 0 0
     
     
     

 b. 
* *

0 *
0 0

 
 
 
  

 

 9. The first line is the line spanned by 
1
2
 
 
 

. The second line is spanned by 
2
1
 
 
 

. So the problem is to write 

5
6
 
 
 

 as the sum of a multiple of 
1
2
 
 
 

 and a multiple of 
2
1
 
 
 

. That is, find x1 and x2 such that 

1 2
2 1 5
1 2 6

x x
     

+ =     
     

. Reduce the augmented matrix for this equation: 

  
2 1 5 1 2 6 1 2 6 1 2 6 1 0 4 / 3

~ ~ ~ ~
1 2 6 2 1 5 0 3 7 0 1 7 / 3 0 1 7 / 3
         
         − −         

 

  Thus, 4 7
3 3

5 2 1
6 1 2
     

= +     
     

  or  
5 8/ 3 7 / 3
6 4 / 3 14 / 3
     

= +     
     

. 

 10. The line through a1 and the origin and the line through a2 and the origin determine a “grid” on the  
x1x2-plane as shown below. Every point in R2 can be described uniquely in terms of this grid. Thus, b can 



80 CHAPTER 1 • Linear Equations in Linear Algebra 

 

be reached from the origin by traveling a certain number of units in the a1-direction and a certain number 
of units in the a2-direction. 

    

x1

x2

a2

a1

b

 

 11. A solution set is a line when the system has one free variable. If the coefficient matrix is 2×3, then two of 

the columns should be pivot columns. For instance, take 
1 2 *
0 3 *
 
 
 

. Put anything in column 3. The 

resulting matrix will be in echelon form. Make one row replacement operation on the second row to 

create a matrix not in echelon form, such as 
1 2 1 1 2 1

~
0 3 1 1 5 2
   
   
   

 

 12. A solution set is a plane where there are two free variables. If the coefficient matrix is 2×3, then only one 
column can be a pivot column. The echelon form will have all zeros in the second row. Use a row 

replacement to create a matrix not in echelon form. For instance, let A =
1 2 3
1 2 3
 
 
 

. 

 13. The reduced echelon form of A looks like 
1 0 *
0 1 *
0 0 0

E
 
 =  
  

. Since E is row equivalent to A, the equation 

Ex = 0 has the same solutions as Ax = 0. Thus 
1 0 * 3 0
0 1 * 2 0
0 0 0 1 0

     
     − =     
          

.  

  By inspection, 
1 0 3
0 1 2
0 0 0

E
− 

 =  
  

. 

 14. Row reduce the augmented matrix for 1 2
1 0

2 0
a

x x
a a
     

+ =     +     
 (*). 

   2

1 01 0 1 0
~

2 0 0 (2 )(1 ) 00 2 0

aa a
a a a aa a

    
=    + − ++ −    

 

  The equation (*) has a nontrivial solution only when (2 – a)(1 + a) = 0. So the vectors are linearly 
independent for all a except a = 2 and a = –1. 

 15. a. If the three vectors are linearly independent, then a, c, and f must all be nonzero. (The converse is 
true, too.) Let A be the matrix whose columns are the three linearly independent vectors. Then 
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A must have three pivot columns. (See Exercise 30 in Section 1.7, or realize that the equation Ax = 0 
has only the trivial solution and so there can be no free variables in the system of equations.) Since 
A is 3×3, the pivot positions are exactly where a, c, and f are located. 

b. The numbers a, …, f can have any values. Here's why. Denote the columns by v1, v2, and v3. Observe 
that v1 is not the zero vector. Next, v2 is not a multiple of v1 because the third entry of v2 is nonzero. 
Finally, v3 is not a linear combination of v1 and v2 because the fourth entry of v3 is nonzero. By 
Theorem 7 in Section 1.7, {v1, v2, v3} is linearly independent. 

 16. Denote the columns from right to left by v1, …, v4. The “first” vector v1 is nonzero, v2 is not a multiple of 
v1 (because the third entry of v2 is nonzero), and v3 is not a linear combination of v1 and v2 (because the 
second entry of v3 is nonzero). Finally, by looking at first entries in the vectors, v4 cannot be a linear 
combination of v1, v2, and v3. By Theorem 7 in Section 1.7, the columns are linearly independent. 

 17. Here are two arguments. The first is a “direct” proof. The second is called a “proof by contradiction.” 
i. Since {v1, v2, v3} is a linearly independent set, v1 ≠ 0. Also, Theorem 7 shows that v2 cannot be a 

multiple of v1, and v3 cannot be a linear combination of v1 and v2. By hypothesis, v4 is not a linear 
combination of v1, v2, and v3. Thus, by Theorem 7, {v1, v2, v3, v4} cannot be a linearly dependent set 
and so must be linearly independent. 

ii. Suppose that {v1, v2, v3, v4} is linearly dependent. Then by Theorem 7, one of the vectors in the set is 
a linear combination of the preceding vectors. This vector cannot be v4 because v4 is not in Span{v1, 
v2, v3}. Also, none of the vectors in {v1, v2, v3} is a linear combinations of the preceding vectors, by 
Theorem 7. So the linear dependence of {v1, v2, v3, v4} is impossible. Thus {v1, v2, v3, v4} is linearly 
independent. 

 18. Suppose that c1 and c2 are constants such that  
   c1v1 + c2(v1 + v2) = 0      (*) 
  Then (c1 + c2)v1 + c2v2 = 0. Since v1 and v2 are linearly independent, both c1 + c2 = 0 and c2 = 0. It 

follows that both c1 and c2 in (*) must be zero, which shows that {v1, v1 + v2} is linearly independent. 

 19. Let M be the line through the origin that is parallel to the line through v1, v2, and v3. Then v2 – v1 and  
v3 – v1 are both on M. So one of these two vectors is a multiple of the other, say v2 – v1 = k(v3 – v1). This 
equation produces a linear dependence relation (k – 1)v1 + v2 – kv3 = 0. 

  A second solution: A parametric equation of the line is x = v1 + t(v2 – v1). Since v3 is on the line, there is 
some t0 such that v3 = v1 + t0(v2 – v1) = (1 – t0)v1 + t0v2. So v3 is a linear combination of v1 and v2, and 
{v1, v2, v3} is linearly dependent. 

 20. If T(u) = v, then since T is linear, 
   T(–u) = T((–1)u) = (–1)T(u) = –v. 

 21. Either compute T(e1), T(e2), and T(e3) to make the columns of A, or write the vectors vertically in the 
definition of T and fill in the entries of A by inspection: 

  
1 1

2 2

3 3

? ? ? 1 0 0
? ? , 0 1 0
? ? ? 0 0 1

x x
A A x x A

x x

       
       = = − = −       
              

x  

 22. By Theorem 12 in Section 1.9, the columns of A span R3. By Theorem 4 in Section 1.4, A has a pivot in 
each of its three rows. Since A has three columns, each column must be a pivot column. So the equation 
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Ax = 0 has no free variables, and the columns of A are linearly independent. By Theorem 12 in Section 
1.9, the transformation x  Ax is one-to-one. 

 23. 
4 5 4 3 5

 implies that  
3 0 3 4 0

a b a b
b a a b

=
− − =     

      + =     
. Solve:  

  
4 3 5 4 3 5 4 3 5 4 0 16 / 5 1 0 4 / 5

~ ~ ~ ~
3 4 0 0 25/ 4 15/ 4 0 1 3/ 5 0 1 3/ 5 0 1 3/ 5

− − −         
         − − − −         

 

  Thus a = 4/5 and b = –3/5. 

 24. The matrix equation displayed gives the information 2 4 2 5a b− =  and 4 2 0.a b+ =  Solve for a and b: 
2 4 2 5 1 2 5 1 0 1/ 52 4 2 5 ~ ~ ~

4 2 0 0 10 4 5 0 1 2 / 5 0 1 2 / 5

       − −−
      

− − −            
 

  So 1/ 5, 2 / 5.a b= = −  

 25. a. The vector lists the number of three-, two-, and one-bedroom apartments provided when x1 floors of 
plan A are constructed. 

b. 1 2 3

3 4 5
7 4 3
8 8 9

x x x
     
     + +     
          

 

c. [M]  Solve 1 2 3

3 4 5 66
7 4 3 74
8 8 9 136

x x x
       
       + + =       
              

 

  
1 3

2 3

3 4 5 66 1 0 1/ 2 2 (1/ 2) 2
7 4 3 74 ~ 0 1 13/8 15    (13/8) 15
8 8 9 136 0 0 0 0 0 0

x x
x x

− − =   
   ⋅ ⋅ ⋅ + =   
    =   

 

  The general solution is 

  
1 3

2 3 3

3 3

2 (1/ 2) 2 1/ 2
15 (13/8) 15 13/8

0 1

x x
x x x
x x

+       
       = = − = + −       
              

x  

  However, the only feasible solutions must have whole numbers of floors for each plan. Thus, x3 must 
be a multiple of 8, to avoid fractions. One solution, for x3 = 0, is to use 2 floors of plan A and 15 
floors of plan B. Another solution, for x3 = 8, is to use 6 floors of plan A , 2 floors of plan B, and 8 
floors of plan C. These are the only feasible solutions. A larger positive multiple of 8 for x3 makes x2 
negative. A negative value for x3, of course, is not feasible either. 
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2.1 SOLUTIONS 

Notes: The definition here of a matrix product AB gives the proper view of AB for nearly all matrix 
calculations. (The dual fact about the rows of A and the rows of AB is seldom needed, mainly because vectors 
here are usually written as columns.) I assign Exercise 13 and most of Exercises 17–22 to reinforce the 
definition of AB. 

Exercises 23 and 24 are used in the proof of the Invertible Matrix Theorem, in Section 2.3. Exercises  
23–25 are mentioned in a footnote in Section 2.2. A class discussion of the solutions of Exercises 23–25 can 
provide a transition to Section 2.2. Or, these exercises could be assigned after starting Section 2.2. 

Exercises 27 and 28 are optional, but they are mentioned in Example 4 of Section 2.4. Outer products also 
appear in Exercises 31–34 of Section 4.6 and in the spectral decomposition of a symmetric matrix, in Section 7.1. 
Exercises 29–33 provide good training for mathematics majors.  

 1. 
2 0 1 4 0 2

2 ( 2)
4 5 2 8 10 4

A
− −   

− = − =   − − −   
. Next, use B – 2A = B + (–2A): 

   
7 5 1 4 0 2 3 5 3

2
1 4 3 8 10 4 7 6 7

B A
− − −     

− = + =     − − − − − −     
 

  The product AC is not defined because the number of columns of A does not match the number of rows  

of C. 
1 2 3 5 1 3 2( 1) 1 5 2 4 1 13
2 1 1 4 2 3 1( 1) 2 5 1 4 7 6

CD
⋅ + − ⋅ + ⋅       

= = =       − − − ⋅ + − − ⋅ + ⋅ − −       
. For mental computation, the 

row-column rule is probably easier to use than the definition. 

 2. 
2 0 1 7 5 1 2 14 0 10 1 2 16 10 1

2 2
4 5 2 1 4 3 4 2 5 8 2 6 6 13 4

A B
− − + − − + −       

+ = + = =       − − − + − − − − −       
 

  The expression 3C – E is not defined because 3C has 2 columns and –E has only 1 column.  

   
1 2 7 5 1 1 7 2 1 1( 5) 2( 4) 1 1 2( 3) 9 13 5
2 1 1 4 3 2 7 1 1 2( 5) 1( 4) 2 1 1( 3) 13 6 5

CB
− ⋅ + ⋅ − + − ⋅ + − − −       

= = =       − − − − ⋅ + ⋅ − − + − − ⋅ + − − −       
 

  The product EB is not defined because the number of columns of E does not match the number of rows  
of R. 
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 3. 2
3 0 4 1 3 4 0 ( 1) 1 1

3
0 3 5 2 0 5 3 ( 2) 5 5

I A
− − − − −       

− = − = =       − − − − −       
 

   2 2
4 1 12 3

(3 ) 3( ) 3
5 2 15 6

I A I A
− −   

= = =   − −   
, or  

   2
3 0 4 1 3 4 0 3( 1) 0 12 3

(3 )
0 3 5 2 0 3 5 0 3( 2) 15 6

I A
− ⋅ + − + −       

= = =       − + ⋅ + − −       
 

 4. 3

9 1 3 5 0 0 4 1 3
5 8 7 6 0 5 0 8 2 6

4 1 8 0 0 5 4 1 3
A I

− −     
     − = − − − = − −     
     − −     

 

   3 3

9 1 3 45 5 15
(5 ) 5( ) 5 5 8 7 6 40 35 30

4 1 8 20 5 40
I A I A A

− −   
   = = = − − = − −   
   − −   

, or 

   3

5 0 0 9 1 3
(5 ) 0 5 0 8 7 6

0 0 5 4 1 8
I A

−   
   = − −   
   −   

 

   
5 9 0 0 5( 1) 0 0 5 3 0 0 45 5 15

0 5( 8) 0 0 5 7 0 0 5( 6) 0 45 35 30
0 0 5( 4) 0 0 5 1 0 0 5 8 20 5 40

⋅ + + − + + ⋅ + + −   
   = + − + + ⋅ + + − + = − −   
   + + − + + ⋅ + + ⋅ −   

 

 5. a. 1 2

1 2 7 1 2 4
3 2

5 4 7 , 5 4 6
2 1

2 3 12 2 3 7
A A

− − −       
−          = = = = −          −          − − −       

b b  

  [ ]1 2

7 4
7 6

12 7
AB A A

− 
 = = − 
 − 

b b  

b. 
1 2 1 3 2( 2) 1( 2) 2 1 7 4

3 2
5 4 5 3 4( 2) 5( 2) 4 1 7 6

2 1
2 3 2 3 3( 2) 2( 2) 3 1 12 7

− − ⋅ + − − − + ⋅ −     
−      = ⋅ + − − + ⋅ = −      −      − ⋅ − − − − ⋅ −     

 

 6. a. 1 2

4 2 0 4 2 14
1 3

3 0 3 , 3 0 9
2 1

3 5 13 3 5 4
A A

− −       
          = − = − = − = −          −                 

b b  

  [ ]1 2

0 14
3 9

13 4
AB A A

 
 = = − − 
  

b b  

b. 
4 2 4 1 2 2 4 3 2( 1) 0 14

1 3
3 0 3 1 0 2 3 3 0( 1) 3 9

2 1
3 5 3 1 5 2 3 3 5( 1) 13 4

− ⋅ − ⋅ ⋅ − −     
      − = − ⋅ + ⋅ − ⋅ + − = − −      −      ⋅ + ⋅ ⋅ + −     
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 7. Since A has 3 columns, B must match with 3 rows. Otherwise, AB is undefined. Since AB has 7 columns, 
so does B. Thus, B is 3×7. 

 8. The number of rows of B matches the number of rows of BC, so B has 3 rows. 

 9. 
2 5 4 5 23 10 5

,
3 1 3 9 15

k
AB

k k
− − +     

= =     − − +     
 while 

4 5 2 5 23 15
3 3 1 6 3 15

BA
k k k

−     
= =     − − +     

. 

  Then AB = BA if and only if –10 + 5k = 15 and –9 = 6 – 3k, which happens if and only if k = 5. 

 10. 
2 3 8 4 1 7 2 3 5 2 1 7

,
4 6 5 5 2 14 4 6 3 1 2 14

AB AC
− − − − −           

= = = =           − − − −           
 

 11. 
1 1 1 2 0 0 2 3 5
1 2 3 0 3 0 2 6 15
1 4 5 0 0 5 2 12 25

AD
     
     = =     
          

 

  
2 0 0 1 1 1 2 2 2
0 3 0 1 2 3 3 6 9
0 0 5 1 4 5 5 20 25

DA
     
     = =     
          

 

  Right-multiplication (that is, multiplication on the right) by the diagonal matrix D multiplies each column 
of A by the corresponding diagonal entry of D. Left-multiplication by D multiplies each row of A by the 
corresponding diagonal entry of D. To make AB = BA, one can take B to be a multiple of I3. For instance, 
if B = 4I3, then AB and BA are both the same as 4A. 

 12. Consider B = [b1   b2]. To make AB = 0, one needs Ab1 = 0 and Ab2 = 0. By inspection of A, a suitable 

 b1 is 
2

,
1
 
 
 

 or any multiple of 
2
1
 
 
 

. Example: 
2 6

.
1 3

B
 

=  
 

 

 13. Use the definition of AB written in reverse order: [Ab1  ⋅ ⋅ ⋅  Abp] = A[b1  ⋅ ⋅ ⋅  bp]. Thus  
   [Qr1  ⋅ ⋅ ⋅  Qrp] = QR, when R = [r1  ⋅ ⋅ ⋅  rp]. 

 14. By definition, UQ = U[q1  ⋅ ⋅ ⋅  q4] = [Uq1  ⋅ ⋅ ⋅  Uq4]. From Example 6 of Section 1.8, the vector 
Uq1 lists the total costs (material, labor, and overhead) corresponding to the amounts of products B and 
C specified in the vector q1. That is, the first column of UQ lists the total costs for materials, labor, and 
overhead used to manufacture products B and C during the first quarter of the year. Columns 2, 3, 
and 4 of UQ list the total amounts spent to manufacture B and C during the 2nd, 3rd, and 4th quarters, 
respectively. 

 15. a. False. See the definition of AB. 
b. False. The roles of A and B should be reversed in the second half of the statement. See the box after 

Example 3. 
c. True. See Theorem 2(b), read right to left. 
d. True. See Theorem 3(b), read right to left. 
e. False. The phrase “in the same order” should be “in the reverse order.” See the box after Theorem 3. 

 16. a. False. AB must be a 3×3 matrix, but the formula for AB implies that it is 3×1. The plus signs should 
be just spaces (between columns). This is a common mistake. 

b. True. See the box after Example 6. 
c. False. The left-to-right order of B and C cannot be changed, in general. 
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d. False. See Theorem 3(d). 
e. True. This general statement follows from Theorem 3(b). 

 17. Since [ ]1 2 3
1 2 1

,
6 9 3

AB A A A
− − 

= = − 
b b b  the first column of B satisfies the equation 

1
.

6
A

− 
=  
 

x  Row reduction:[ ]1
1 2 1 1 0 7

~ ~
2 5 6 0 1 4

A A
− −   

   −   
b . So b1 = 

7
.

4
 
 
 

 Similarly, 

[ ]2
1 2 2 1 0 8

~ ~
2 5 9 0 1 5

A A
− −   

   − − −   
b  and b2 = 

8
.

5
− 
 − 

 

Note: An alternative solution of Exercise 17 is to row reduce [A   Ab1   Ab2] with one sequence of row 
operations. This observation can prepare the way for the inversion algorithm in Section 2.2. 

 18. The first two columns of AB are Ab1 and Ab2. They are equal since b1 and b2 are equal. 

 19. (A solution is in the text). Write B = [b1  b2  b3]. By definition, the third column of AB is Ab3. By 
hypothesis, b3 = b1 + b2. So Ab3 = A(b1 + b2) = Ab1 + Ab2, by a property of matrix-vector multiplication. 
Thus, the third column of AB is the sum of the first two columns of AB. 

 20. The second column of AB is also all zeros because Ab2 = A0 = 0. 

 21. Let bp be the last column of B. By hypothesis, the last column of AB is zero. Thus, Abp = 0. However,  
bp is not the zero vector, because B has no column of zeros. Thus, the equation Abp = 0 is a linear 
dependence relation among the columns of A, and so the columns of A are linearly dependent. 

Note: The text answer for Exercise 21 is, “The columns of A are linearly dependent. Why?” The Study Guide 
supplies the argument above, in case a student needs help.  

 22. If the columns of B are linearly dependent, then there exists a nonzero vector x such that Bx = 0. From 
this, A(Bx) = A0 and (AB)x = 0 (by associativity). Since x is nonzero, the columns of AB must be linearly 
dependent. 

 23. If x satisfies Ax = 0, then CAx = C0 = 0 and so Inx = 0 and x = 0. This shows that the equation Ax = 0  
has no free variables. So every variable is a basic variable and every column of A is a pivot column.  
(A variation of this argument could be made using linear independence and Exercise 30 in Section 1.7.) 
Since each pivot is in a different row, A must have at least as many rows as columns.  

 24. Take any b in Rm. By hypothesis, ADb = Imb = b. Rewrite this equation as A(Db) = b. Thus, the  
vector x = Db satisfies Ax = b. This proves that the equation Ax = b has a solution for each b in Rm.  
By Theorem 4 in Section 1.4, A has a pivot position in each row. Since each pivot is in a different 
column, A must have at least as many columns as rows. 

 25. By Exercise 23, the equation CA = In implies that (number of rows in A) > (number of columns), that is,  
m > n. By Exercise 24, the equation AD = Im implies that (number of rows in A) < (number of columns), 
that is, m < n. Thus m = n. To prove the second statement, observe that DAC = (DA)C = InC = C, and 
also DAC = D(AC) = DIm = D. Thus C = D. A shorter calculation is 

   C = InC = (DA)C = D(AC) = DIn = D 

 26. Write I3 =[e1   e2   e3] and D = [d1   d2   d3]. By definition of AD, the equation AD = I3 is equivalent 
|to the three equations Ad1 = e1, Ad2 = e2, and Ad3 = e3. Each of these equations has at least one solution 
because the columns of A span R3. (See Theorem 4 in Section 1.4.) Select one solution of each equation 
and use them for the columns of D. Then AD = I3. 
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 27. The product uTv is a 1×1 matrix, which usually is identified with a real number and is written without the 
matrix brackets. 

   [ ]2 3 4 2 3 4T
a
b a b c
c

 
 = − − = − + − 
  

u v , [ ]
2
3 2 3 4
4

T a b c a b c
− 
 = = − + − 
 − 

v u  

   [ ]
2 2 2 2
3 3 3 3
4 4 4 4

T
a b c

a b c a b c
a b c

− − − −   
   = =   
   − − − −   

uv  

   [ ]
2 3 4

2 3 4 2 3 4
2 3 4

T
a a a a
b b b b
c c c c

− −   
   = − − = − −   
   − −   

vu  

 28. Since the inner product uTv is a real number, it equals its transpose. That is, 
  uTv = (uTv)T = vT (uT)T = vTu, by Theorem 3(d) regarding the transpose of a product of matrices and by 

Theorem 3(a). The outer product uvT is an n×n matrix. By Theorem 3, (uvT)T = (vT)TuT = vuT. 

 29. The (i, j)-entry of A(B + C) equals the (i, j)-entry of AB + AC, because 

   
1 1 1

( )
n n n

ik kj kj ik kj ik kj
k k k

a b c a b a c
= = =

+ = +∑ ∑ ∑  

  The (i, j)-entry of (B + C)A equals the (i, j)-entry of BA + CA, because 

   
1 1 1
( )

n n n

ik ik kj ik kj ik kj
k k k

b c a b a c a
= = =

+ = +∑ ∑ ∑  

 30. The (i, j))-entries of r(AB), (rA)B, and A(rB) are all equal, because 

   
1 1 1

( ) ( )
n n n

ik kj ik kj ik kj
k k k

r a b ra b a rb
= = =

= =∑ ∑ ∑  

 31. Use the definition of the product ImA and the fact that Imx = x for x in Rm. 
   ImA = Im[a1   ⋅ ⋅ ⋅   an] = [Ima1   ⋅ ⋅ ⋅   Iman] = [a1   ⋅ ⋅ ⋅   an] = A 

 32. Let ej and aj denote the jth columns of In and A, respectively. By definition, the jth column of AIn is Aej, 
which is simply aj because ej has 1 in the jth position and zeros elsewhere. Thus corresponding columns 
of AIn and A are equal. Hence AIn = A. 

 33. The (i, j)-entry of (AB)T is the ( j, i)-entry of AB, which is 
   1 1j i jn nia b a b+ ⋅⋅⋅ +  

  The entries in row i of BT are b1i, … , bni, because they come from column i of B. Likewise, the entries in 
column j of AT are aj1, …, ajn, because they come from row j of A. Thus the (i, j)-entry in BTAT is 

1 1j i jn nia b a b+ + , as above. 

 34. Use Theorem 3(d), treating x as an n×1 matrix: (ABx)T = xT(AB)T = xTBTAT. 

 35. [M]  The answer here depends on the choice of matrix program. For MATLAB, use the help 
command to read about zeros, ones, eye, and diag. For other programs see the 
appendices in the Study Guide. (The TI calculators have fewer single commands that produce 
special matrices.) 
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 36. [M]  The answer depends on the choice of matrix program. In MATLAB, the command rand(6,4) 
creates a 6×4 matrix with random entries uniformly distributed between 0 and 1. The command 

   round(19*(rand(6,4)–.5)) 

  creates a random 6×4 matrix with integer entries between –9 and 9. The same result is produced by the 
command randomint in the Laydata Toolbox on text website. For other matrix programs see the 
appendices in the Study Guide.  

 37. [M] (A + I)(A – I) – (A2 – I) = 0 for all 4×4 matrices. However, (A + B)(A – B) – A2 – B2 is the zero 
matrix only in the special cases when AB = BA. In general, 

   (A + B)(A – B) = A(A – B) + B(A – B) = AA – AB + BA – BB. 

 38. [M]  The equality (AB)T = ATBT is very likely to be false for 4×4 matrices selected at random. 

 39. [M]  The matrix S “shifts” the entries in a vector (a, b, c, d, e) to yield (b, c, d, e, 0). The entries in S2 
result from applying S to the columns of S, and similarly for S3 , and so on. This explains the patterns 
of entries in the powers of S: 

   2 3 4

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

, ,0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S S S

     
     
     
     = = =
     
     
          

 

  S5  is the 5×5 zero matrix. S6  is also the 5×5 zero matrix. 

 40. [M]  5 10
.3318 .3346 .3336 .333337 .333330 .333333
.3346 .3323 .3331 , .333330 .333336 .333334
.3336 .3331 .3333 .333333 .333334 .333333

A A
   
   = =   
      

 

  The entries in A20 all agree with .3333333333 to 9 or 10 decimal places. The entries in A30 all agree with 
.33333333333333 to at least 14 decimal places. The matrices appear to approach the matrix 

1/ 3 1/ 3 1/ 3
1/ 3 1/ 3 1/ 3
1/ 3 1/ 3 1/ 3

 
 
 
  

. Further exploration of this behavior appears in Sections 4.9 and 5.2. 

  Note: The MATLAB box in the Study Guide introduces basic matrix notation and operations, including 
the commands that create special matrices needed in Exercises 35, 36 and elsewhere. The Study Guide 
appendices treat the corresponding information for the other matrix programs. 

2.2 SOLUTIONS 

Notes: The text includes the matrix inversion algorithm at the end of the section because this topic is popular. 
Students like it because it is a simple mechanical procedure. However, I no longer cover it in my classes 
because technology is readily available to invert a matrix whenever needed, and class time is better spent on 
more useful topics such as partitioned matrices. The final subsection is independent of the inversion algorithm 
and is needed for Exercises 35 and 36. 

Key Exercises: 8, 11–24, 35. (Actually, Exercise 8 is only helpful for some exercises in this section. 
Section 2.3 has a stronger result.) Exercises 23 and 24 are used in the proof of the Invertible Matrix Theorem 
(IMT) in Section 2.3, along with Exercises 23 and 24 in Section 2.1. I recommend letting students work on 
two or more of these four exercises before proceeding to Section 2.3. In this way students participate in the 
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proof of the IMT rather than simply watch an instructor carry out the proof. Also, this activity will help 
students understand why the theorem is true. 

 1. 
18 6 4 6 2 31

5 4 5 8 5/ 2 432 30

− − −     
= =     − −−     

 

 2. 
13 2 4 2 2 11

7 4 7 3 7 / 2 3/ 212 14

− − −     
= =     − −−     

 

 3. 
18 5 5 5 5 5 1 11 1  or 

7 5 7 8 7 8 1.4 1.640 ( 35) 5

− − − − −       
= = −       − − − −− − −       

 

 4. ( )
13 4 8 4 8 4 2 11 1   or  

7 8 7 3 7 3 7 / 4 3/ 424 28 4

−− − − −       
= =       − − − −− − −       

 

 5. The system is equivalent to Ax = b, where
8 6 2

 and =
5 4 1

A
   

=    −   
b , and the solution is  

   x = A–1b = 
2 3 2 7

.
5/ 2 4 1 9

−     
=     − − −     

 Thus x1 = 7 and x2 = –9. 

 6. The system is equivalent to Ax = b, where
8 5 9

 and 
7 5 11

A
   

= =   − −   
b , and the solution is x = A–1b. To 

compute this by hand, the arithmetic is simplified by keeping the fraction 1/det(A) in front of the matrix 
for A–1. (The Study Guide comments on this in its discussion of Exercise 7.) From Exercise 3, 

   x = A–1b = 
5 5 9 10 21 1
7 8 11 25 55 5

− − − −       
− = − =       −       

. Thus x1 = 2 and x2 = –5. 

 7. a. 
11 2 12 2 12 2 6 11 1   or  

5 12 5 1 5 1 2.5 .51 12 2 5 2

− − − −       
= =       − − −⋅ − ⋅       

 

  x = A–1b1 = 
12 2 1 18 91 1

5 1 3 8 42 2
− − − −       

= =       −       
. Similar calculations give 

  1 1 1
2 3 4

11 6 13
, ,

5 2 5
A A A− − −     

= = =     − − −     
b b b . 

b. [A   b1   b2   b3   b4] = 
1 2 1 1 2 3
5 12 3 5 6 5

− 
 − 

 

  
1 2 1 1 2 3 1 2 1 1 2 3

~ ~
0 2 8 10 4 10 0 1 4 5 2 5

− −   
   − − − − − −   

 

  
1 0 9 11 6 13

~
0 1 4 5 2 5

− 
 − − − 

 

  The solutions are 
9 11 6 13

, , ,  and ,
4 5 2 5

−       
       − − −       

 the same as in part (a). 
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Note: The Study Guide also discusses the number of arithmetic calculations for this Exercise 7, stating that 
when A is large, the method used in (b) is much faster than using A–1. 

 8. Left-multiply each side of the equation AD = I by A–1 to obtain  
   A–1AD = A–1I, ID = A–1, and D = A–1. 
  Parentheses are routinely suppressed because of the associative property of matrix multiplication. 

 9. a. True, by definition of invertible.  b. False. See Theorem 6(b). 

c. False. If 
1 1
0 0

A
 

=  
 

, then ab – cd = 1 – 0 ≠ 0, but Theorem 4 shows that this matrix is not invertible, 

because ad – bc = 0. 
d. True. This follows from Theorem 5, which also says that the solution of Ax = b is unique, for each b. 
e. True, by the box just before Example 6. 

10. a. False. The product matrix is invertible, but the product of inverses should be in the reverse order.  
  See Theorem 6(b). 
b. True, by Theorem 6(a). c. True, by Theorem 4. 
d. True, by Theorem 7. e. False. The last part of Theorem 7 is misstated here. 

11. (The proof can be modeled after the proof of Theorem 5.) The n×p matrix B is given (but is arbitrary). 
Since A is invertible, the matrix A–1B satisfies AX = B, because A(A–1B) = A A–1B = IB = B. To show this 
solution is unique, let X be any solution of AX = B. Then, left-multiplication of each side by A–1 shows 
that X must be A–1B: 

   A–1 (AX) = A–1B,     IX = A–1B,     and     X = A–1B. 

12. If you assign this exercise, consider giving the following Hint: Use elementary matrices and imitate the 
proof of Theorem 7. The solution in the Instructor’s Edition follows this hint. Here is another solution, 
based on the idea at the end of Section 2.2. 

  Write B = [b1  ⋅ ⋅ ⋅  bp] and X = [u1  ⋅ ⋅ ⋅  up]. By definition of matrix multiplication, 
AX = [Au1  ⋅ ⋅ ⋅  Aup]. Thus, the equation AX = B is equivalent to the p systems: 

   Au1 = b1,   …  Aup = bp 
  Since A is the coefficient matrix in each system, these systems may be solved simultaneously, placing the 

augmented columns of these systems next to A to form [A   b1  ⋅ ⋅ ⋅  bp] = [A   B]. Since A is 
invertible, the solutions u1, …, up are uniquely determined, and [A   b1  ⋅ ⋅ ⋅  bp] must row reduce to 
[I   u1  ⋅ ⋅ ⋅  up] = [I   X]. By Exercise 11, X is the unique solution A–1B of AX = B. 

13. Left-multiply each side of the equation AB = AC by A–1 to obtain 
   A–1AB = A–1AC,     IB = IC,     and     B = C. 
  This conclusion does not always follow when A is singular. Exercise 10 of Section 2.1 provides a 

counterexample. 

14. Right-multiply each side of the equation (B – C)D = 0 by D–1 to obtain 
   (B – C)DD–1 = 0D–1,     (B – C)I = 0,     B – C = 0,     and    B = C. 

15. The box following Theorem 6 suggests what the inverse of ABC should be, namely, C–1B–1A–1. To verify 
that this is correct, compute: 

   (ABC) C–1B–1A–1 = ABCC–1B–1A–1 = ABIB–1A–1 = ABB–1A–1 = AIA–1 = AA–1 = I 
  and 
   C–1B–1A–1 (ABC) = C–1B–1A–1ABC = C–1B–1IBC = C–1B–1BC = C–1IC = C–1C = I 
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16. Let C = AB. Then CB–1 = ABB–1, so CB–1 = AI = A. This shows that A is the product of invertible 
matrices and hence is invertible, by Theorem 6. 

Note: The Study Guide warns against using the formula (AB) –1 = B–1A–1 here, because this formula can be 
used only when both A and B are already known to be invertible. 

17. Right-multiply each side of AB = BC by B–1:  
   ABB–1 = BCB–1,     AI  = BCB–1,     A = BCB–1. 

18. Left-multiply each side of A = PBP–1 by P–1:  
   P–1A = P–1PBP–1,     P–1A = IBP–1,     P–1A = BP–1 
  Then right-multiply each side of the result by P: 
   P–1AP = BP–1P,     P–1AP = BI,     P–1AP = B 

19. Unlike Exercise 17, this exercise asks two things, “Does a solution exist and what is it?” First, find what 
the solution must be, if it exists. That is, suppose X satisfies the equation C–1(A + X)B–1 = I. Left-multiply 
each side by C, and then right-multiply each side by B: 

   CC–1(A + X)B–1 = CI,     I(A + X)B–1 = C,     (A + X)B–1B = CB,     (A + X)I = CB 
  Expand the left side and then subtract A from both sides:  
   AI + XI = CB,     A + X = CB,     X = CB – A 
  If a solution exists, it must be CB – A. To show that CB – A really is a solution, substitute it for X: 
   C–1[A + (CB – A)]B–1 = C–1[CB]B–1 = C–1CBB–1 = II = I. 

Note: The Study Guide suggests that students ask their instructor about how many details to include in their 
proofs. After some practice with algebra, an expression such as CC–1(A + X)B–1 could be simplified directly to 
(A + X)B–1 without first replacing CC–1 by I. However, you may wish this detail to be included in the 
homework for this section. 

20. a. Left-multiply both sides of (A – AX)–1 = X–1B by X to see that B is invertible because it is the product 
of invertible matrices. 

b. Invert both sides of the original equation and use Theorem 6 about the inverse of a product (which 
applies because X–1 and B are invertible): 

   A – AX = (X–1B)–1 = B–1(X–1)–1 = B–1X 
  Then A = AX + B–1X = (A + B–1)X. The product (A + B–1)X is invertible because A is invertible. Since 

X is known to be invertible, so is the other factor, A + B–1, by Exercise 16 or by an argument similar 
to part (a). Finally, 

   (A + B–1)–1A = (A + B–1)–1(A + B–1)X = X 

Note: This exercise is difficult. The algebra is not trivial, and at this point in the course, most students will 
not recognize the need to verify that a matrix is invertible. 

21. Suppose A is invertible. By Theorem 5, the equation Ax = 0 has only one solution, namely, the zero 
solution. This means that the columns of A are linearly independent, by a remark in Section 1.7. 

22. Suppose A is invertible. By Theorem 5, the equation Ax = b has a solution (in fact, a unique solution) for 
each b. By Theorem 4 in Section 1.4, the columns of A span Rn. 

23. Suppose A is n×n and the equation Ax = 0 has only the trivial solution. Then there are no free variables 
in this equation, and so A has n pivot columns. Since A is square and the n pivot positions must be in 
different rows, the pivots in an echelon form of A must be on the main diagonal. Hence A is row 
equivalent to the n×n identity matrix. 
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24. If the equation Ax = b has a solution for each b in Rn, then A has a pivot position in each row, by 
Theorem 4 in Section 1.4. Since A is square, the pivots must be on the diagonal of A. It follows that A is 
row equivalent to In. By Theorem 7, A is invertible. 

25. Suppose 
a b

A
c d

=
 
  

 and ad – bc = 0. If a = b = 0, then examine 1

2

0 0 0
0

x
xc d
    

=    
    

 This has the 

solution x1 = 
d
c

 
 − 

. This solution is nonzero, except when a = b = c = d. In that case, however, A is the 

zero matrix, and Ax = 0 for every vector x. Finally, if a and b are not both zero, set x2 = 
b

a

− 
  

. Then 

2

0

0

a b b ab ba
A

c d a cb da

− − +
= = =

− +
       
              

x , because –cb + da = 0. Thus, x2 is a nontrivial solution of Ax = 0. 

So, in all cases, the equation Ax = 0 has more than one solution. This is impossible when A is invertible 
(by Theorem 5), so A is not invertible. 

26. 
0

0
d b a b da bc
c a c d cb ad

− −     
=     − − +     

. Divide both sides by ad – bc to get CA = I. 

   
0

0
a b d b ad bc
c d c a cb da

− −     
=     − − +     

.  

  Divide both sides by ad – bc. The right side is I. The left side is AC, because  

   1 1a b d b a b d b
c d c a c d c aad bc ad bc

− −       
=       − −− −       

 = AC 

 27. a. Interchange A and B in equation (1) after Example 6 in Section 2.1: rowi (BA) = rowi (B)⋅A. Then 
replace B by the identity matrix: rowi (A) = rowi (IA) = rowi (I)⋅A. 

b. Using part (a), when rows 1 and 2 of A are interchanged, write the result as 

   
2 2 2

1 1 1

3 3 3

row ( ) row ( ) row ( )
row ( ) row ( ) row ( )
row ( ) row ( ) row ( )

A I A I
A I A I A EA
A I A I

⋅     
     = ⋅ = =     
     ⋅     

 (*) 

  Here, E is obtained by interchanging rows 1 and 2 of I. The second equality in (*) is a consequence of 
the fact that rowi (EA) = rowi (E)⋅A. 

c. Using part (a), when row 3 of A is multiplied by 5, write the result as 

   
1 1 1

2 2 2

3 3 3

row ( ) row ( ) row ( )
row ( ) row ( ) row ( )

5 row ( ) 5 row ( ) 5 row ( )

A I A I
A I A I A EA
A I A I

⋅     
     = ⋅ = =     
     ⋅ ⋅ ⋅ ⋅     

 

Here, E is obtained by multiplying row 3 of I by 5. 

28. When row 3 of A is replaced by row3(A) – 4⋅row1(A), write the result as 

   
1 1

2 2

3 1 3 1

row ( ) row ( )
row ( ) row ( )

row ( ) 4 row ( ) row ( ) 4 row ( )

A I A
A I A

A A I A I A

⋅   
   = ⋅   
   − ⋅ ⋅ − ⋅ ⋅   
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1 1

2 2

3 1 3 1

row ( ) row ( )
row ( ) row ( )

[row ( ) 4 row ( )] row ( ) 4 row ( )

I A I
I A I A EA

I I A I I

⋅   
   = ⋅ = =   
   − ⋅ ⋅ − ⋅   

 

  Here, E is obtained by replacing row3(I) by row3(I) – 4⋅row1(I) . 

29. 
1 2 1 0 1 2 1 0 1 2 1 0 1 0 7 2

[ ] ~ ~ ~
4 7 0 1 0 1 4 1 0 1 4 1 0 1 4 1

A I
−       

=        − − − −       
 

   A–1 = 
7 2
4 1

− 
 − 

 

30. 
5 10 1 0 1 2 1/ 5 0 1 2 1/ 5 0

[ ] ~ ~
4 7 0 1 4 7 0 1 0 1 4 / 5 1

A I
     

=      − −     
 

   11 2 1/ 5 0 1 0 7 / 5 2 7 / 5 2
~ ~ .

0 1 4 /5 1 0 1 4 /5 1 4 /5 1
A−− −     

=     − − −     
 

31. 
1 0 2 1 0 0 1 0 2 1 0 0

[ ] 3 1 4 0 1 0 ~ 0 1 2 3 1 0
2 3 4 0 0 1 0 3 8 2 0 1

A I
− −   

   = − −   
   − − −   

 

   
1 0 2 1 0 0 1 0 0 8 3 1

~ 0 1 2 3 1 0 ~ 0 1 0 10 4 1
0 0 2 7 3 1 0 0 2 7 3 1

−   
   −   
      

 

   1
1 0 0 8 3 1 8 3 1

~ 0 1 0 10 4 1 . 10 4 1
0 0 1 7 / 2 3/ 2 1/ 2 7 / 2 3/ 2 1/ 2

A−
   
   =   
      

 

32. 
1 2 1 1 0 0 1 2 1 1 0 0

[ ] 4 7 3 0 1 0 ~ 0 1 1 4 1 0
2 6 4 0 0 1 0 2 2 2 0 1

A I
− −   

   = − − −   
   − − −   

 

   
1 2 1 1 0 0

~ 0 1 1 4 1 0
0 0 0 10 2 1

− 
 − − 
 − 

. The matrix A is not invertible. 

33. Let B = 

1 0 0 0
1 1 0 0
0 1 1

0 0 1 1

 
 − 
 −
 
 
 − 

, and for j = 1, …, n, let aj, bj, and ej denote the jth columns of A, B,  

and I, respectively. Note that for j = 1, …, n – 1, aj – aj+1 = ej (because aj and aj+1 have the same entries 
except for the jth row), bj = ej – ej+1 and an = bn = en. 

  To show that AB = I, it suffices to show that Abj = ej for each j. For j = 1, …, n – 1, 
   Abj = A(ej – ej+1) = Aej – Aej+1 = aj – aj+1 = ej 
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  and Abn = Aen = an = en. Next, observe that aj = ej + ⋅ ⋅ ⋅ + en for each j. Thus, 
  Baj = B(ej + ⋅ ⋅ ⋅ + en) = bj + ⋅ ⋅ ⋅ + bn 

         = (ej – ej+1) + (ej+1 – ej+2) + ⋅ ⋅ ⋅ + (en–1 – en) + en = ej 
  This proves that BA = I. Combined with the first part, this proves that B = A–1. 

Note: Students who do this problem and then do the corresponding exercise in Section 2.4 will appreciate the 
Invertible Matrix Theorem, partitioned matrix notation, and the power of a proof by induction. 

34. Let 

  A = 

1 0 0 0 1 0 0 0
1 2 0 0 1/ 2 1/ 2 0

,  and 1 2 3 0 0 1/ 3 1/ 3

1 2 3 0 0 1/ 1/

B

n n n

   
   −   
   = −
   
   
   −   

 

  and for j = 1, …, n, let aj, bj, and ej denote the jth columns of A, B, and I, respectively. Note that for  

j = 1, …, n–1, aj = j(ej + ⋅ ⋅ ⋅ + en), bj = 1
1 1

1j jj j +−
+

e e , and 1 .n nn
=b e  

  To show that AB = I, it suffices to show that Abj = ej for each j. For j = 1, …, n–1, 

   Abj = A 1
1 1

1j jj j +
 

− + 
e e  = 1

1 1
1j jj j +−

+
a a   

     = (ej + ⋅ ⋅ ⋅ + en) – (ej+1 + ⋅ ⋅ ⋅ + en) = ej 

  Also, Abn = 1 1
n n nA

n n
  = =  

e a e . Finally, for j = 1, …, n, the sum bj + ⋅ ⋅ ⋅ + bn is a “telescoping sum” 

whose value is 1 .jj
e  Thus, 

   Baj = j(Bej + ⋅ ⋅ ⋅ + Ben) = j(bj + ⋅ ⋅ ⋅ + bn) = 1
j jj

j
 

=  
e e  

  which proves that BA = I. Combined with the first part, this proves that B = A–1. 

Note: If you assign Exercise 34, you may wish to supply a hint using the notation from Exercise 33: Express 
each column of A in terms of the columns e1, …, en of the identity matrix. Do the same for B. 

35. Row reduce [A   e3]: 

  
2 7 9 0 1 3 4 1 1 3 4 1 1 3 4 1
2 5 6 0 ~ 2 5 6 0 ~ 0 1 2 2 ~ 0 1 2 2
1 3 4 1 2 7 9 0 0 1 1 2 0 0 1 4

− − −       
       − − − − − −       
       − − − − −       

 

  
1 3 0 15 1 3 0 15 1 0 0 3

~ 0 1 0 6 ~ 0 1 0 6 ~ 0 1 0 6
0 0 1 4 0 0 1 4 0 0 1 4

− −     
     − − −     
          

.  

  Answer: The third column of A–1 is 
3
6 .
4

 
 − 
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36. [M]  Write B = [A   F], where F consists of the last two columns of I3, and row reduce:  

  B = 
25 9 27 0 0

546 180 537 1 0
154 50 149 0 1

− − − 
 
 
  

 
1 0 0 3/ 2 9 / 2

~ 0 1 0 433/ 6 439 / 2
0 0 1 68/ 3 69

− 
 − 
 − 

 

  The last two columns of A–1 are 
1.5000 4.5000

72.1667 219.5000
22.6667 69.0000

− 
 − 
 − 

 

37. There are many possibilities for C, but C = 
1 1 1
1 1 0

− 
 − 

 is the only one whose entries are 1, –1, and 0. 

With only three possibilities for each entry, the construction of C can be done by trial and error. This is 
probably faster than setting up a system of 4 equations in 6 unknowns. The fact that A cannot be 
invertible follows from Exercise 25 in Section 2.1, because A is not square. 

38. Write AD = A[d1   d2] = [Ad1   Ad2]. The structure of A shows that D =

1 0
0 0
0 0
0 1

 
 
 
 
 
 

.  

  [There are 25 possibilities for D if entries of D are allowed to be 1, –1, and 0.] There is no 4×2 matrix C 
such that CA = I4. If this were true, then CAx would equal x for all x in R4. This cannot happen because 
the columns of A are linearly dependent and so Ax = 0 for some nonzero vector x. For such an x,  
CAx = C(0) = 0. An alternate justification would be to cite Exercise 23 or 25 in Section 2.1. 

39. y = Df = 
.005 .002 .001 30 .27
.002 .004 .002 50 .30
.001 .002 .005 20 .23

     
     =     
          

. The deflections are .27 in., .30 in., and .23 in. at points 1, 2, 

and 3, respectively. 

40. [M]  The stiffness matrix is D–1. Use an “inverse” command to produce 

   D–1 =
2 1 0

125 1 3 1
0 1 2

− 
 − − 
 − 

 

  To find the forces (in pounds) required to produce a deflection of .04 cm at point 3, most students will 
use technology to solve Df = (0, 0, .04) and obtain (0, –5, 10).  

  Here is another method, based on the idea suggested in Exercise 42. The first column of D–1 lists the 
forces required to produce a deflection of 1 in. at point 1 (with zero deflection at the other points). Since 
the transformation y  D–1y is linear, the forces required to produce a deflection of .04 cm at point 3 is 
given by .04 times the third column of D–1, namely (.04)(125) times (0, –1, 2), or (0, –5, 10) pounds. 

41. To determine the forces that produce a deflections of .08, .12, .16, and .12 cm at the four points on the 
beam, use technology to solve Df = y, where y = (.08, .12, .16, .12). The forces at the four points are 12, 
1.5, 21.5, and 12 newtons, respectively. 
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42. [M]  To determine the forces that produce a deflection of .240 cm at the second point on the beam, use 
technology to solve Df = y, where y = (0, .24, 0, 0). The forces at the four points are –104, 167, –113, 
and 56.0 newtons, respectively (to three significant digits). These forces are .24 times the entries in the 
second column of D–1. Reason: The transformation 1D−y y  is linear, so the forces required to produce 
a deflection of .24 cm at the second point are .24 times the forces required to produce a deflection of 1 
cm at the second point. These forces are listed in the second column of D–1. 

  Another possible discussion: The solution of Dx = (0, 1, 0, 0) is the second column of D–1.  
Multiply both sides of this equation by .24 to obtain D(.24x) = (0, .24, 0, 0). So .24x is the solution  
of Df = (0, .24, 0, 0). (The argument uses linearity, but students may not mention this.) 

Note: The Study Guide suggests using gauss, swap, bgauss, and scale to reduce [A    I], because  
I prefer to postpone the use of ref (or rref) until later. If you wish to introduce ref now, see the 
Study Guide’s technology notes for Sections 2.8 or 4.3. (Recall that Sections 2.8 and 2.9 are only covered 
when an instructor plans to skip Chapter 4 and get quickly to eigenvalues.) 

2.3 SOLUTIONS 

Notes: This section ties together most of the concepts studied thus far. With strong encouragement from an 
instructor, most students can use this opportunity to review and reflect upon what they have learned, and form 
a solid foundation for future work. Students who fail to do this now usually struggle throughout the rest of the 
course. Section 2.3 can be used in at least three different ways.  

(1) Stop after Example 1 and assign exercises only from among the Practice Problems and Exercises 1  
to 28. I do this when teaching “Course 3” described in the text's “Notes to the Instructor. ” If you did not 
cover Theorem 12 in Section 1.9, omit statements (f) and (i) from the Invertible Matrix Theorem. 

(2) Include the subsection “Invertible Linear Transformations” in Section 2.3, if you covered Section 1.9. 
I do this when teaching “Course 1” because our mathematics and computer science majors take this class. 
Exercises 29–40 support this material. 

(3) Skip the linear transformation material here, but discusses the condition number and the Numerical 
Notes. Assign exercises from among 1–28 and 41–45, and perhaps add a computer project on the condition 
number. (See the projects on our web site.) I do this when teaching “Course 2” for our engineers. 

The abbreviation IMT (here and in the Study Guide) denotes the Invertible Matrix Theorem (Theorem 8). 

 1. The columns of the matrix 
5 7
3 6

 
 − − 

 are not multiples, so they are linearly independent. By (e) in the 

IMT, the matrix is invertible. Also, the matrix is invertible by Theorem 4 in Section 2.2 because the 
determinant is nonzero. 

 2. The fact that the columns of 
4 6
6 9

− 
 − 

 are multiples is not so obvious. The fastest check in this case  

may be the determinant, which is easily seen to be zero. By Theorem 4 in Section 2.2, the matrix is  
not invertible. 

 3. Row reduction to echelon form is trivial because there is really no need for arithmetic calculations: 
5 0 0 5 0 0 5 0 0
3 7 0 ~ 0 7 0 ~ 0 7 0
8 5 1 0 5 1 0 0 1

     
     − − − −     
     − − −     

 The 3×3 matrix has 3 pivot positions and hence is 

invertible, by (c) of the IMT. [Another explanation could be given using the transposed matrix. But see 
the note below that follows the solution of Exercise 14.] 
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 4. The matrix 
7 0 4
3 0 1
2 0 9

− 
 − 
  

 obviously has linearly dependent columns (because one column is zero), and 

so the matrix is not invertible (or singular) by (e) in the IMT. 

 5. 
0 3 5 1 0 2 1 0 2 1 0 2
1 0 2 ~ 0 3 5 ~ 0 3 5 ~ 0 3 5
4 9 7 4 9 7 0 9 15 0 0 0

−       
       − − −       
       − − − − −       

 

  The matrix is not invertible because it is not row equivalent to the identity matrix. 

 6. 
1 5 4 1 5 4 1 5 4
0 3 4 ~ 0 3 4 ~ 0 3 4
3 6 0 0 9 12 0 0 0

− − − − − −     
     
     
     − − −     

 

  The matrix is not invertible because it is not row equivalent to the identity matrix. 

 7. 

1 3 0 1 1 3 0 1 1 3 0 1
3 5 8 3 0 4 8 0 0 4 8 0

~ ~
2 6 3 2 0 0 3 0 0 0 3 0
0 1 2 1 0 1 2 1 0 0 0 1

− − − − − −     
     − − −     
     − −
     − −          

 

  The 4×4 matrix has four pivot positions and so is invertible by (c) of the IMT. 

 8. The 4×4 matrix 

1 3 7 4
0 5 9 6
0 0 2 8
0 0 0 10

 
 
 
 
 
  

 is invertible because it has four pivot positions, by (c) of the IMT. 

 9. [M]  

4 0 7 7 1 2 3 1 1 2 3 1
6 1 11 9 6 1 11 9 0 11 7 15

~ ~
7 5 10 19 7 5 10 19 0 9 31 12
1 2 3 1 4 0 7 7 0 8 5 11

− − − − − −     
     − − − −     
     − −
     − − − − −          

 

   

1 2 3 1 1 2 3 1 1 2 3 1
0 8 5 11 0 8 5 11 0 8 5 11

~ ~ ~
0 9 31 12 0 0 25.375 24.375 0 0 25.375 24.375
0 11 7 15 0 0 .1250 .1250 0 0 1 1

− − − − − −     
     − − −     
     
     − − − −          

 

   

1 2 3 1 1 2 3 1
0 8 5 11 0 8 5 11

~ ~
0 0 1 1 0 0 1 1
0 0 25.375 24.375 0 0 0 1

− − − −   
   − −   
   
   −      

 

  The 4×4 matrix is invertible because it has four pivot positions, by (c) of the IMT. 
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10. [M]  

5 3 1 7 9 5 3 1 7 9
6 4 2 8 8 0 .4 .8 .4 18.8

~7 5 3 10 9 0 .8 1.6 .2 3.6
9 6 4 9 5 0 .6 2.2 21.6 21.2
8 5 2 11 4 0 .2 .4 .2 10.4

   
   − − −   
   −
   − − − −   
   − −   

 

   

5 3 1 7 9 5 3 1 7 9
0 .4 .8 .4 18.8 0 .4 .8 .4 18.8

~ ~0 0 0 1 34 0 0 1 21 7
0 0 1 21 7 0 0 0 1 34
0 0 0 0 1 0 0 0 0 1

   
   − − − −   
   −
   −   
   − −   

 

  The 5×5 matrix is invertible because it has five pivot positions, by (c) of the IMT. 

11. a. True, by the IMT. If statement (d) of the IMT is true, then so is statement (b). 
b. True. If statement (h) of the IMT is true, then so is statement (e). 
c. False. Statement (g) of the IMT is true only for invertible matrices. 
d. True, by the IMT. If the equation Ax = 0 has a nontrivial solution, then statement (d) of the IMT is 

false. In this case, all the lettered statements in the IMT are false, including statement (c), which 
means that A must have fewer than n pivot positions. 

e. True, by the IMT. If AT is not invertible, then statement (1) of the IMT is false, and hence statement 
(a) must also be false. 

12. a. True. If statement (k) of the IMT is true, then so is statement ( j). 
b. True. If statement (e) of the IMT is true, then so is statement (h). 
c. True. See the remark immediately following the proof of the IMT. 
d. False. The first part of the statement is not part (i) of the IMT. In fact, if A is any n×n matrix, the 

linear transformation Ax x  maps n into n, yet not every such matrix has n pivot positions. 
e. True, by the IMT. If there is a b in n such that the equation Ax = b is inconsistent, then statement (g) 

of the IMT is false, and hence statement (f) is also false. That is, the transformation Ax x  cannot 
be one-to-one. 

Note: The solutions below for Exercises 13–30 refer mostly to the IMT. In many cases, however, part or all 
of an acceptable solution could also be based on various results that were used to establish the IMT. 

13. If a square upper triangular n×n matrix has nonzero diagonal entries, then because it is already in echelon 
form, the matrix is row equivalent to In and hence is invertible, by the IMT. Conversely, if the matrix is 
invertible, it has n pivots on the diagonal and hence the diagonal entries are nonzero. 

14. If A is lower triangular with nonzero entries on the diagonal, then these n diagonal entries can be used as 
pivots to produce zeros below the diagonal. Thus A has n pivots and so is invertible, by the IMT. If one 
of the diagonal entries in A is zero, A will have fewer than n pivots and hence be singular. 

Notes: For Exercise 14, another correct analysis of the case when A has nonzero diagonal entries is to apply 
the IMT (or Exercise 13) to AT. Then use Theorem 6 in Section 2.2 to conclude that since AT is invertible so is 
its transpose, A. You might mention this idea in class, but I recommend that you not spend much time 
discussing AT and problems related to it, in order to keep from making this section too lengthy. (The transpose 
is treated infrequently in the text until Chapter 6.) 

If you do plan to ask a test question that involves AT and the IMT, then you should give the students some 
extra homework that develops skill using AT. For instance, in Exercise 14 replace “columns” by “rows.”  
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Also, you could ask students to explain why an n×n matrix with linearly independent columns must also have 
linearly independent rows. 

15. If A has two identical columns then its columns are linearly dependent. Part (e) of the IMT shows that  
A cannot be invertible. 

16. Part (h) of the IMT shows that a 5×5 matrix cannot be invertible when its columns do not span R5. 

17. If A is invertible, so is A–1, by Theorem 6 in Section 2.2. By (e) of the IMT applied to A–1, the columns of 
A–1 are linearly independent. 

18. By (g) of the IMT, C is invertible. Hence, each equation Cx = v has a unique solution, by Theorem 5 in 
Section 2.2. This fact was pointed out in the paragraph following the proof of the IMT. 

19. By (e) of the IMT, D is invertible. Thus the equation Dx = b has a solution for each b in R7, by (g) of  
the IMT. Even better, the equation Dx = b has a unique solution for each b in R7, by Theorem 5 in 
Section 2.2. (See the paragraph following the proof of the IMT.) 

20. By the box following the IMT, E and F are invertible and are inverses. So FE = I = EF, and so E and F 
commute. 

21. The matrix G cannot be invertible, by Theorem 5 in Section 2.2 or by the box following the IMT. So (h) 
of the IMT is false and the columns of G do not span Rn. 

22. Statement (g) of the IMT is false for H, so statement (d) is false, too. That is, the equation Hx = 0 has a 
nontrivial solution. 

23. Statement (b) of the IMT is false for K, so statements (e) and (h) are also false. That is, the columns of K 
are linearly dependent and the columns do not span Rn. 

24. No conclusion about the columns of L may be drawn, because no information about L has been given. 
The equation Lx = 0 always has the trivial solution. 

25. Suppose that A is square and AB = I. Then A is invertible, by the (k) of the IMT. Left-multiplying each 
side of the equation AB = I by A–1, one has  

   A–1AB = A–1I,     IB = A–1,     and B = A–1. 
  By Theorem 6 in Section 2.2, the matrix B (which is A–1) is invertible, and its inverse is (A–1)–1,  

which is A. 

26. If the columns of A are linearly independent, then since A is square, A is invertible, by the IMT. So A2, 
which is the product of invertible matrices, is invertible. By the IMT, the columns of A2 span Rn. 

27. Let W be the inverse of AB. Then ABW = I and A(BW) = I. Since A is square, A is invertible, by (k) of the 
IMT. 

Note: The Study Guide for Exercise 27 emphasizes here that the equation A(BW) = I, by itself, does not show 
that A is invertible. Students are referred to Exercise 38 in Section 2.2 for a counterexample. Although there is 
an overall assumption that matrices in this section are square, I insist that my students mention this fact when 
using the IMT. Even so, at the end of the course, I still sometimes find a student who thinks that an equation 
AB = I implies that A is invertible. 

28. Let W be the inverse of AB. Then WAB = I and (WA)B = I. By (j) of the IMT applied to B in place of A, 
the matrix B is invertible. 
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29. Since the transformation Ax x  is not one-to-one, statement (f) of the IMT is false. Then (i) is also 
false and the transformation Ax x  does not map Rn onto Rn. Also, A is not invertible, which implies 
that the transformation Ax x  is not invertible, by Theorem 9. 

30. Since the transformation Ax x  is one-to-one, statement (f) of the IMT is true. Then (i) is also true and 
the transformation Ax x  maps Rn onto Rn. Also, A is invertible, which implies that the transformation 

Ax x  is invertible, by Theorem 9. 

31. Since the equation Ax = b has a solution for each b, the matrix A has a pivot in each row (Theorem 4 in 
Section 1.4). Since A is square, A has a pivot in each column, and so there are no free variables in the 
equation Ax = b, which shows that the solution is unique. 

Note: The preceding argument shows that the (square) shape of A plays a crucial role. A less revealing proof 
is to use the “pivot in each row” and the IMT to conclude that A is invertible. Then Theorem 5 in Section 2.2 
shows that the solution of Ax = b is unique. 

32. If Ax = 0 has only the trivial solution, then A must have a pivot in each of its n columns. Since A is 
square (and this is the key point), there must be a pivot in each row of A. By Theorem 4 in Section 1.4, 
the equation Ax = b has a solution for each b in Rn. 

   Another argument: Statement (d) of the IMT is true, so A is invertible. By Theorem 5 in Section 2.2, 
the equation Ax = b has a (unique) solution for each b in Rn. 

33. (Solution in Study Guide) The standard matrix of T is 
5 9

,
4 7

A
− 

=  − 
 which is invertible because 

det A ≠ 0. By Theorem 9, the transformation T is invertible and the standard matrix of T–1 is A–1. From 

the formula for a 2×2 inverse, 1 7 9
.

4 5
A−  

=  
 

 So  

   ( )11
1 2 1 2 1 2

2

7 9
( , ) 7 9 , 4 5

4 5
x

T x x x x x x
x

−   
= = + +  
   

 

34. The standard matrix of T is 
6 8

,
5 7

A
− 

=  − 
 which is invertible because det A = 2 ≠ 0. By Theorem 9,  

T is invertible, and 1( )T − x  = Bx, where 1 7 81
5 62

B A−  
= =  

 
. Thus 

   11
1 2 1 2 1 2

2

7 81 7 5( , ) 4 , 3
5 62 2 2

x
T x x x x x x

x
−     = = + +        

 

35. (Solution in Study Guide) To show that T is one-to-one, suppose that T(u) = T(v) for some vectors u and 
v in Rn. Then S(T(u)) = S(T(v)), where S is the inverse of T. By Equation (1), u = S(T(u)) and S(T(v)) = v, 
so u = v. Thus T is one-to-one. To show that T is onto, suppose y represents an arbitrary vector in Rn and 
define x = S(y). Then, using Equation (2), T(x) = T(S(y)) = y, which shows that T maps Rn onto Rn. 

  Second proof: By Theorem 9, the standard matrix A of T is invertible. By the IMT, the columns of A are 
linearly independent and span Rn. By Theorem 12 in Section 1.9, T is one-to-one and maps Rn onto Rn. 

36. If T maps Rn onto Rn, then the columns of its standard matrix A span Rn, by Theorem 12 in Section 1.9. 
By the IMT, A is invertible. Hence, by Theorem 9 in Section 2.3, T is invertible, and A–1 is the standard 
matrix of T–1. Since A–1 is also invertible, by the IMT, its columns are linearly independent and span Rn. 
Applying Theorem 12 in Section 1.9 to the transformation T–1, we conclude that T–1 is a one-to-one 
mapping of Rn onto Rn.  
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37. Let A and B be the standard matrices of T and U, respectively. Then AB is the standard matrix of the 
mapping ( ( ))T Ux x , because of the way matrix multiplication is defined (in Section 2.1). By 
hypothesis, this mapping is the identity mapping, so AB = I. Since A and B are square, they are invertible, 
by the IMT, and B = A–1. Thus, BA = I. This means that the mapping ( ( ))U Tx x is the identity 
mapping, i.e., U(T(x)) = x for all x in Rn. 

38. Let A be the standard matrix of T. By hypothesis, T is not a one-to-one mapping. So, by Theorem 12 in 
Section 1.9, the standard matrix A of T has linearly dependent columns. Since A is square, the columns  
of A do not span Rn. By Theorem 12, again, T cannot map Rn onto Rn.  

39. Given any v in Rn, we may write v = T(x) for some x, because T is an onto mapping. Then, the assumed 
properties of S and U show that S(v) = S(T(x)) = x and U(v) = U(T(x)) = x. So S(v) and U(v) are equal for 
each v. That is, S and U are the same function from Rn into Rn. 

40. Given u, v in n, let x = S(u) and y = S(v). Then T(x)=T(S(u)) = u and T(y) = T(S(v)) = v, by  
equation (2). Hence 

  

( ) ( ( ) ( ))
( ( ))      Because is linear

      By equation (1)
( ) ( )

S S T T
S T T

S S

+ = +
= +
= +
= +

u v x y
x y

x y
u v

 

  So, S preserves sums. For any scalar r, 

  
( ) ( ( )) ( ( )) Because is linear

Byequation (1)
( )

S r S rT S T r T
r
rS

= =
=
=

u x x
x

u
 

  So S preserves scalar multiples. Thus S ia a linear transformation. 

41. [M]  a. The exact solution of (3) is x1 = 3.94 and x2 = .49. The exact solution of (4) is x1 = 2.90 and  
 x2 = 2.00. 
b. When the solution of (4) is used as an approximation for the solution in (3) , the error in using the 

value of 2.90 for x1 is about 26%, and the error in using 2.0 for x2 is about 308%. 
c. The condition number of the coefficient matrix is 3363. The percentage change in the solution from 

(3) to (4) is about 7700 times the percentage change in the right side of the equation. This is the same 
order of magnitude as the condition number. The condition number gives a rough measure of how 
sensitive the solution of Ax = b can be to changes in b. Further information about the condition 
number is given at the end of Chapter 6 and in Chapter 7. 

Note: See the Study Guide’s MATLAB box, or a technology appendix, for information on condition number. 
Only the TI-83+ and TI-89 lack a command for this. 

42. [M]  MATLAB gives cond(A) = 23683, which is approximately 104. If you make several trials with 
MATLAB, which records 16 digits accurately, you should find that x and x1 agree to at least 12 or 13 
significant digits. So about 4 significant digits are lost. Here is the result of one experiment. The vectors 
were all computed to the maximum 16 decimal places but are here displayed with only four decimal 
places: 

   

.9501

.21311
rand(4,1)

.6068

.4860

 
 
 = =
 
 
  

x , b = Ax = 

3.8493
5.5795

20.7973
.8467

− 
 
 
 
 
  

. The MATLAB solution is x1 = A\b = 

.9501

.2311

.6068

.4860

 
 
 
 
 
  

. 
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  However, x – x1 = 

.0171

.4858

.2360

.2456

 
 
 
 −
 
  

×10–12. The computed solution x1 is accurate to about  

12 decimal places. 

43. [M]  MATLAB gives cond(A) = 68,622. Since this has magnitude between 104 and 105, the estimated 
accuracy of a solution of Ax = b should be to about four or five decimal places less than the 16 decimal 
places that MATLAB usually computes accurately. That is, one should expect the solution to be accurate 
to only about 11 or 12 decimal places. Here is the result of one experiment. The vectors were all 
computed to the maximum 16 decimal places but are here displayed with only four decimal places: 

   x = rand(5,1) = 

.2190

.0470

.6789

.6793

.9347

 
 
 
 
 
 
  

, b = Ax = 

15.0821
.8165

19.0097
5.8188

14.5557

 
 
 
 
 − 
  

. The MATLAB solution is x1 = A\b = 

.2190

.0470

.6789

.6793

.9347

 
 
 
 
 
 
  

. 

  However, x – x1 = 11

.3165

.6743
10.3343

.0158

.0005

−

 
 − 
 ×
 
 
 − 

. The computed solution x1 is accurate to about 11 decimal places. 

44. [M]  Solve Ax = (0, 0, 0, 0, 1). MATLAB shows that 5cond( ) 4.8 10 .A ≈ ×  Since MATLAB computes 
numbers accurately to 16 decimal places, the entries in the computed value of x should be accurate to at 
least 11 digits. The exact solution is (630, –12600, 56700, –88200, 44100). 

45. [M]  Some versions of MATLAB issue a warning when asked to invert a Hilbert matrix of order 12 or 
larger using floating-point arithmetic. The product AA–1 should have several off-diagonal entries that are 
far from being zero. If not, try a larger matrix. 

Note: All matrix programs supported by the Study Guide have data for Exercise 45, but only MATLAB and 
Maple have a single command to create a Hilbert matrix. The HP-48G data for Exercise 45 contain a program 
that can be edited to create other Hilbert matrices. 

Notes: The Study Guide for Section 2.3 organizes the statements of the Invertible Matrix Theorem in a table 
that imbeds these ideas in a broader discussion of rectangular matrices. The statements are arranged in three 
columns: statements that are logically equivalent for any m×n matrix and are related to existence concepts, 
those that are equivalent only for any n×n matrix, and those that are equivalent for any n×p matrix and are 
related to uniqueness concepts. Four statements are included that are not in the text’s official list of 
statements, to give more symmetry to the three columns. You may or may not wish to comment on them.  

I believe that students cannot fully understand the concepts in the IMT if they do not know the correct 
wording of each statement. (Of course, this knowledge is not sufficient for understanding.) The Study  
Guide’s Section 2.3 has an example of the type of question I often put on an exam at this point in the course. 
The section concludes with a discussion of reviewing and reflecting, as important steps to a mastery of linear 
algebra. 
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2.4 SOLUTIONS 

Notes: Partitioned matrices arise in theoretical discussions in essentially every field that makes use of 
matrices. The Study Guide mentions some examples (with references).  

Every student should be exposed to some of the ideas in this section. If time is short, you might omit 
Example 4 and Theorem 10, and replace Example 5 by a problem similar to one in Exercises 1–10. (A sample 
replacement is given at the end of these solutions.) Then select homework from Exercises 1–13, 15, and 21–
24.  

The exercises just mentioned provide a good environment for practicing matrix manipulation. Also, 
students will be reminded that an equation of the form AB = I does not by itself make A or B invertible. (The 
matrices must be square and the IMT is required.) 

 1. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the 
entry of the left block-matrix on the left.  

   
0 0 0I A B IA C IB D A B

E I C D EA IC EB ID EA C EB D
+ +       

= =       + + + +       
 

 2. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the 
entry of the left block-matrix on the left. 

   
0 0 0

 
0 0 0
E A B EA C EB D EA EB

F C D A FC B FD FC FD
+ +       

= =       + +       
 

 3. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the 
entry of the left block-matrix on the left. 

   
0 0 0

 
0 0 0
I W X W IY X IZ Y Z

I Y Z IW Y IX Z W X
+ +       

= =       + +       
 

 4. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the 
entry of the left block-matrix on the left. 

   
0 0 0

 
I A B IA C IB D A B
X I C D XA IC XB ID XA C XB D

+ +       
= =       − − + − + − + − +       

 

 5. Compute the left side of the equation: 

   
0 0

0 0 0 0
A B I AI BX A BY
C X Y CI X C Y

+ +     
=     + +     

 

  Set this equal to the right side of the equation: 

   
0 0

   so that   
0 0 0 0

A BX BY I A BX BY I
C Z C Z

+ + = =   
=    = =   

 

  Since the (2, 1) blocks are equal, Z = C. Since the (1, 2) blocks are equal, BY = I. To proceed further, 
assume that B and Y are square. Then the equation BY =I implies that B is invertible, by the IMT, and  
Y = B–1. (See the boxed remark that follows the IMT.) Finally, from the equality of the (1, 1) blocks, 

   BX = –A,    B–1BX = B–1(–A),   and   X = –B–1A. 
  The order of the factors for X is crucial. 

Note: For simplicity, statements (j) and (k) in the Invertible Matrix Theorem involve square matrices 
C and D. Actually, if A is n×n and if C is any matrix such that AC is the n×n identity matrix, then C must be 
n×n, too. (For AC to be defined, C must have n rows, and the equation AC = I implies that C has n columns.)  
Similarly, DA = I implies that D is n×n. Rather than discuss this in class, I expect that in Exercises 5–8, when 
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students see an equation such as BY = I, they will decide that both B and Y should be square in order to use 
the IMT. 

 6. Compute the left side of the equation: 

   
0 0 0 0 0 0

0
X A XA B X C XA
Y Z B C YA ZB Y ZC YA ZB ZC

+ +       
= =       + + +       

 

  Set this equal to the right side of the equation: 

   
0 0 0 0

   so that   
0 0

XA I XA I
YA ZB ZC I YA ZB ZC I

= =   
=   + + = =   

 

  To use the equality of the (1, 1) blocks, assume that A and X are square. By the IMT, the equation  
XA =I implies that A is invertible and X = A–1. (See the boxed remark that follows the IMT.) Similarly,  
if C and Z are assumed to be square, then the equation ZC = I implies that C is invertible, by the IMT, 
and Z = C–1. Finally, use the (2, 1) blocks and right-multiplication by A–1: 

   YA = –ZB = –C–1B,    YAA–1 = (–C–1B)A–1,   and   Y = –C–1BA–1 
  The order of the factors for Y is crucial. 

 7. Compute the left side of the equation: 

   
0 0 0 0 0 0

0 0
0 0 0

A Z
X XA B XZ I
Y I YA IB YZ II

B I

 
+ + + +     =     + + + +     

 

  Set this equal to the right side of the equation: 

   
0 0

   so that   
0 0

XA XZ I XA I XZ
YA B YZ I I YA B YZ I I

= =   
=   + + + = + =   

 

  To use the equality of the (1, 1) blocks, assume that A and X are square. By the IMT, the equation XA =I 
implies that A is invertible and X = A–1. (See the boxed remark that follows the IMT) Also, X is  
invertible. Since XZ = 0, X– 1XZ = X– 10 = 0, so Z must be 0. Finally, from the equality of the (2, 1) 
blocks, YA = –B. Right-multiplication by A–1 shows that YAA–1 = –BA–1 and Y = –BA–1. The order of the 
factors for Y is crucial. 

 8. Compute the left side of the equation: 

   
0 0

0 0 0 0 0 0 0 0
A B X Y Z AX B AY B AZ BI

I I X I Y I Z II
+ + +     

=     + + +     
 

  Set this equal to the right side of the equation: 

   
0 0

0 0 0 0
AX AY AZ B I

I I
+   

=   
   

 

  To use the equality of the (1, 1) blocks, assume that A and X are square. By the IMT, the equation XA =I 
implies that A is invertible and X = A–1. (See the boxed remark that follows the IMT. Since AY = 0, from 
the equality of the (1, 2) blocks, left-multiplication by A–1 gives A–1AY = A–10 = 0, so Y = 0. Finally, from 
the (1, 3) blocks, AZ = –B. Left-multiplication by A–1 gives A–1AZ = A–1(–B), and Z = – A–1B. The order 
of the factors for Z is crucial. 

Note: The Study Guide tells students, “Problems such as 5–10 make good exam questions. Remember to 
mention the IMT when appropriate, and remember that matrix multiplication is generally not commutative.” 
When a problem statement includes a condition that a matrix is square, I expect my students to mention this 
fact when they apply the IMT. 
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 9. Compute the left side of the equation: 

   
11 12 11 21 31 12 22 32

21 22 11 21 31 12 22 32

31 32 11 21 31 12 22 32

0 0 0 0 0 0
0 0 0

0 0 0

I A A IA A A IA A A
X I A A XA IA A XA IA A
Y I A A YA A IA YA A IA

+ + + +     
     = + + + +     
     + + + +     

 

  Set this equal to the right side of the equation: 

   
11 12 11 12

11 21 12 22 22

11 31 12 32 32

0
0

A A B B
XA A XA A B
YA A YA A B

   
   + + =   
   + +   

 

   so that 
11 11 12 12

11 21 12 22 22

211 31 12 32 3

0
0

A B A B
XA A XA A B
YA A YA A B

= =
+ = + =
+ = + =

 

  Since the (2,1) blocks are equal, 11 21 11 210 and .XA A XA A+ = = −  Since A11 is invertible, right 
multiplication by 1 1

11 21 11gives .A X A A− −= −  Likewise since the (3,1) blocks are equal, 

11 31 11 310 and .YA A YA A+ = = −  Since A11 is invertible, right multiplication by 1 1
11 31 11gives .A Y A A− −= −  

Finally, from the (2,2) entries, 1 1
12 22 22 21 11 22 21 11 12 22.Since , .XA A B X A A B A A A A− −+ = = − = − +  

 10. Since the two matrices are inverses, 

   
0 0 0 0 0 0

0 0 0 0
0 0

I T I
C I Z I I
A B I X Y I I

     
     =     
          

 

Compute the left side of the equation: 

   
0 0 0 0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 0
0 0 0

I I II Z X I I Y I I
C I Z I CI IZ X C II Y C I I
A B I X Y I AI BZ I X A BI IY A B II

+ + + + + +     
     = + + + + + +     
     + + + + + +     

 

  Set this equal to the right side of the equation: 

   
0 0 0 0

0 0 0
0 0

I I
C Z I I

A BZ X B Y I I

   
   + =   
   + + +   

  

   so that 
0 0 0 0

0 0 0
0 0

I I
C Z I I

A BZ X B Y I I

= = =
+ = = =

+ + = + = =
 

  Since the (2,1) blocks are equal, 0 andC Z Z C+ = = − . Likewise since the (3, 2) blocks are equal, 
0 and .B Y Y B+ = = −  Finally, from the (3,1) entries, 0 and .A BZ X X A BZ+ + = = − −  

Since , ( )Z C X A B C A BC= − = − − − = − + . 

 11. a. True. See the subsection Addition and Scalar Multiplication. 
b. False. See the paragraph before Example 3. 

 12. a. True. See the paragraph before Example 4. 
b. False. See the paragraph before Example 3. 
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 13. You are asked to establish an if and only if statement. First, supose that A is invertible,  

  and let 1 D E
A

F G
−  

=  
 

. Then 

   
0 0

0 0
B D E BD BE I

C F G CF CG I
       

= =       
       

 

  Since B is square, the equation BD = I implies that B is invertible, by the IMT. Similarly, CG = I implies 
that C is invertible. Also, the equation BE = 0 imples that 1E B−= 0 = 0. Similarly F = 0. Thus 

   
1 1

1
1

0 0
0 0

B D E B
A

C E G C

− −
−

−

    
= = =     
      

  (*) 

  This proves that A is invertible only if B and C are invertible. For the “if ” part of the statement, suppose 
that B and C are invertible. Then (*) provides a likely candidate for 1A−  which can be used to show that 
A is invertible. Compute: 

   
1 1

1 1

0 0 0 0
0 00 0

B B BB I
C IC CC

− −

− −

      
= =      

         
 

  Since A is square, this calculation and the IMT imply that A is invertible. (Don’t forget this final 
sentence. Without it, the argument is incomplete.) Instead of that sentence, you could add the equation: 

   
1 1

1 1

0 0 0 0
0 00 0

B B B B I
C IC C C

− −

− −

      
= =      

         
 

 14. You are asked to establish an if and only if statement. First suppose that A is invertible. Example 5 shows 
that A11 and A22 are invertible. This proves that A is invertible only if A11 A22 are invertible. For the if part 
of this statement, suppose that A11 and A22 are invertible. Then the formula in Example 5 provides a likely 
candidate for 1A−  which can be used to show that A is invertible . Compute: 

   

1 1 1 11 1 1
11 11 12 11 11 12 22 12 2211 12 11 11 12 22

1 1 1 11
22 22 11 12 22 22 2222 11

1 1 1
11 11 12 22 12 22

1 1
12 22 12 22

0 ( )
0 0 0 0( )0

( )
0

0

A A A A A A A A AA A A A A A
A A A A A A A AA

I A A A A A A
I

I A A A A
I

− − − −− − −

− − − −−

− − −

− −

 + − +   −
 =   + − +       
 − +=  
 
 − += 


0
0
I

I
 

=  
 

 

  Since A is square, this calculation and the IMT imply that A is invertible. 

 15. Compute the right side of the equation: 

   11 111111

11 1111

00 0
0 0 0

A A YAI A I Y I Y
X A X A Y SX A SX I S I I
         

= =           +          
 

  Set this equal to the left side of the equation: 

   11 1111 11 11 12 11 12

11 2111 11 21 22 11 22
 so that   

A AA A Y A A A Y A
X A AX A X A Y S A A X A Y S A

= =   
=    =+ + =   

  

  Since the (1, 2) blocks are equal, 11 12.A Y A=  Since A11 is invertible, left multiplication by 1
11A − gives  

Y = 1
11 12.A A−  Likewise since the (2,1) blocks are equal, X A11 = A21. Since A11 is invertible, right 
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multiplication by 1
11A− gives that 1

21 11 .X A A−=  One can check that the matrix S as given in the exercise 
satisfies the equation 11 22X A Y S A+ = with the calculated values of X and Y given above. 

 16. Suppose that A and A11 are invertible. First note that  

   
0 0 0

 
0

I I I
X I X I I
     

=     −     
 

  and 

   
0

 
0 0 0
I Y I Y I

I I I
−     

=     
     

 

  Since the matrices
0

 and  
0

I I Y
X I I
   
   
   

 

are square, they are both invertible by the IMT. Equation (7) may be left multipled by  
10I

X I

−
 
 
 

 and right multipled by 
1

0
I Y

I

−
 
 
 

to find  

   
1 1

11 0 0
0 0

A I I Y
A

S X I I

− −
     

=     
     

 

  Thus by Theorem 6, the matrix 11 0
0

A
S

 
 
 

is invertible as the product of invertible matrices. Finally, 

Exercise 13 above may be used to show that S is invertible. 

 17. The column-row expansions of Gk and Gk+1 are: 

   
1 1 ...col ( ) row ( ) col ( ) row ( )

T
k k k

T T
k k k k k k

G X X

X X X X

=

= + +
 

  and 

   

1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

...col ( ) row ( ) col ( ) row ( ) col ( ) row ( )
...col ( ) row ( ) col ( ) row ( ) col ( ) row ( )

col ( ) row ( )

T
k k k

T T T
k k k k k k k k k k

T T T
k k k k k k k k k k

T
k k k k k

G X X

X X X X X X

X X X X X X

G X X

+ + +

+ + + + + + + +

+ + +

+ + +

=

= + + +

= + + +

= +

 

  since the first k columns of Xk+1 are identical to the first k columns of Xk. Thus to update Gk to produce 
Gk+1, the number colk+1 (Xk+1) rowk+1 ( )T

kX should be added to Gk. 

 18. Since [ ]0 ,W X= x  

   0
0

0 0 0 0

 [  ]
T T T

T
T T T

X X X X
W W X

X

   
= =   
      

x
x

x x x x
 

  By applying the formula for S from Exercise 15, S may be computed: 

   

1
0 0 0 0

1
0 0

0 0

( )

( ( ) )

T T T T

T T T
m

T

S X X X X

I X X X X

M

−

−

= −

= −

=

x x x x

x x

x x
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 19. The matrix equation (8) in the text is equivalent to 
   ( ) 0 and nA sI B C− + = + = yx u x u  

  Rewrite the first equation as ( ) .nA sI B− = −x u When nA sI− is invertible, 

   1 1( ) ( ) ( )n nA sI B A sI B− −= − − = − −x u u  

  Substitute this formula for x into the second equation above:  

   1 1( ( ) )  so that ( )n m nC A sI B I C A sI B− −− − + = − − =u u y u u y,  

  Thus 1( ( ) ) .m nI C A sI B−= − −y u If 1( ) ( ) ,m nW s I C A sI B−= − − then ( ) .W s=y u  The matrix W(s) is the 
Schur complement of the matrix nA sI− in the system matrix in equation (8) 

 20. The matrix in question is  

   n

m

A BC sI B
C I

− − 
 − 

 

  By applying the formula for S from Exercise 15, S may be computed: 

   
1

1

( )( )

( )
m m

m m

S I C A BC sI B

I C A BC sI B

−

−

= − − − −

= + − −
 

 21. a. 2
2

1 0 0 01 0 1 0 1 0
3 1 3 1 0 13 3 0 ( 1)

A
+ +      

= = =      − − − + −      
 

b. 
2

2
2

0 0 0 0 0 0
00 ( )

A A A I
M

I A I A IA A A

 + +     
= = =      − − − + −       

 

 22. Let C be any nonzero 2×3 matrix. Define 3

2

0I
A

C I
 

=  − 
. Then 

   33 3 32
2

2 2 23 2 2

0 0 00 0 0
00 ( )

II I I
A

C I C I ICI I C I

+ +      
= = =      − − − + −      

 

 23. The product of two 1×1 “lower triangular” matrices is “lower triangular.” Suppose that for n = k, the 
product of two k×k lower triangular matrices is lower triangular, and consider any (k+1)× (k+1) matrices 
A1 and B1. Partition these matrices as 

   1 1,
T Ta bA B
A B

   
= =   
   

0 0
v w

 

  where A and B are k×k matrices, v and w are in Rk, and a and b are scalars. Since A1 and B1 are lower 
triangular, so are A and B. Then 

   1 1

T T TT T T

T

ab a Ba b abA B
A B b A ABb A AB

      + +
= = =      ++ +       

0 w 0 00 0 0
v w v wv w v0

 

  Since A and B are k×k, AB is lower triangular. The form of A1B1 shows that it, too, is lower triangular. 
Thus the statement about lower triangular matrices is true for n = k +1 if it is true for n = k. By the 
principle of induction, the statement is true for all n > 1. 
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Note: Exercise 23 is good for mathematics and computer science students. The solution of Exercise 23 in the 
Study Guide shows students how to use the principle of induction. The Study Guide also has an appendix on 
“The Principle of Induction,” at the end of Section 2.4. The text presents more applications of induction in 
Section 3.2 and in the Supplementary Exercises for Chapter 3.  

 24. Let 

1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0

,1 1 1 0 0 1 1 0

1 1 1 1 0 1 1

n nA B

   
   −   
   = = −
   
   
   −   

. 

  By direct computation A2B2 = I2. Assume that for n = k, the matrix AkBk is Ik, and write 

   1 1
1 1   and   

T T

k k
k k

A B
A B+ +

   
= =   
   

0 0
v w

 

  where v and w are in Rk , vT = [1  1  ⋅ ⋅ ⋅  1], and wT = [–1  0  ⋅ ⋅ ⋅  0]. Then  

   1 1 1
11 1 1T T TT T T

k
k k kT

k k kk k k

B
A B I

A B IA A B
+ + +

      + +
= = = =      

+ +       

0 w 0 00 0 0
v w 0v w v0

 

  The (2,1)-entry is 0 because v equals the first column of Ak., and Akw is –1 times the first column of Ak. 
By the principle of induction, AnBn = In for all n > 2. Since An and Bn are square, the IMT shows that 
these matrices are invertible, and 1.n nB A−=  

Note: An induction proof can also be given using partitions with the form shown below. The details are 
slightly more complicated. 

   1 1   and   
1 1

k k
k kT T

A B
A B+ +

   
= =   
   

0 0

v w
 

   1 1 11 1 10 1

T k
k k kk k

k k kT T T T T
k

A B IA B A
A B I

B
+ + +

      + +
= = = =      

+ +       
T

0 0 00w 0 0
v w 0v w v

 

  The (2,1)-entry is 0T because vT times a column of Bk equals the sum of the entries in the column, and all 
of such sums are zero except the last, which is 1. So vTBk is the negative of wT. By the principle of 
induction, AnBn = In for all n > 2. Since An and Bn are square, the IMT shows that these matrices are 
invertible, and 1.n nB A−=  

 25. First, visualize a partition of A as a 2×2 block–diagonal matrix, as below, and then visualize the 
(2,2)-block itself as a block-diagonal matrix. That is, 

   11

22

1 2 0 0 0
3 5 0 0 0 0
0 0 2 0 0 0
0 0 0 7 8
0 0 0 5 6

A
A A

 
 
   
 = =  
    
 
  

, where 22

2 0 0
2 0

0 7 8
0

0 5 6
A

B

 
  = =       
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  Observe that B is invertible and B–1 = 
3 4

2.5 3.5
− 

 − 
. By Exercise 13, the block diagonal matrix A22 is 

invertible, and 

   1
22

.5 0 .5 0 0
3 4 0 3 40
2.5 3.5 0 2.5 3.5

A−

   
   −= = −   
 −  −  

 

  Next, observe that A11 is also invertible, with inverse 
5 2
3 1

− 
 − 

. By Exercise 13, A itself is invertible, 

and its inverse is block diagonal: 

   
1

111
1

22

5 2 5 2 0 0 00
3 1 3 1 0 0 0

0 .5 0 0 0 0 .5 0 0
0 0 0 3 4 0 0 0 3 4

0 2.5 3.5 0 0 0 2.5 3.5

A
A

A

−
−

−

−  − 
   − −    
   = = = 
      − −   
   − −  

 

 26. [M] This exercise and the next, which involve large matrices, are more appropriate for MATLAB, 
Maple, and Mathematica, than for the graphic calculators. 
a. Display the submatrix of A obtained from rows 15 to 20 and columns 5 to 10.  
  MATLAB:    A(15:20, 5:10)  
  Maple:  submatrix(A, 15..20, 5..10) 
  Mathematica:  Take[ A, {15,20}, {5,10} ] 

b. Insert a 5×10 matrix B into rows 10 to 14 and columns 20 to 29 of matrix A: 
  MATLAB:   A(10:14, 20:29) = B ;   The semicolon suppresses output display. 
  Maple:  copyinto(B, A, 10, 20): The colon suppresses output display. 

  Mathematica: For [ i=10, i<=14, i++, 
     For [ j=20, j<=29, j++, 
     A [[ i,j ]] = B [[ i-9, j-19 ]] ] ]; Colon suppresses output. 

c. To create 
0

0 T

A
B

A
 

=  
 

 with MATLAB, build B out of four blocks: 

   B = [A zeros(30,20); zeros(20,30) A’]; 

  Another method: first enter B = A ; and then enlarge B with the command 
   B(21:50, 31:50) = A’; 

  This places AT in the (2, 2) block of the larger B and fills in the (1, 2) and (2, 1) blocks with zeros.  
  For Maple: 
   B := matrix(50,50,0): 

   copyinto(A, B, 1, 1): 

   copyinto( transpose(A), B, 21, 31): 

  For Mathematica: 
  B = BlockMatrix[ {{A, ZeroMatrix[30,20]}, ZeroMatrix[20,30], 

Transpose[A]}} ] 
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 27. a. [M] Construct A from four blocks, say C11, C12, C21, and C22, for example with C11 a 30×30 matrix 
and C22 a 20×20 matrix. 

  MATLAB: C11 = A(1:30, 1:30) + B(1:30, 1:30) 
   C12 = A(1:30, 31:50) + B(1:30, 31:50) 

   C21 = A(31:50, 1:30)+ B(31:50, 1:30) 

   C22 = A(31:50, 31:50) + B(31:50, 31:50) 

   C = [C11 C12; C21 C22] 

  The commands in Maple and Mathematica are analogous, but with different syntax. The first 
commands are: 

  Maple: C11 := submatrix(A, 1..30, 1..30) + submatrix(B, 1..30, 1..30) 
  Mathematica:  c11 := Take[ A, {1,30), {1,30} ] + Take[B, {1,30), {1,30} ] 

b. The algebra needed comes from block matrix multiplication: 

   11 12 11 12 11 11 12 21 11 12 12 22

21 22 21 22 21 11 22 21 21 12 22 22

A A B B A B A B A B A B
AB

A A B B A B A B A B A B
+ +     

= =     + +     
 

Partition both A and B, for example with 30×30 (1, 1) blocks and 20×20 (2, 2) blocks. The four 
necessary submatrix computations use syntax analogous to that shown for (a). 

c. The algebra needed comes from the block matrix equation 11 1 1

21 22 2 2

0A
A A
     

=     
     

x b
x b

, where x1 and b1 

are in R30 and x2 and b2 are in R20. Then A1 1x1 = b1, which can be solved to produce x1. Once x1 is 
found, rewrite the equation A21x1 + A22x2 = b2 as A22x2 = c, where c = b2 – A21x1, and solve A22x2 = c 
for x2. 

Notes: The following may be used in place of Example 5: 

  Example 5: Use equation (*) to find formulas for X, Y, and Z in terms of A, B, and C. Mention any 
assumptions you make in order to produce the formulas. 

   
0 0 0X I I

Y Z A B C I
     

=     
     

       (*) 

  Solution: 
  This matrix equation provides four equations that can be used to find X, Y, and Z: 
   X + 0 = I, 0 = 0 
   YI + ZA = C,  Y0 + ZB = I (Note the order of the factors.) 
  The first equation says that X = I. To solve the fourth equation, ZB = I, assume that B and Z are square.  

In this case, the equation ZB = I implies that B and Z are invertible, by the IMT. (Actually, it suffices to 
assume either that B is square or that Z is square.) Then, right-multiply each side of ZB = I to get  
ZBB–1 = IB–1 and Z = B–1. Finally, the third equation is Y + ZA = C. So, Y + B–1A = C, and Y = C – B–1A. 

   The following counterexample shows that Z need not be square for the equation (*) above to be true. 

   

1 0 0 0
1 0 0 0 0 1 0 0 0

0 1 0 0
0 1 0 0 0 0 1 0 0

1 1 2 5
1 2 1 3 1 6 5 1 0

1 1 1 3
3 4 1 0 1 3 6 0 1

1 1 2 4

 
    
    
     =
    − −    −       − 
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  Note that Z is not determined by A, B, and C, when B is not square. For instance, another Z that works in 

this counterexample is 
3 5 0
1 2 0

Z
 

=  − − 
. 

2.5 SOLUTIONS 

Notes: Modern algorithms in numerical linear algebra are often described using matrix factorizations. For 
practical work, this section is more important than Sections 4.7 and 5.4, even though matrix factorizations are 
explained nicely in terms of change of bases. Computational exercises in this section emphasize the use of the 
LU factorization to solve linear systems. The LU factorization is performed using the algorithm explained in 
the paragraphs before Example 2, and performed in Example 2. The text discusses how to build L when no 
interchanges are needed to reduce the given matrix to U. An appendix in the Study Guide discusses how to 
build L in permuted unit lower triangular form when row interchanges are needed. Other factorizations are 
introduced in Exercises 22–26. 

 1. 
1 0 0 3 7 2 7
1 1 0 , 0 2 1 , 5 . First, solve .
2 5 1 0 0 1 2

L U L
− − −     

     = − = − − = =     
     − −     

b y b  

   
1 0 0 7 1 0 0 7

[ ] 1 1 0 5 ~ 0 1 0 2
2 5 1 2 0 5 1 16

L
− −   

   = − −   
   − −   

b  The only arithmetic is in column 4 

   
1 0 0 7 7

 0 1 0 2 , so 2 .
0 0 1 6 6

− −   
   ∼ − = −   
      

y  

  Next, solve Ux = y, using back-substitution (with matrix notation). 

   
3 7 2 7 3 7 2 7 3 7 0 19

[ ] 0 2 1 2 0 2 1 2 0 2 0 8
0 0 1 6 0 0 1 6 0 0 1 6

U
− − − − − − − −     

     = − − −  ∼ − − −  ∼ − −     
     − − −     

y  

    
3 7 0 19 3 0 0 9 1 0 0 3

~ 0 1 0 4 0 1 0 4 0 1 0 4
0 0 1 6 0 0 1 6 0 0 1 6

− −     
      ∼  ∼      
     − − −     

 

  So x = (3, 4, –6). 
  To confirm this result, row reduce the matrix [A b]: 

   
3 7 2 7 3 7 2 7 3 7 2 7

[ ] 3 5 1 5 0 2 1 2 0 2 1 2
6 4 0 2 0 10 4 16 0 0 1 6

A
− − − − − − − − −     

     = −  ∼ − − −  ∼ − − −     
     − −     

b  

  From this point the row reduction follows that of [U   y] above, yielding the same result. 
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 2. 
1 0 0 4 3 5 2
1 1 0 , 0 2 2 , 4
2 0 1 0 0 2 6

L U
−     

     = − = − = −     
          

b . First, solve Ly = b: 

   
1 0 0 2 1 0 0 2

[ ] 1 1 0 4 0 1 0 2  ,
2 0 1 6 0 0 1 2

L
   
   = − −  ∼ −   
      

b  

  so 
2
2 .
2

 
 = − 
  

y  

  Next solve Ux = y, using back-substitution (with matrix notation): 

   
4 3 5 2 4 3 5 2 4 3 0 7

[ ] 0 2 2 2 0 2 2 2 0 2 0 4
0 0 2 2 0 0 1 1 0 0 1 1

U
− −     

     = − −  ∼ − −  ∼ − −     
          

y  

   
4 3 0 7 4 0 0 1 1 0 0 1/4
0 1 0 2 0 1 0 2 0 1 0 2 ,
0 0 1 1 0 0 1 1 0 0 1 1

     
     ∼ ∼ ∼      
          

 

  so (1/ 4,2,1).=x  To confirm this result, row reduce the matrix [A   b]: 

   
4 3 5 2 4 3 5 2

[ ] 4 5 7 4 0 2 2 2
8 6 8 6 0 0 2 2

A
− −   

   = − − −  ∼ − −   
   −   

b  

  From this point the row reduction follows that of [U  y] above, yielding the same result. 

 3. 
1 0 0 2 1 2 1
3 1 0 , 0 3 4 , 0
4 1 1 0 0 1 4

L U
−     

     = − = − =     
     −     

b . First, solve Ly = b: 

   
1 0 0 1 1 0 0 1 1 0 0 1

[ ] 3 1 0 0 0 1 0 3 0 1 0 3  ,
4 1 1 4 0 1 1 0 0 0 1 0

L
     
     = − ∼ ∼     
     − −     

b  

  so 
1
3 .
3

 
 =  
  

y  

  Next solve Ux = y, using back-substitution (with matrix notation): 

   
2 1 2 1 2 1 0 5 2 1 0 5

[ ] 0 3 4 3  0 3 0 9  0 1 0 3
0 0 1 3 0 0 1 3 0 0 1 3

U
− − − − −     

     = − ∼ − − ∼     
          

y    

   
2 0 0 2
0 1 0 3  ,
0 0 1 3

− 
 ∼  
  

 

  so x = (–1, 3, 3). 
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 4. 
1 0 0 2 2 4 0

1/ 2 1 0 , 0 2 1 , 5
3 / 2 5 1 0 0 6 7

L U
−     

     = = − − = −     
     − −     

b . First, solve Ly = b: 

   
1 0 0 0 1 0 0 0 1 0 0 0

[ ] 1 / 2 1 0 5 0 1 0 5 0 1 0 5  ,
3 / 2 5 1 7 0 5 1 7 0 0 1 18

L
     
     = − ∼ − ∼ −     
     − − −     

b  

  so 
0
5  .

18

 
 = − 
 − 

y  

  Next solve Ux = y, using back-substitution (with matrix notation): 

   
2 2 4 0 2 2 4 0 2 2 0 12

[ ] 0 2 1 5   0 2 1 5   0 2 0 2
0 0 6 18 0 0 1 3 0 0 1 3

U
− − − −     

     = − − − ∼ − − − ∼ − −     
     − −     

y  

   
2 2 0 12 2 0 0 10 1 0 0 5
0 1 0 1 0 1 0 1 0 1 0 1  ,
0 0 1 3 0 0 1 3 0 0 1 3

− − − −     
     ∼ ∼ ∼     
          

 

   so x = (–5, 1, 3). 

 5. 

1 0 0 0 1 2 4 3 1
2 1 0 0 0 3 1 0 7

 , ,  .
1 0 1 0 0 0 2 1 0
4 3 5 1 0 0 0 1 3

L U

− − −     
     −     = = =
     −
     − −          

b  First solve Ly = b: 

   

1 0 0 0 1 1 0 0 0 1
2 1 0 0 7 0 1 0 0 5

[ ]
1 0 1 0 0 0 0 1 0 1
4 3 5 1 3 0 3 5 1 7

L

   
   
   = ∼
   −
   − − −      

b  

   

1 0 0 0 1 1 0 0 0 1
0 1 0 0 5 0 1 0 0 5

,
0 0 1 0 1 0 0 1 0 1
0 0 5 1 8 0 0 0 1 3

   
   
   ∼ ∼
   
   − − −      

 

   so 

1
5

.
1
3

 
 
 =
 
 −  

y  

  Next solve Ux = y, using back-substitution (with matrix notation): 

   

1 2 4 3 1 1 2 4 0 8
0 3 1 0 5 0 3 1 0 5

[ ]
0 0 2 1 1 0 0 2 0 4
0 0 0 1 3 0 0 0 1 3

U

− − − − − −   
   − −   = ∼
   
   − −      

y  
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1 2 4 0 8 1 2 0 0 0
0 3 1 0 5 0 3 0 0 3
0 0 1 0 2 0 0 1 0 2
0 0 0 1 3 0 0 0 1 3

− − − −   
   − −   ∼ ∼
   
   − −      

 

   

1 2 0 0 0 1 0 0 0 2
0 1 0 0 1 0 1 0 0 1

,
0 0 1 0 2 0 0 1 0 2
0 0 0 1 3 0 0 0 1 3

− −   
   − −   ∼ ∼
   
   − −      

 

  so x = (–2, –1, 2, –3). 

 6. 

1 0 0 0 1 3 4 0 1
3 1 0 0 0 3 5 2 2

 ,  , .
3 2 1 0 0 0 2 0 1
5 4 1 1 0 0 0 1 2

L U

     
     − −     = = =
     − − −
     − −          

b First, solve Ly = b: 

   

1 0 0 0 1 1 0 0 0 1
3 1 0 0 2 0 1 0 0 1

[ ]
3 2 1 0 1 0 2 1 0 4
5 4 1 1 2 0 4 1 1 7

L

   
   − −   = ∼
   − − − −
   − − −      

b  

    

1 0 0 0 1 1 0 0 0 1
0 1 0 0 1 0 1 0 0 1

,
0 0 1 0 2 0 0 1 0 2
0 0 1 1 3 0 0 0 1 1

   
   
   ∼ ∼
   − −
   −      

 

  so 

1
1

.
2

1

 
 
 =
 −
 
  

y  

  Next solve Ux = y, using back-substitution (with matrix notation): 

   

1 3 4 0 1 1 3 4 0 1
0 3 5 2 1 0 3 5 0 1

[ ]
0 0 2 0 2 0 0 2 0 2
0 0 0 1 1 0 0 0 1 1

U

   
   −   = ∼
   − − − −
   
      

y  

   

1 3 4 0 1 1 3 0 0 3
0 3 5 0 1 0 3 0 0 6
0 0 1 0 1 0 0 1 0 1
0 0 0 1 1 0 0 0 1 1

−   
   − −   ∼ ∼
   
   
      

 

   

1 3 0 0 3 1 0 0 0 3
0 1 0 0 2 0 1 0 0 2

,
0 0 1 0 1 0 0 1 0 1
0 0 0 1 1 0 0 0 1 1

−   
   − −   ∼ ∼
   
   
      

 

  so x = (3, –2, 1, 1). 
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 7. Place the first pivot column of 
2 5
3 4

 
 − − 

 into L, after dividing the column by 2 (the pivot), then add  

3/2 times row 1 to row 2, yielding U. 

   
2 5 2 5

~
3 4 0 7/2

A U
   

= =   − −   
 

   2
 

3 [7 / 2 ]
 
 − 

 

   2 7 / 2÷ ÷  

   1 1 0
, 

3 /2 1 3 /2 1
L

   
=   − −   

 

 8. Row reduce A to echelon form using only row replacement operations. Then follow the algorithm in 
Example 2 to find L. 

   
6 9 6 9
4 5 0 1

A U
   

= ∼ =   −   
 

   6
 

4 [ 1]
 
  − 

 

   
6 1

1 1 0
,  

2 / 3 1 2 / 3 1
L

÷ ÷ −

   
=   

   

 

 9. 
3 1 2 3 1 2 3 1 2
3 2 10 0 3 12 ~ 0 3 12
9 5 6 0 2 0 0 0 8

A U
− − −     

     = − − ∼ − − =     
     − − −     

 

   
3
3 3

  
9 2  [ 8]

 
 − −      − −   

 

      ÷3       ÷ –3     ÷ –8 

   
1 1 0 0
1 1 , 1 1 0
3 2 / 3 1 3 2 / 3 1

L
   
   − = −   
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 10. 
5 3 4 5 3 4 5 3 4

10 8 9 ~ 0 2 1 ~ 0 2 1
15 1 2 0 10 14 0 0 9

A U
− − −     
     = − − − − − − =     
          

 

  

5
10 2
15 10 [ 9 ]

5 2 9

1 1 0 0
2 1 , 2 1 0
3 5 1 3 5 1

L

− 
  −        
÷ − ÷ − ÷

   
   − = −   
   − − − −   

 

 11. 
3 6 3 3 6 3 3 6 3
6 7 2 0 5 4 0 5 4
1 7 0 0 5 1 0 0 5

A U
− − −     

     = − ∼ − ∼ − =     
     −     

 

   

3
6 5

 
1  5 [ 5 ]
3 5 5

1 1 0 0
2 1 , 2 1 0

1 / 3 1 1 1 / 3 1 1
L

 
       −   
÷ ÷ ÷

   
   =   
   − −   

 

 12. Row reduce A to echelon form using only row replacement operations. Then follow the algorithm in 
Example 2 to find L. Use the last column of I3 to make L unit lower triangular. 

   

2 4 2 2 4 2 2 4 2
1 5 4 0 7 5 0 7 5
6 2 4 0 14 10 0 0 0

2
1 7
6 14
2 7

1 1 0 0
1/2 1 , 1/2 1 0

3 2 1 3 2 1

A U

L

− − −     
     = − ∼ − ∼ − =     
     − − −     

 
 

  
  − −   

÷ ÷

   
   =   
   − − − −   

 



118 CHAPTER 2 • Matrix Algebra 

 13. 

1 3 5 3 1 3 5 3 1 3 5 3
1 5 8 4 0 2 3 1 0 2 3 1

No more pivots!
4 2 5 7 0 10 15 5 0 0 0 0
2 4 7 5 0 2 3 1 0 0 0 0

U

− − − − − −     
     − − − −     ∼ ∼ =
     − − −
     − − − −     

 

  

4

1
1 2

 
4 10

Use the last two columns of to make  unit lower triangular.2 2 I L

 
 − −      −    −   

 

  
1 –2

1 1 0 0 0
1 1 1 1 0 0

,  
4 5 1 4 5 1 0
2 1 0 1 2 1 0 1

L

÷ ÷

   
   − −   =
   
   − − − −      

 

 14. 

1 4 1 5 1 4 1 5 1 4 1 5
3 7 2 9 0 5 1 6 0 5 1 6
2 3 1 4 0 5 1 6 0 0 0 0
1 6 1 7 0 10 2 12 0 0 0 0

A U

− − −     
     − − − − −     = ∼ ∼ =
     − − − −
     − − −          

 

   

4

1
53

52
Use the last two columns of to make  unit lower triangular.101 I L

 
  −     −     −   

 

   
1 –5

1 1 0 0 0
3 1 3 1 0 0

, 
2 1 1 2 1 1 0
1 2 0 1 1 2 0 1

L

÷ ÷

   
   
   =
   − − − −
   − − − −      

 



2.5 • Solutions   119 

 15. 
2 4 4 2 2 4 4 2 2 4 4 2
6 9 7 3 0 3 5 3 0 3 5 3
1 4 8 0 0 6 10 1 0 0 0 5

A U
− − − − − −     

     = − − ∼ − ∼ − =     
     − − − −     

 

   

2
6 3
1 6 [ 5 ]
2 3 5

1 1 0 0
3 1 , 3 1 0

1 / 2 2 1 1 / 2 2 1
L

 
       − −  

÷ ÷ ÷

   
   =   
   − − − −   

 

 16. 

2 6 6 2 6 6 2 6 6
4 5 7 0 7 5 0 7 5

~ ~3 5 1 0 14 10 0 0 0
6 4 8 0 14 10 0 0 0
8 3 9 0 21 15 0 0 0

A U

− − −     
     − − − −     
     = =− −
     − − −     
     − −     

 

   

5

2
4 7

 3 14
6 14
8 21 Use the last three columns of to make  unit lower triangular.I L

 
 − −          − −         

 

   
2 –7

1 1 0 0 0 0
2 1 2 1 0 0 0

, 3 / 2 2 1 3 / 2 2 1 0 0
3 2 0 1 3 2 0 1 0
4 3 0 0 1 4 3 0 0 1

L

÷ ÷

   
   − −   
   =− −
   − −   
   − −   

 

 17. 
1 0 0 4 3 5
1 1 0 ,  0 2 2
2 0 1 0 0 2

L U
−   

   = − = −   
      

 To find L–1, use the method of Section 2.2; that is, row  

reduce [L   I ]: 

   1
1 0 0 1 0 0 1 0 0 1 0 0

[ ] 1 1 0 0 1 0 0 1 0 1 1 0 [ ],
2 0 1 0 0 1 0 0 1 2 0 1

L I I L−
   
   = − ∼ =   
   −   
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  so 1
1 0 0
1 1 0
2 0 1

L−
 
 =  
 − 

. Likewise to find U –1, row reduce [ ]U I : 

   
4 3 5 1 0 0 4 3 0 1 0 5/ 2

[ ] 0 2 2 0 1 0 0 2 0 0 1 1
0 0 2 0 0 1 0 0 2 0 0 1

U I
−   

   = − ∼ − −   
      

 

   1
4 0 0 1 3/ 2 1 1 0 0 1/ 4 3/8 1/ 4
0 2 0 0 1 1 0 1 0 0 1/ 2 1/ 2 [ ],
0 0 2 0 0 1 0 0 1 0 0 1/ 2

I U −
   
   ∼ − − ∼ − =   
      

 

  1
1/ 4 3/8 1/ 4

so 0 1/ 2 1/ 2 . Thus
0 0 1/ 2

U −
 
 = − 
  

 

   1 1 1
1/ 4 3/8 1/ 4 1 0 0 1/8 3/8 1/ 4

0 1/ 2 1/ 2 1 1 0 3/ 2 1/ 2 1/ 2
0 0 1/ 2 2 0 1 1 0 1/ 2

A U L− − −
     
     = = − = − −     
     − −     

 

 18. 1
1 0 0 2 1 2
3 1 0 , 0 3 4 Tofind , row reduce[ ]:
4 1 1 0 0 1

L U L L I−
−   

   = − = −   
   −   

 

          [ ]
1 0 0 1 0 0 1 0 0 1 0 0
3 1 0 0 1 0 ~ 0 1 0 3 1 0
4 1 1 0 0 1 0 1 1 4 0 1

L I
   
   = −   
   − − −   

 

    1
1 0 0 1 0 0

~ 0 1 0 3 1 0 ,
0 0 1 1 1 1

I L−
 
   =   
 − 

 

  [ ]1 1
1 0 0

so 3 1 0 . Likewise tofind , row reduce :
1 1 1

L U U I− −
 
 =  
 − 

 

       [ ]
2 1 2 1 0 0 2 1 0 1 0 2
0 3 4 0 1 0 ~ 0 3 0 0 1 4
0 0 1 0 0 1 0 0 1 0 0 1

U I
− − −   

   = − − −   
      

 

   
2 1 0 1 0 2 2 0 0 1 1/ 3 2 / 3

~ 0 1 0 0 1/ 3 4 / 3 ~ 0 1 0 0 1/ 3 4 / 3
0 0 1 0 0 1 0 0 1 0 0 1

− − − −   
   − −   
      

 

   1
1 0 0 1/ 2 1/ 6 1/ 3

~ 0 1 0 0 1/ 3 4 / 3 [ ],
0 0 1 0 0 1

I U −
− − 

 − = 
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  1
1/ 2 1/ 6 1/ 3

so 0 1/ 3 4 / 3 . Thus
0 0 1

U −
− − 

 = − 
  

 

   1 1 1
1/ 2 1/ 6 1/ 3 1 0 0 1/ 3 1/ 2 1/ 3

0 1/3 4 /3 3 1 0 7 / 3 1 4 /3
0 0 1 1 1 1 1 1 1

A U L− − −
− − − −     

     = = − = −     
     − −     

 

 19. Let A be a lower-triangular n × n matrix with nonzero entries on the diagonal, and consider the 
augmented matrix [A  I]. 
a. The (1, 1)-entry can be scaled to 1 and the entries below it can be changed to 0 by adding multiples 

of row 1 to the rows below. This affects only the first column of A and the first column of I. So the 
(2, 2)-entry in the new matrix is still nonzero and now is the only nonzero entry of row 2 in the first 
 n columns (because A was lower triangular). 

   The (2, 2)-entry can be scaled to 1, the entries below it can be changed to 0 by adding multiples 
of row 2 to the rows below. This affects only columns 2 and n + 2 of the augmented matrix. Now the 
(3, 3) entry in A is the only nonzero entry of the third row in the first n columns, so it can be scaled to 
1 and then used as a pivot to zero out entries below it. Continuing in this way, A is eventually reduced 
to I, by scaling each row with a pivot and then using only row operations that add multiples of the 
pivot row to rows below. 

b. The row operations just described only add rows to rows below, so the I on the right in [A I] changes 
into a lower triangular matrix. By Theorem 7 in Section 2.2, that matrix is A–1. 

 20. Let A = LU be an LU factorization for A. Since L is unit lower triangular, it is invertible by Exercise 19. 
Thus by the Invertible Matrix Theroem, L may be row reduced to I. But L is unit lower triangular, so it 
can be row reduced to I by adding suitable multiples of a row to the rows below it, beginning with the top 
row. Note that all of the described row operations done to L are row-replacement operations. If 
elementary matrices E1, E2, … Ep implement these row-replacement operations, then 

   2 1 2 1... ( ... )p pE E E A E E E LU IU U= = =  

  This shows that A may be row reduced to U using only row-replacement operations. 

 21. (Solution in Study Guide.) Suppose A = BC, with B invertible. Then there exist elementary matrices  
E1, …, Ep corresponding to row operations that reduce B to I, in the sense that Ep … E1B = I. Applying 
the same sequence of row operations to A amounts to left-multiplying A by the product Ep … E1. By 
associativity of matrix multiplication. 

   1 1... ...p pE E A E E BC IC C= = =  

  so the same sequence of row operations reduces A to C. 

 22. First find an LU factorization for A. Row reduce A to echelon form using only row replacement 
operations: 

   

2 4 2 3 2 4 2 3 2 4 2 3
6 9 5 8 0 3 1 1 0 3 1 1

~ ~2 7 3 9 0 3 1 6 0 0 0 5
4 2 2 1 0 6 2 7 0 0 0 5
6 3 3 4 0 9 3 13 0 0 0 10

A

− − − − − −     
     − − − −     
     = − − − −
     − − − − −     
     − − −     

 



122 CHAPTER 2 • Matrix Algebra 

   

2 4 2 3
0 3 1 1

~ 0 0 0 5
0 0 0 0
0 0 0 0

U

− − 
 − 
  =
 
 
  

 

  then follow the algorithm in Example 2 to find L. Use the last two columns of I5 to make L unit lower 
triangular. 

   

2
6 3

52 3
54 6

106 9
2 3 5

1 1 0 0 0 0
3 1 3 1 0 0 0

,1 1 1 1 1 1 0 0
2 2 1 1 2 2 1 1 0
3 3 2 0 1 3 3 2 0 1

L

 
        −        −       − −     
÷ ÷ ÷

   
   
   
   =− −
   − −   
   − − −   

 

  Now notice that the bottom two rows of U contain only zeros. If one uses the row-column method to find 
LU, the entries in the final two columns of L will not be used, since these entries will be multiplied zeros 
from the bottom two rows of U. So let B be the first three columns of L and let C be the top three rows of 
U. That is, 

   

1 0 0
2 4 2 33 1 0

, 0 3 1 11 1 1
0 0 0 52 2 1

3 3 2

B C

 
  − −     = = −−     −   
 − 

 

  Then B and C have the desired sizes and BC = LU = A. We can generalize this process to the case where 
A in m × n, A = LU, and U has only three non-zero rows: let B be the first three columns of L and let C be 
the top three rows of U. 

 23. a. Express each row of D as the transpose of a column vector. Then use the multiplication rule for 
partitioned matrices to write 

   [ ]

1

2
1 41 2 3 4 1 2 2 3 43

3

4

T

T
TT T T

T

T

A CD

 
 
 

= = = + + + 
 
 
  

d

d
c c c c c d c d c d c d

d

d

 

  which is the sum of four outer products. 
b. Since A has 400 × 100 = 40000 entries, C has 400 × 4 = 1600 entries and D has 4 × 100 = 400 entries, 

to store C and D together requires only 2000 entries, which is 5% of the amount of entries needed to 
store A directly. 
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 24. Since Q is square and QTQ = I, Q is invertible by the Invertible Matrix Theorem and Q–1 = QT. Thus A is 
the product of invertible matrices and hence is invertible. Thus by Theorem 5, the equation Ax = b has a 
unique solution for all b. From Ax = b, we have QRx = b, QTQRx = QTb, Rx = QTb, and finally x =  
R–1QTb. A good algorithm for finding x is to compute QTb and then row reduce the matrix [ R  QTb ]. See 
Exercise 11 in Section 2.2 for details on why this process works. The reduction is fast in this case 
because R is a triangular matrix. 

 25. A = UDV T . Since U and V T  are square, the equations U T U = I and V T V = I imply that U and V T  are 
invertible, by the IMT, and hence U– 1  = UT  and (VT)–1 = V. Since the diagonal entries 1, , nσ σ…  in D are 
nonzero, D is invertible, with the inverse of D being the diagonal matrix with 1 1

1 , ,
n

σ σ− −… on the 
diagonal. Thus A is a product of invertible matrices. By Theorem 6, A is invertible and A–1 = (UDV T ) –1 = 
(VT)–1D–1U–1 = VD–1UT. 

 26. If A = PDP–1, where P is an invertible 3 × 3 matrix and D is the diagonal matrix 

   
1 0 0
0 1/ 2 0
0 0 1/ 3

D
 
 =  
  

 

  then 

   2 1 1 1 1 1 2 1( )( ) ( )A PDP PDP PD P P DP PDIDP PD P− − − − − −= = = =  

  and since 

   2 2

2

1 0 01 0 0 1 0 0 1 0 0
0 1/ 2 0 0 1/ 2 0 0 1/ 2 0 0 1/ 4 0
0 0 1/ 3 0 0 1/ 3 0 0 1/ 90 0 1/ 3

D
      
      = = =      
            

 

   2 1
1 0 0
0 1/ 4 0
0 0 1/ 9

A P P−
 
 =  
  

 

  Likewise, A3 = PD3P –1, so 

   3 3 1 1

3

1 0 0 1 0 0
0 1/ 2 0 0 1/8 0

0 0 1/ 270 0 1/ 3

A P P P P− −

   
   = =   
     

 

  In general, Ak = PDkP–1, so 

   1

1 0 0

0 1/ 2 0

0 0 1/ 3

k k

k

A P P−

 
 =  
 
 

 

 27. First consider using a series circuit with resistance R1 followed by a shunt circuit with resistance R2 for 
the network. The transfer matrix for this network is 

   11

2 2 1 2 2

1 0 11
1/ 1 1/ ( ) /0 1

RR
R R R R R

−−    
=    − − +    
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  For an input of 12 volts and 6 amps to produce an output of 9 volts and 4 amps, the transfer matrix must 
satisfy 

   1 1

2 1 2 2 1 2 2

1 12 612 9
1/ ( )/ ( 12 6 6 )/6 4

R R
R R R R R R R

− −      
= =      − + − + +      

 

  Equate the top entries and obtain 1
1 2 ohm.R =  Substitute this value in the bottom entry and solve to 

obtain 9
2 2 ohms.R =  The ladder network is 

a. i2i1 i2 i3

v3v2v1

1/2 ohm
9/2

ohms

 

  Next consider using a shunt circuit with resistance R1 followed by a series circuit with resistance R2 for 
the network. The transfer matrix for this network is 

   1 2 1 22

1 1

1 0 ( )/1
1/ 1 1/ 10 1

R R R RR
R R

+ −−     
=     − −     

 

  For an input of 12 volts and 6 amps to produce an output of 9 volts and 4 amps, the transfer matrix must 
satisfy 

   1 2 1 2 1 2 1 2

1 1

( ) / (12 12 ) / 612 9
1/ 1 12 / 66 4

R R R R R R R R
R R

+ − + −      
= =      − − +      

 

  Equate the bottom entries and obtain R1 = 6 ohms. Substitute this value in the top entry and solve to 
obtain 3

2 4 ohms.R =  The ladder network is  

b. i2i1 i2 i3

3/4 ohm
v3v2v1

6
ohms

 

 28. The three shunt circuits have transfer matrices 

   
31 2

1 01 0 1 0
, , and

1/ 11/ 1 1/ 1 RR R
    
     −− −     

 

  respectively. To find the transfer matrix for the series of circuits, multiply these matrices 

   
3 1 2 32 1

1 0 1 01 0 1 0
, , and

1/ 1 (1/ 1/ 1/ ) 11/ 1 1/ 1R R R RR R
      

=      − − + +− −      
 

  Thus the resulting network is itself a shunt circuit with resistance 1 2 31/ 1/ 1/ .R R R+ +  

 29. a. The first circuit is a shunt circuit with resistance R1 ohms, so its transfer matrix is 
1

1 0
1/ 1R

 
 − 

.     

The second circuit is a series circuit with resistance R2 ohms, so its transfer matrix is 21
.

0 1
R− 
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The third circuit is a shunt circuit with resistance R3 ohms so its transfer matrix is 
3

1 0
1/ 1R

 
 − 

. 

The transfer matrix of the network is the product of these matrices, in right-to-left order: 

   2

3 1

1 0 1 01
1/ 1 1/ 10 1

R
R R

−    
=    − −    

1 2 1 2

1 2 3 3 2 3 3

( ) /
( ) / ( ) /

R R R R
R R R R R R R

+ − 
 − + + + 

 

b. To find a ladder network with a structure like that in part (a) and with the given transfer matrix A, we 
must find resistances R1, R2, and R3 such that 

   1 2 1 2

1 2 3 3 2 3 3

( ) /4 / 3 12
( ) / ( ) /1/ 4 3

R R R R
A

R R R R R R R
+ −−   

= =    − + + +−   
 

  From the (1, 2) entries, R2 = 12 ohms. The (1, 1) entries now give 1 1( 12) / 4 / 3,R R+ =  which may be 
solved to obtain R1 = 36 ohms. Likewise the (2, 2) entries give 3 3( 12) / 3,R R+ =  which also may be 
solved to obtain R3 = 6 ohms. Thus the matrix A may be factored as 

   2

3 1

1 0 1 01
1/ 1 1/ 10 1

R
A

R R
−    

=     − −    
 

   
1 0 1 12 1 0
1/6 1 0 1 1/36 1

−     
=      − −     

 

The ladder network is 

i2i1 i2 i3 i3 i4

v3 v4v2v1
36

ohms
6

ohms

12 ohms

 

 30. Answers may vary. The network below interchanges the series and shunt circuits. 

i2i1 i2 i3 i3 i4

v3 v4v2v1

R1
R2

R3

 

  The transfer matrix of this network is the product of the individual transfer matrices, in right-to-left 
order. 

   3 1

2

1 01 1
1/ 10 1 0 1

R R
R

− −    
=    −    

 

   2 3 2 3 1 2 3 2

2 1 2 2

( ) / ( ) /
1/ ( ) /

R R R R R R R R
R R R R

+ − − + 
 − + 

 

  By setting the matrix A from the previous exercise equal to this matrix, one may find that 

   2 3 2 3 1 2 3 2

2 1 2 2

( ) / ( ) / 4 /3 12
1/ ( ) / 1/4 3

R R R R R R R R
R R R R

+ − − + −   
=   − + −  

 

  Set the (2, 1) entries equal and obtain R2 = 4 ohms. Substitute this value for R2, equating the (2, 2) entries 
and solving gives R1 = 8 ohms. Likewise equating the (1, 1) entries gives R3 = 4/3 ohms. 
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  The ladder network is 

i2i1 i2 i3 i3 i4

v3 v4v2v1
4

ohms

8 ohms 4/3 ohms

 

Note: The Study Guide’s MATLAB box for Section 2.5 suggests that for most LU factorizations in this 
section, students can use the gauss command repeatedly to produce U, and use paper and mental 
arithmetic to write down the columns of L as the row reduction to U proceeds. This is because for Exercises 
7–16 the pivots are integers and other entries are simple fractions. However, for Exercises 31 and 32 this is 
not reasonable, and students are expected to solve an elementary programming problem. (The Study Guide 
provides no hints.) 

 31. [M]  Store the matrix A in a temporary matrix B and create L initially as the 8×8 identity matrix. The 
following sequence of MATLAB commands fills in the entries of L below the diagonal, one column at a 
time, until the first seven columns are filled. (The eighth column is the final column of the identity 
matrix.) 

   L(2:8, 1) = B(2:8, 1)/B(1, 1) 
   B = gauss(B, 1) 
   L(3:8, 2) = B(3:8, 2)/B(2, 2) 
   B = gauss(B, 2) 
    

   L(8:8, 7) = B(8:8, 7)/B(7, 7) 
   U = gauss(B,7) 

  Of course, some students may realize that a loop will speed up the process. The for..end syntax is 
illustrated in the MATLAB box for Section 5.6. Here is a MATLAB program that includes the initial 
setup of B and L: 

   B = A 
   L = eye(8) 
   for j=1:7 
     L(j+1:8, j) = B(j+1:8, j)/B(j, j) 
     B = gauss(B, j) 
   end 
   U = B 

  a. To four decimal places, the results of the LU decomposition are 

   

1 0 0 0 0 0 0 0
.25 1 0 0 0 0 0 0
.25 .0667 1 0 0 0 0 0
0 .2667 .2857 1 0 0 0 0
0 0 .2679 .0833 1 0 0 0
0 0 0 .2917 .2921 1 0 0
0 0 0 0 .2697 .0861 1 0
0 0 0 0 0 .2948 .2931 1

L

 
 − 
 − −
 − − =  − −
 

− − 
 − − 

− −  
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4 1 1 0 0 0 0 0
0 3.75 .25 1 0 0 0 0
0 0 3.7333 1.0667 1 0 0 0
0 0 0 3.4286 .2857 1 0 0
0 0 0 0 3.7083 1.0833 1 0
0 0 0 0 0 3.3919 .2921 1
0 0 0 0 0 0 3.7052 1.0861
0 0 0 0 0 0 0 3.3868

U

− − 
 − − 
 − −
 − − =  − −
 

− − 
 − 
  

 

b. The result of solving Ly = b and then Ux = y is 
   x = (3.9569, 6.5885, 4.2392, 7.3971, 5.6029, 8.7608, 9.4115, 12.0431) 

c. 1

.2953 .0866 .0945 .0509 .0318 .0227 .0010 .0082

.0866 .2953 .0509 .0945 .0227 .0318 .0082 .0100

.0945 .0509 .3271 .1093 .1045 .0591 .0318 .0227

.0509 .0945 .1093 .3271 .0591 .1045 .0227 .0318

.0318 .0227 .1045 .0591 .3271 .1093 .0945 .
A− =

0509
.0227 .0318 .0591 .1045 .1093 .3271 .0509 .0945
.0010 .0082 .0318 .0227 .0945 .0509 .2953 .0866
.0082 .0100 .0227 .0318 .0509 .0945 .0866 .2953

 
 
 
 
 
 
 
 
 
 
 
  

 

 32. [M]

3 1 0 0 0
1 3 1 0 0
0 1 3 1 0
0 0 1 3 1
0 0 0 1 3

A

− 
 − − 
 = − −
 − − 
 − 

. The commands shown for Exercise 31, but modified for 5×5 

matrices, produce 

   

1
3

3
8

8
21

21
55

1 0 0 0 0
1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

L

 
 − 
 −=
 − 
 − 

 

   

8
3

21
8

55
21

144
55

3 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

U

− 
 − 
 −=
 − 
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b. Let sk+1 be the solution of Lsk+1 = tk for k = 0, 1, 2, …. Then tk+1 is the solution of Utk+1 = sk+1  
for k = 0, 1, 2, …. The results are 

   1 1 2 2

10.0000 6.5556 6.5556 4.7407
15.3333 9.6667 11.8519 7.6667

, , ,17.7500 10.4444 14.8889 8.5926
18.7619 9.6667 15.3386 7.6667
17.1636 6.5556 12.4121 4.7407

      
      
      
      = = = =
      
      
           

s t s t ,








 

 

   3 3 4 4

4.7407 3.5988 3.5988 2.7922
9.2469 6.0556 7.2551 4.7778

, , ,12.0602 6.9012 9.6219 5.4856
12.2610 6.0556 9.7210 4.7778
9.4222 3.5988 7.3104 2.7922

       
       
       
       = = = =
       
       
             

s t s t .



 

2.6 SOLUTIONS 

Notes: This section is independent of Section 1.10. The material here makes a good backdrop for the series 
expansion of (I–C)–1 because this formula is actually used in some practical economic work. Exercise 8 gives 
an interpretation to entries of an inverse matrix that could be stated without the economic context. 

 1. The answer to this exercise will depend upon the order in which the student chooses to list the sectors. 
The important fact to remember is that each column is the unit consumption vector for the appropriate 
sector. If we order the sectors manufacturing, agriculture, and services, then the consumption matrix is 

   
.10 .60 .60
.30 .20 0
.30 .10 .10

C
 
 =  
  

 

  The intermediate demands created by the production vector x are given by Cx. Thus in this case the 
intermediate demand is 

   
.10 .60 .60 0 60
.30 .20 .00 100 20
.30 .10 .10 0 10

C
     
     = =     
          

x  

 2. Solve the equation x = Cx + d for d: 

  
1 1 1 2 3

2 2 1 2

3 3 1 2 3

.10 .60 .60 .9 .6 .6 0

.30 .20 .00 .3 .8 18

.30 .10 .10 .3 .1 .9 0

x x x x x
C x x x x

x x x x x

− −         
         = − = − = − + =         
         − − +         

d x x  

  This system of equations has the augmented matrix 

   
.90 .60 .60 0 1 0 0 33.33
.30 .80 .00 18 ~ 0 1 0 35.00
.30 .10 .90 0 0 0 1 15.00

− − −   
   −   
   − −   

 

  so x = (33.33, 35.00, 15.00). 
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 3. Solving as in Exercise 2: 

  
1 1 1 2 3

2 2 1 2

3 3 1 2 3

.10 .60 .60 .9 .6 .6 18

.30 .20 .00 .3 .8 0

.30 .10 .10 .3 .1 .9 0

x x x x x
x x x x
x x x x x

− −         
         = − = − = − + =         
         − − +         

d x xC  

  This system of equations has the augmented matrix 

   
.90 .60 .60 18 1 0 0 40.00
.30 .80 .00 0 ~ 0 1 0 15.00
.30 .10 .90 0 0 0 1 15.00

− −   
   −   
   − −   

 

  so x = (40.00, 15.00, 15.00). 

 4. Solving as in Exercise 2: 

   
1 1 1 2 3

2 2 1 2

3 3 1 2 3

.10 .60 .60 .9 .6 .6 18

.30 .20 .00 .3 .8 18

.30 .10 .10 .3 .1 .9 0

x x x x x
C x x x x

x x x x x

− −         
         = − = − = − + =         
         − − +         

d x x  

  This system of equations has the augmented matrix 

   
.90 .60 .60 18 1 0 0 73.33
.30 .80 .00 18 ~ 0 1 0 50.00
.30 .10 .90 0 0 0 1 30.00

− − −   
   −   
   − −   

 

  so x = (73.33, 50.00, 30.00). 

Note: Exercises 2–4 may be used by students to discover the linearity of the Leontief model. 

 5. 
1

1 1 .5 50 1.6 1 50 110
( )

.6 .8 20 1.2 2 20 120
I C

−
− −         

= − = = =         −         
x d  

 6. 
1

1 .9 .6 18 40 / 21 30 / 21 18 50
( )

.5 .8 11 25/ 21 45/ 21 11 45
I C

−
− −         

= − = = =         −         
x d  

 7. a. From Exercise 5, 

   1 1.6 1
( )

1.2 2
I C −  

− =  
 

 

  so 

   1
1 1

1.6 1 1 1.6
( )

1.2 2 0 1.2
I C −      

= − = =     
     

x d  

  which is the first column of 1( ) .I C −−  

b.  1
2 2

1.6 1 51 111.6
( )

1.2 2 30 121.2
I C −      

= − = =     
     

x d  
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c. From Exercise 5, the production x corressponding to 
50 110

is .
20 120
   

= =   
   

d x  

  Note that 2 1.= +d d d  Thus 

   

1
2 2

1
1

1 1
1

1

( )

( ) ( )

( ) ( )

I C

I C

I C I C

−

−

− −

= −

= − +

= − + −
= +

x d

d d

d d
x x

 

 8. a. Given ( ) and ( ) ,I C I C− = − =x d x d∆ ∆  
   ( )( ) ( ) ( )I C I C I C− + = − + − = +x x x x d d∆ ∆ ∆  

  Thus +x x∆  is the production level corresponding to a demand of .+d d∆  

b. Since 1( )I C −= −x d∆ ∆  and d∆  is the first column of I, x∆  will be the first column of 1( )I C −− .  

 9. In this case 

   
.8 .2 .0
.3 .9 .3
.1 .0 .8

I C
− 

 − = − − 
 − 

 

  Row reduce [ ]I C− d  to find 

   
.8 .2 .0 40.0 1 0 0 82.8
.3 .9 .3 60.0 ~ 0 1 0 131.0
.1 .0 .8 80.0 0 0 1 110.3

−   
   − −   
   −   

 

  So x = (82.8, 131.0, 110.3). 

 10. From Exercise 8, the (i, j) entry in (I – C)–1 corresponds to the effect on production of sector i when the 
final demand for the output of sector j increases by one unit. Since these entries are all positive, an 
increase in the final demand for any sector will cause the production of all sectors to increase. Thus an 
increase in the demand for any sector will lead to an increase in the demand for all sectors. 

 11. (Solution in study Guide) Following the hint in the text, compute pTx in two ways. First, take the 
transpose of both sides of the price equation, p = C Tp + v, to obtain 

   ( v) ( )T T T T T T T TC C C= + = + = +p p p v p v  

  and right-multiply by x to get 

   ( )T T T T TC C= + = +p x p v x p x v x  

  Another way to compute pTx starts with the production equation x = Cx + d. Left multiply by pT to get 

   ( )T T T TC C= + = +p x p x d p x p d  

  The two expression for pTx show that 

   T T T TC C+ = +p x v x p x p d  

  so vTx = pTd. The Study Guide also provides a slightly different solution. 

 12. Since 

   2 1
1 ... ( ... )m m

m mD I C C C I C I C C I CD+
+ = + + + + = + + + + = +  

   1mD +  may be found iteratively by 1 .m mD I CD+ = +  
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 13. [M] The matrix I – C is 

   

0.8412 0.0064 0.0025 0.0304 0.0014 0.0083 0.1594
0.0057 0.7355 0.0436 0.0099 0.0083 0.0201 0.3413
0.0264 0.1506 0.6443 0.0139 0.0142 0.0070 0.0236
0.3299 0.0565 0.0495 0.6364 0.0204 0.0483 0.0649
0.0089

− − − − − −
− − − − − −
− − − − − −
− − − − − −
− −0.0081 0.0333 0.0295 0.6588 0.0237 0.0020

0.1190 0.0901 0.0996 0.1260 0.1722 0.7632 0.3369
0.0063 0.0126 0.0196 0.0098 0.0064 0.0132 0.9988

 
 
 
 
 
 
 − − − −
 
− − − − − − 
 − − − − − − 

 

  so the augmented matrix [ ]I C− d  may be row reduced to find 

   

0.8412 0.0064 0.0025 0.0304 0.0014 0.0083 0.1594 74000
0.0057 0.7355 0.0436 0.0099 0.0083 0.0201 0.3413 56000
0.0264 0.1506 0.6443 0.0139 0.0142 0.0070 0.0236 10500
0.3299 0.0565 0.0495 0.6364 0.0204 0.0483

− − − − − −
− − − − − −
− − − − − −
− − − − − 0.0649 25000

0.0089 0.0081 0.0333 0.0295 0.6588 0.0237 0.0020 17500
0.1190 0.0901 0.0996 0.1260 0.1722 0.7632 0.3369 196000
0.0063 0.0126 0.0196 0.0098 0.0064 0.0132 0.9988 5000

 
 
 
 
 − 
 − − − − − −
 
− − − − − − 
 − − − − − − 

 

    

1 0 0 0 0 0 0 99576
0 1 0 0 0 0 0 97703
0 0 1 0 0 0 0 51231

~ 0 0 0 1 0 0 0 131570
0 0 0 0 1 0 0 49488
0 0 0 0 0 1 0 329554
0 0 0 0 0 0 1 13835

 
 
 
 
 
 
 
 
 
  

 

  so x = (99576, 97703, 51321, 131570, 49488, 329554, 13835). Since the entries in d seem to be accurate 
to the nearest thousand, a more realistic answer would be x = (100000, 98000, 51000, 132000, 49000, 
330000, 14000). 

 14. [M] The augmented matrix [ ]I C− d  in this case may be row reduced to find 

   

0.8412 0.0064 0.0025 0.0304 0.0014 0.0083 0.1594 99640
0.0057 0.7355 0.0436 0.0099 0.0083 0.0201 0.3413 75548
0.0264 0.1506 0.6443 0.0139 0.0142 0.0070 0.0236 14444
0.3299 0.0565 0.0495 0.6364 0.0204 0.0483

− − − − − −
− − − − − −
− − − − − −
− − − − − 0.0649 33501

0.0089 0.0081 0.0333 0.0295 0.6588 0.0237 0.0020 23527
0.1190 0.0901 0.0996 0.1260 0.1722 0.7632 0.3369 263985
0.0063 0.0126 0.0196 0.0098 0.0064 0.0132 0.9988 6526

 
 
 
 
 − 
 − − − − − −
 
− − − − − − 
 − − − − − − 
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1 0 0 0 0 0 0 134034
0 1 0 0 0 0 0 131687
0 0 1 0 0 0 0 69472

~ 0 0 0 1 0 0 0 176912
0 0 0 0 1 0 0 66596
0 0 0 0 0 1 0 443773
0 0 0 0 0 0 1 18431

 
 
 
 
 
 
 
 
 
  

 

  so x = (134034, 131687, 69472, 176912, 66596, 443773, 18431). To the nearest thousand, x = (134000, 
132000, 69000, 177000, 67000, 444000, 18000). 

 15. [M] Here are the iterations rounded to the nearest tenth:  

   

(0)

(1)

(2)

(3)

(74000.0, 56000.0, 10500.0, 25000.0, 17500.0, 196000.0, 5000.0)

(89344.2, 77730.5, 26708.1, 72334.7, 30325.6, 265158.2, 9327.8)

(94681.2, 87714.5, 37577.3, 100520.5, 38598.0, 296563.8, 11480.0)

(97091.

=

=

=

=

x

x

x

x
(4)

(5)

(6)

9, 92573.1, 43867.8, 115457.0, 43491.0, 312319.0, 12598.8)

(98291.6, 95033.2, 47314.5, 123202.5, 46247.0, 320502.4, 13185.5)

(98907.2, 96305.3, 49160.6, 127213.7, 47756.4, 324796.1, 13493.8)

(99226.6, 96969.

=

=

=

x

x

x
(7)

(8)

(9)

6, 50139.6, 129296.7, 48569.3, 327053.8, 13655.9)

(99393.1, 97317.8, 50656.4, 130381.6, 49002.8, 328240.9, 13741.1)

(99480.0, 97500.7, 50928.7, 130948.0, 49232.5, 328864.7, 13785.9)

(99525.5, 97596.8, 51071.

=

=

=

x

x

x
(10)

(11)

(12)

9, 131244.1, 49353.8, 329192.3, 13809.4)

(99549.4, 97647.2, 51147.2, 131399.2, 49417.7, 329364.4, 13821.7)

(99561.9, 97673.7, 51186.8, 131480.4, 49451.3, 329454.7, 13828.2)

(99568.4, 97687.6, 51207.5, 131

=

=

=

x

x

x 523.0, 49469.0, 329502.1, 13831.6)

 

  so x(12) is the first vector whose entries are accurate to the nearest thousand. The calculation of x(12) takes 
about 1260 flops, while the row reduction above takes about 550 flops. If C is larger than 20 20,×  then 
fewer flops are required to compute x(12) by iteration than by row reduction. The advantage of the 
iterative method increases with the size of C. The matrix C also becomes more sparse for larger models, 
so fewer iterations are needed for good accuracy. 

2.7 SOLUTIONS 

Notes: The content of this section seems to have universal appeal with students. It also provides practice with 
composition of linear transformations. The case study for Chapter 2 concerns computer graphics – see this 
case study (available as a project on the website) for more examples of computer graphics in action. The 
Study Guide encourages the student to examine the book by Foley referenced in the text. This section could 
form the beginning of an independent study on computer graphics with an interested student. 
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 1. Refer to Example 5. The representation in homogenous coordinates can be written as a partitioned matrix 

of the form ,
1T

A 
 
 

0

0
 where A is the matrix of the linear transformation. Since in this case 

1 .25
,

0 1
A

 
=  
 

 the representation of the transformation with respect to homogenous coordinates is 

   
1 .25 0
0 1 0
0 0 1

 
 
 
  

 

Note: The Study Guide shows the student why the action of 
1T

A 
 
 

0

0
 on the vector 

x
1
 
 
 

 corresponds to the 

action of A on x. 

 2. The matrix of the transformation is 
1 0
0 1

A
− 

=  
 

, so the transformed data matrix is  

   
1 0 5 2 4 5 2 4
0 1 0 2 3 0 2 3

AD
− − − −     

= =     
     

 

  Both the original triangle and the transformed triangle are shown in the following sketch.  

–5 5
x1

x2

2

 

 3. Following Examples 4–6, 

   

2 / 22 / 2 0 2 / 2 2 / 2 21 0 3
2 / 2 2 / 2 0 0 1 1 2 / 2 2 / 2 2 2

0 0 1 0 0 1 0 0 1

   − −      =               

 

 4. 
.8 0 0 1 0 2 .8 0 1.6
0 1.2 0 0 1 3 0 1.2 3.6
0 0 1 0 0 1 0 0 1

− −     
     =     
          

 

 5. 

3 / 2 1/ 2 0 3 / 2 1/ 2 01 0 0
1/ 2 3 / 2 0 0 1 0 1/ 2 3 / 2 0

0 0 1 0 0 1 0 0 1

   −      − = −               

 

 6. 

3 / 2 1/ 2 0 3 / 2 1/ 2 01 0 0
0 1 0 1/ 2 3 / 2 0 1/ 2 3 / 2 0
0 0 1 0 0 1 0 0 1

   − −      − = − −                 
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 7. A 60° rotation about the origin is given in homogeneous coordinates by the matrix 
1/ 2 3 / 2 0

3 / 2 1/ 2 0
0 0 1

 −
 
 
 
  

. To rotate about the point (6, 8), first translate by (–6, –8), then rotate about the 

origin, then translate back by (6, 8) (see the Practice Problem in this section). A 60° rotation about (6, 8) 
is thus is given in homogeneous coordinates by the matrix 

   

1/ 2 3 / 2 0 1/ 2 3 / 2 3 4 31 0 6 1 0 6
0 1 8 3 / 2 1/ 2 0 0 1 8 3 / 2 1/ 2 4 3 3
0 0 1 0 0 1 0 0 1 0 0 1

   − − +−         − = −                     

 

 8. A 45° rotation about the origin is given in homogeneous coordinates by the matrix 
2 / 2 2 / 2 0

2 / 2 2 / 2 0
0 0 1

 −
 
 
 
  

. To rotate about the point (3, 7), first translate by (–3, –7), then rotate about the 

origin, then translate back by (3, 7) (see the Practice Problem in this section). A 45° rotation about (3, 7) 
is thus is given in homogeneous coordinates by the matrix 

   

2 / 2 2 / 2 0 2 / 2 2 / 2 3 2 21 0 3 1 0 3
0 1 7 2 / 2 2 / 2 0 0 1 7 2 / 2 2 / 2 7 5 2
0 0 1 0 0 1 0 0 1 0 0 1

   − − +−         − = −                     

 

 9. To produce each entry in BD two multiplications are necessary. Since BD is a 2 200×  matrix, it will take 
2 2 200 800× × = multiplications to compute BD. By the same reasoning it will take 2 2 200× × =  800 
multiplications to compute A(BD). Thus to compute A(BD) from the beginning will take 800 + 800 = 
1600 multiplications. 

   To compute the 2 2×  matrix AB it will take 2 2 2 8× × =  multiplications, and to compute (AB)D it 
will take 2 2 200 800× × =  multiplications. Thus to compute (AB)D from the beginning will take  
8 + 800 = 808 multiplications. 

   For computer graphics calculations that require applying multiple transformations to data matrices, 
it is thus more efficient to compute the product of the transformation matrices before applying the result 
to the data matrix. 

10. Let the transformation matrices in homogeneous coordinates for the dilation, rotation, and translation be 
called respectively D, and R, and T. Then for some value of s, ϕ, h, and k, 

   
0 0 cos sin 0 1 0

0 0 , sin cos 0 , 0 1
0 0 1 0 0 1 0 0 1

s h
D s R T k

ϕ ϕ
ϕ ϕ

−     
     = = =     
          

 

  Compute the products of these matrices: 

   
cos sin 0 cos sin 0
sin cos 0 , sin cos 0
0 0 1 0 0 1

s s s s
DR s s RD s s

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

− −   
   = =   
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0 0

0 , 0
0 0 1 0 0 1

s sh s h
DT s sk TD s k

   
   = =   
      

 

   
cos sin cos sin cos sin
sin cos sin cos , sin cos

0 0 1 0 0 1

h k h
RT h k TR k

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

− − −   
   = + =   
      

 

  Since DR = RD, DT ≠ TD and RT ≠ TR, D and R commute, D and T do not commute and R and T do not 
commute. 

11. To simplify A2A1  completely, the following trigonometric identities will be needed: 

1. sin
costan cos cos sinϕ

ϕϕ ϕ ϕ ϕ− = − = −  

2. 
2 2sin 1 sin cos1

cos cos cos cossec tan sin sin cosϕ ϕ ϕ
ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ−− = − = = =  

  Using these identities, 

   2 1

sec tan 0 1 0 0
0 1 0 sin cos 0
0 0 1 0 0 1

A A
ϕ ϕ

ϕ ϕ
−   

   =    
      

 

   
sec tan sin tan cos 0

sin cos 0
0 0 1

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

− − 
 =  
  

 

   
cos sin 0
sin cos 0

0 0 1

ϕ ϕ
ϕ ϕ

− 
 =  
  

 

  which is the transformation matrix in homogeneous coordinates for a rotation in 2. 

12. To simplify this product completely, the following trigonometric identity will be needed: 

   1 cos sintan / 2
sin 1 cos

ϕ ϕϕ
ϕ ϕ

−= =
+

 

  This identity has two important consequences: 

   1 cos1 (tan / 2)(sin ) 1 sin cos
sin

ϕϕ ϕ ϕ ϕ
ϕ

−− = − =  

   sin(cos )( tan / 2) tan / 2 (cos 1) tan / 2 (cos 1) sin
1 cos

ϕϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ

− − = − + = − + = −
+

 

  The product may be computed and simplified using these results: 

   
1 tan / 2 0 1 0 0 1 tan / 2 0
0 1 0 sin 1 0 0 1 0
0 0 1 0 0 1 0 0 1

ϕ ϕ
ϕ

− −     
     
     
          

 

   
1 (tan / 2)(sin ) tan / 2 0 1 tan / 2 0

sin 1 0 0 1 0
0 0 1 0 0 1

ϕ ϕ ϕ ϕ
ϕ

− − −   
   =    
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cos tan / 2 0 1 tan / 2 0
sin 1 0 0 1 0

0 0 1 0 0 1

ϕ ϕ ϕ
ϕ

− −   
   =    
      

 

   
cos (cos )( tan / 2) tan / 2 0
sin (sin )(tan / 2) 1 0

0 0 1

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ

− − 
 = − + 
  

 

   
cos sin 0
sin cos 0

0 0 1

ϕ ϕ
ϕ ϕ

− 
 =  
  

 

  which is the transformation matrix in homogeneous coordinates for a rotation in 2. 

 13. Consider first applying the linear transformation on 2 whose matrix is A, then applying a translation by 
the vector p to the result. The matrix representation in homogeneous coordinates of the linear 

transformation is ,
1T

A 
 
 

0

0
 while the matrix representation in homogeneous coordinates of the 

translation is .
1T

I 
 
 

p

0
 Applying these transformations in order leads to a transformation whose matrix 

representation in homogeneous coordinates is 

   
1 1 1T T T

I A A     
=     

     

p 0 p

0 0 0
 

  which is the desired matrix. 

14. The matrix for the transformation in Exercise 7 was found to be 

   

1/ 2 3 / 2 3 4 3

3 / 2 1/ 2 4 3 3
0 0 1

 − +
 

− 
 
  

 

  This matrix is of the form ,
1T

A 
 
 

p

0
where 

   
1/ 2 3 / 2 3 4 3

,
3 / 2 1/ 2 4 3 3

A
   − +

= =   
−     

p  

  By Exercise 13, this matrix may be written as 

   
1 1T T

I A   
   
   

p 0

0 0
 

  that is, the composition of a linear transformation on 2 and a translation. The matrix A is the matrix of a 
rotation about the origin in 2. Thus the transformation in Exercise 7 is the composition of a rotation 

about the origin and a translation by 
3 4 3

.
4 3 3

 +
=  

−  
p  
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15. Since 1 1 1 1
2 4 8 24( , , , ) ( , , , ),X Y Z H = −  the corresponding point in 3 has coordinates 

   
11 1
82 4

1 1 1
24 24 24

( , , ) , , , , (12, 6,3)X Y Zx y z
H H H

 − = = = −       
 

16. The homogeneous coordinates (1, –2, 3, 4) represent the point 
   (1/ 4, 2 / 4, 3/ 4) (1/ 4, 1/ 2, 3/ 4)− = −  

  while the homogeneous coordinates (10, –20, 30, 40) represent the point 
   (10 / 40, 20 / 40, 30 / 40) (1/ 4, 1/ 2, 3/ 4)− = −  

  so the two sets of homogeneous coordinates represent the same point in 3. 

17. Follow Example 7a by first constructing that 3 3×  matrix for this rotation. The vector e1 is not changed 
by this rotation. The vector e2 is rotated 60° toward the positive z-axis, ending up at the point (0, cos 60°, 
sin 60°) = (0, 1/ 2, 3 / 2).  The vector e3 is rotated 60° toward the negative y-axis, stopping at the point  
(0, cos 150°, sin 150°) = (0, 3 / 2, 1/ 2).−  The matrix A for this rotation is thus 

   

1 0 0

0 1/ 2 3 / 2

0 3 / 2 1/ 2

A
 
 

= − 
 
 

 

  so in homogeneous coordinates the transformation is represented by the matrix 

   

1 0 0 0

0 1/ 2 3 / 2 0
1 0 3 / 2 1/ 2 0

0 0 0 1

T

A
 
 

  − =      
  

0

0
 

18. First construct the 3 3×  matrix for the rotation. The vector e1 is rotated 30° toward the negative y-axis, 
ending up at the point (cos(–30)°, sin (–30)°, 0) = ( 3 / 2, 1/ 2, 0).−  The vector e2 is rotated 60° toward 
the positive x-axis, ending up at the point (cos 60°, sin 60°, 0) = (1/ 2, 3 / 2, 0).  The vector e3 is not 
changed by the rotation. The matrix A for the rotation is thus 

   

3 / 2 1/ 2 0

1/ 2 3 / 2 0
0 0 1

A

 
 

= − 
 
  

 

  so in homogeneous coordinates the rotation is represented by the matrix 

   

3 / 2 1/ 2 0 0

1/ 2 3 / 2 0 0
1 0 0 1 0

0 0 0 1

T

A
 
 

  − =      
  

0

0
 

  Following Example 7b, in homogeneous coordinates the translation by the vector (5, –2, 1) is represented 
by the matrix 

   

1 0 0 5
0 1 0 2
0 0 1 1
0 0 0 1

 
 − 
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  Thus the complete transformation is represented in homogeneous coordinates by the matrix 

   

1 0 0 5 3 / 2 1/ 2 0 0 3 / 2 1/ 2 0 5
0 1 0 2 1/ 2 3 / 2 0 0 1/ 2 3 / 2 0 2
0 0 1 1 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1

    
    − − − −     =    
    

          

 

 19. Referring to the material preceding Example 8 in the text, we find that the matrix P that performs a 
perspective projection with center of projection (0, 0, 10) is 

   

1 0 0 0
0 1 0 0
0 0 0 0
0 0 .1 1

 
 
 
 
 −  

 

  The homogeneous coordinates of the vertices of the triangle may be written as (4.2, 1.2, 4, 1), (6, 4, 2, 1), 
and (2, 2, 6, 1), so the data matrix for S is 

   

4.2 6 2
1.2 4 2

4 2 6
1 1 1

 
 
 
 
 
  

 

  and the data matrix for the transformed triangle is 

   

1 0 0 0 4.2 6 2 4.2 6 2
0 1 0 0 1.2 4 2 1.2 4 2
0 0 0 0 4 2 6 0 0 0
0 0 .1 1 1 1 1 .6 .8 .4

     
     
     =
     
     −          

 

  Finally, the columns of this matrix may be converted from homogeneous coordinates by dividing by the 
final coordinate: 

   
(4.2, 1.2, 0, .6) (4.2 / .6, 1.2 / .6, 0 / .6) (7, 2, 0)
(6, 4, 0, .8) (6 / .8, 2 / .8, 0 / .8) (7.5, 5, 0)
(2, 2, 0, .4) (2 / .4, 2 / .4, 0 / .4) (5, 5, 0)

→ =
→ =
→ =

 

  So the coordinates of the vertices of the transformed triangle are (7, 2, 0), (7.5, 5, 0), and (5, 5, 0). 

20. As in the previous exercise, the matrix P that performs the perspective projection is 

   

1 0 0 0
0 1 0 0
0 0 0 0
0 0 .1 1

 
 
 
 
 −  

 

  The homogeneous coordinates of the vertices of the triangle may be written as (9, 3, –5, 1), (12, 8, 2, 1), 
and (1.8, 2.7, 1, 1), so the data matrix for S is 

   

9 12 1.8
3 8 2.7
5 2 1
1 1 1

 
 
 
 −
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  and the data matrix for the transformed triangle is 

   

1 0 0 0 9 12 1.8 9 12 1.8
0 1 0 0 3 8 2.7 3 8 2.7
0 0 0 0 5 2 1 0 0 0
0 0 .1 1 1 1 1 1.5 .8 .9

     
     
     =
     −
     −          

 

  Finally, the columns of this matrix may be converted from homogeneous coordinates by dividing by the 
final coordinate: 

   
(9, 3, 0, 1.5) (9 /1.5, 3/1.5, 0 /1.5) (6, 2, 0)
(12, 8, 0, .8) (12 /.8, 8 / .8, 0 / .8) (15, 10, 0)
(1.8, 2.7, 0, .9) (1.8 / .9, 2.7 / .9, 0 / .9) (2, 3, 0)

→ =
→ =
→ =

 

  So the coordinates of the vertices of the transformed triangle are (6, 2, 0), (15, 10, 0), and (2, 3, 0). 

21. [M] Solve the given equation for the vector (R, G, B), giving 

   

1.61 .29 .15 2.2586 1.0395 .3473
.35 .59 .063 1.3495 2.3441 .0696
.04 .12 .787 .0910 .3046 1.2777

R X X
G Y Y
B Z Z

− − −         
         = = −         
         −         

 

22. [M] Solve the given equation for the vector (R, G, B), giving 

   

1.299 .587 .114 1.0031 .9548 .6179
.596 .275 .321 .9968 .2707 .6448
.212 .528 .311 1.0085 1.1105 1.6996

R Y Y
G I I
B Q Q

−
         
         = − − = − −         
         − −         

 

2.8 SOLUTIONS 

Notes: Cover this section only if you plan to skip most or all of Chapter 4. This section and the next cover 
everything you need from Sections 4.1–4.6 to discuss the topics in Section 4.9 and Chapters 5–7 (except for 
the general inner product spaces in Sections 6.7 and 6.8). Students may use Section 4.2 for review, particu-
larly the Table near the end of the section. (The final subsection on linear transformations should be omitted.) 
Example 6 and the associated exercises are critical for work with eigenspaces in Chapters 5 and 7. Exercises 
31–36 review the Invertible Matrix Theorem. New statements will be added to this theorem in Section 2.9. 

Key Exercises: 5–20 and 23–26. 

 1. The set is closed under sums but not under multiplication  
by a negative scalar. A counterexample to the subspace  
condition is shown at the right. 

Note: Most students prefer to give a geometric counterexample, but some may choose an algebraic calcu-
lation. The four exercises here should help students develop an understanding of subspaces, but they may be 
insufficient if you want students to be able to analyze an unfamiliar set on an exam. Developing that skill 
seems more appropriate for classes covering Sections 4.1–4.6. 

u

(–1)u
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 2. The set is closed under scalar multiples but not sums. 
For example, the sum of the vectors u and v shown 
here is not in H. 

 3. No. The set is not closed under sums or scalar multiples. The subset  
consisting of the points on the line x2 = x1 is a subspace, so any  
“counterexample” must use at least one point not on this line.  
Here are two counterexamples to the subspace conditions: 

 4. No. The set is closed under sums, but not under multiplication by a 
negative scalar. 

 5. The vector w is in the subspace generated by v1 and v2 if and only if the vector equation x1v1 + x2v2 = w 
is consistent. The row operations below show that w is not in the subspace generated by v1 and v2. 

   1 2

2 4 8 2 4 8 2 4 8
[ ] ~ 3 5 2 ~ 0 1 10 ~ 0 1 10

5 8 9 0 2 11 0 0 9

− − −     
     − − −     
     − − − −     

v v w  

 6. The vector u is in the subspace generated by {v1, v2, v3} if and only if the vector equation x1v1 + x2v2 + 
x3v3 = u is consistent. The row operations below show that u is not in the subspace generated by 
{v1, v2, v3}. 

   1 2 3

1 4 5 4 1 4 5 4 1 4 5 4
2 7 8 10 0 1 2 2 0 1 2 2

[ ] ~ ~ ~
4 9 6 7 0 7 14 9 0 0 0 23
3 7 5 5 0 5 10 7 0 0 0 17

− − −     
     − − −     
     − − −
     − − −          

v v v u  

Note: For a quiz, you could use w = (1, –3, 11, 8), which is in Span{v1, v2, v3}. 

 7. a. There are three vectors: v1, v2, and v3 in the set {v1, v2, v3}. 
b. There are infinitely many vectors in Span{v1, v2, v3} = Col A. 
c. Deciding whether p is in Col A requires calculation: 

   
2 3 4 6 2 3 4 6 2 3 4 6

[ ] ~ 8 8 6 10 ~ 0 4 10 14 ~ 0 4 10 14
6 7 7 11 0 2 5 7 0 0 0 0

A
− − − − − −     

     − − − − − −     
     − − −     

p  

  The equation Ax = p has a solution, so p is in Col A. 

u

u + vv

u 3u

u + vv

u

(–1)u
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 8. 
3 2 0 1 3 2 0 1 3 2 0 1

[ ] 0 2 6 14 ~ 0 2 6 14 ~ 0 2 6 14
6 3 3 9 0 1 3 7 0 0 0 0

A
− − − − − −     
     = − − −     
     − − −     

p  

  Yes, the augmented matrix [A   p] corresponds to a consistent system, so p is in Col A. 

 9. To determine whether p is in Nul A, simply compute Ap. Using A and p as in Exercise 7,  

   Ap = 
2 3 4 6 2
8 8 6 10 62 .
6 7 7 11 29

− − −     
     − − = −     
     − −     

 Since Ap ≠ 0, p is not in Nul A. 

10. To determine whether u is in Nul A, simply compute Au. Using A as in Exercise 7 and u = (–2, 3, 1), 

   Au = 
3 2 0 2 0
0 2 6 3 0 .
6 3 3 1 0

− − −     
     − =     
          

 Yes, u is in Nul A. 

11. p = 4 and q = 3. Nul A is a subspace of R4 because solutions of Ax = 0 must have 4 entries, to match the 
columns of A. Col A is a subspace of R3 because each column vector has 3 entries. 

12. p = 3 and q = 4. Nul A is a subspace of R3 because solutions of Ax = 0 must have 3 entries, to match the 
columns of A. Col A is a subspace of R4 because each column vector has 4 entries. 

13. To produce a vector in Col A, select any column of A. For Nul A, solve the equation Ax = 0. (Include an 
augmented column of zeros, to avoid errors.) 

   
3 2 1 5 0 3 2 1 5 0 3 2 1 5 0
9 4 1 7 0 ~ 0 2 4 8 0 ~ 0 2 4 8 0
9 2 5 1 0 0 4 8 16 0 0 0 0 0 0

− − −     
     − − − −     
     − − −     

 

   
3 2 1 5 0 1 0 1 1 0

~ 0 1 2 4 0 ~ 0 1 2 4 0 ,
0 0 0 0 0 0 0 0 0 0

− −   
   − −   
      

      
1 3 4

2 3 4

0
2 4 0

0 0

x x x
x x x

− + =
+ − =

=
 

  The general solution is x1 = x3 – x4, and x2 = –2x3 + 4x4, with x3 and x4 free. The general solution in 
parametric vector form is not needed. All that is required here is one nonzero vector. So choose any 
values for x3 and x4 (not both zero). For instance, set x3 = 1 and x4 = 0 to obtain the vector (1, –2, 1, 0) in 
Nul A. 

Note: Section 2.8 of Study Guide introduces the ref command (or rref, depending on the technology), 
which produces the reduced echelon form of a matrix. This will greatly speed up homework for students who 
have a matrix program available.  

14. To produce a vector in Col A, select any column of A. For Nul A, solve the equation Ax = 0: 

   

1 2 3 0 1 2 3 0 1 2 3 0 1 0 1/ 3 0
4 5 7 0 0 3 5 0 0 1 5/ 3 0 0 1 5/ 3 0

~ ~ ~
5 1 0 0 0 9 15 0 0 0 0 0 0 0 0 0
2 7 11 0 0 3 5 0 0 0 0 0 0 0 0 0

−       
       − −       
       − −
       
              

 

  The general solution is x1 = (1/3)x3 and x2 = (–5/3) x3, with x3 free. The general solution in parametric 
vector form is not needed. All that is required here is one nonzero vector. So choose any values of x3 and 
x4 (not both zero). For instance, set x3 = 3 to obtain the vector (1, –5, 3) in Nul A. 
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15. Yes. Let A be the matrix whose columns are the vectors given. Then A is invertible because its 
determinant is nonzero, and so its columns form a basis for R2, by the Invertible Matrix Theorem (or by 
Example 5). (Other reasons for the invertibility of A could be given.) 

16. No. One vector is a multiple of the other, so they are linearly dependent and hence cannot be a basis for 
any subspace. 

17. No. Place the three vectors into a 3×3 matrix A and determine whether A is invertible: 

   
0 5 6 1 7 3 1 7 3 1 7 3
1 7 3 ~ 0 5 6 ~ 0 5 6 ~ 0 5 6
2 4 5 2 4 5 0 10 11 0 0 23

A
− − −       

       = −       
       − − −       

 

  The matrix A has three pivots, so A is invertible by the IMT and its columns form a basis for R3 (as 
pointed out in Example 5). 

18. Yes. Place the three vectors into a 3×3 matrix A and determine whether A is invertible: 

   
1 5 7 1 5 7 1 5 7
1 1 0 ~ 0 4 7 ~ 0 4 7
2 2 5 0 8 9 0 0 5

A
− − −     

     = − − −     
     − − − −     

 

  The matrix A has three pivots, so A is invertible by the IMT and its columns form a basis for R3 (as 
pointed out in Example 5). 

19. No. The vectors cannot be a basis for R3 because they only span a plan in R3. Or, point out that the 

columns of the matrix 
1 5
1 1
2 2

− 
 − 
 − 

 cannot possibly span R3 because the matrix cannot have a pivot in 

every row. So the columns are not a basis for R3.  

Note: The Study Guide warns students not to say that the two vectors here are a basis for R2. 

20. No. The vectors are linearly dependent because there are more vectors in the set than entries in each 
vector. (Theorem 8 in Section 1.7.) So the vectors cannot be a basis for any subspace. 

21. a. False. See the definition at the beginning of the section. The critical phrases “for each” are missing. 
b. True. See the paragraph before Example 4. 
c. False. See Theorem 12. The null space is a subspace of Rn, not Rm. 
d. True. See Example 5. 
e. True. See the first part of the solution of Example 8. 

22. a. False. See the definition at the beginning of the section. The condition about the zero vector is only 
one of the conditions for a subspace. 

b. True. See Example 3. 
c. True. See Theorem 12. 
d. False. See the paragraph after Example 4. 
e. False. See the Warning that follows Theorem 13. 
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23. (Solution in Study Guide) 
4 5 9 2 1 2 6 5
6 5 1 12 ~ 0 1 5 6
3 4 8 3 0 0 0 0

A
− −   

   = −   
   −   

. The echelon form identifies 

columns 1 and 2 as the pivot columns. A basis for Col A uses columns 1 and 2 of A: 
4 5
6 , 5
3 4

   
   
   
      

. This is not 

the only choice, but it is the “standard” choice. A wrong choice is to select columns 1 and 2 of the 
echelon form. These columns have zero in the third entry and could not possibly generate the columns 
displayed in A. 

24. For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0:  

   
1 0 4 7 0
0 1 5 6 0
0 0 0 0 0

− 
 − 
  

. This corresponds to:   
1 3 4

2 3 4

4 7 0
5 6 0

0 0

x x x
x x x

− + =
+ − =

=
.  

  Solve for the basic variables and write the solution of Ax = 0 in parametric vector form: 

   

1 3 4

2 3 4
3 4

3 3

4 4

4 7 4 7
5 6 5 6

1 0
0 1

x x x
x x x

x x
x x
x x

− −       
       − + −       = = +
       
       

             

. Basis for Nul A: 

4 7
5 6

,
1 0
0 1

−   
   −   
   
   
      

 

Notes: (1) A basis is a set of vectors. For simplicity, the answers here and in the text list the vectors without 
enclosing the list inside set brackets. This style is also easier for students. I am careful, however, to 
distinguish between a matrix and the set or list whose elements are the columns of the matrix. 

(2) Recall from Chapter 1 that students are encouraged to use the augmented matrix when solving Ax = 0, 
to avoid the common error of misinterpreting the reduced echelon form of A as itself the augmented matrix 
for a nonhomogeneous system. 

(3) Because the concept of a basis is just being introduced, I insist that my students write the parametric 
vector form of the solution of Ax = 0. They see how the basis vectors span the solution space and are 
obviously linearly independent. A shortcut, which some instructors might introduce later in the course, is only 
to solve for the basic variables and to produce each basis vector one at a time. Namely, set all free variables 
equal to zero except for one free variable, and set that variable equal to a suitable nonzero number. 

24. 
3 9 2 7 1 3 6 9
2 6 4 8 ~ 0 0 4 5
3 9 2 2 0 0 0 0

A
− − − −   
   = −   
   − −   

. Basis for Col A: 
3 2
2 , 4
3 2

− −   
   
   
   −   

. 

  For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0: 

   
1 3 0 1.50 0
0 0 1 1.25 0
0 0 0 0 0

− 
 
 
  

. This corresponds to:  
1 2 4

3 4

3 1.50 0
1.25 0

0 0

x x x
x x

− + =
+ =

=
.  

Solve for the basic variables and write the solution of Ax = 0 in parametric vector form: 

   

1 2 4

2 2
2 4

3 4

4 4

3 1.5 3 1.5
1 0

1.25 0 1.25
0 1

x x x
x x

x x
x x
x x

− −       
       
       = = +
       − −
       

             

. Basis for Nul A: 

3 1.5
1 0

,
0 1.25
0 1

−   
   
   
   −
   
      

. 
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25. 

1 4 8 3 7 1 4 8 0 5
1 2 7 3 4 0 2 5 0 1

~
2 2 9 5 5 0 0 0 1 4
3 6 9 5 2 0 0 0 0 0

A

− −   
   − −   =
   −
   − −      

. Basis for Col A: 

1 4 3
1 2 3

, ,
2 2 5
3 6 5

−     
     −     
     −
     −          

. 

  For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0:  

   

1 0 2 0 7 0
0 1 2.5 0 .5 0

[ ] ~
0 0 0 1 4 0
0 0 0 0 0 0

A

− 
 − 
 
 
  

0 .      

1 3 5

2 3 5

4 5

2 7 0
2.5 .5 0

4 0
0 0

x x x
x x x

x x

− + =
+ − =

+ =
=

.  

  

1 3 5

2 3 5

3 53 3

4 5

5 5

2 7 2 7
2.5 .5 2.5 .5

Thesolution of 0in parametric vector form : .1 0
4 0 4

0 1

x x x
x x x

A x xx x
x x
x x

− −       
       − + −       
       = = = +
       − −       
             

x

u v
 

  Basis for Nul A: {u, v}. 

Note: The solution above illustrates how students could write a solution on an exam, when time is precious, 
namely, describe the basis by giving names to appropriate vectors found in the calculations. 

26. 

3 1 7 3 9 3 1 7 0 6
2 2 2 7 5 0 2 4 0 3

~
5 9 3 3 4 0 0 0 1 1
2 6 6 3 7 0 0 0 0 0

A

− −   
   − −   =
   −
   −      

. Basis for Col A: 

3 1 3
2 2 7

, ,
5 9 3
2 6 3

−     
     −     
     −
     −          

.  

  For Nul A, 

   [ ]

1 0 3 0 2.5 0
0 1 2 0 1.5 0

~
0 0 0 1 1 0
0 0 0 0 0 0

A

 
 
 
 
 
  

0 .      

1 5

2 3 5

4 5

3 2.5 0
2 1.5 0

0
0 0

x x x
x x x

x x

+ + =
+ + =

+ =
=

    

  The solution of Ax = 0 in parametric vector form: 

   

1 3 5

2 3 5

3 53 3

4 5

5 5

3 2.5 3 2.5
2 1.5 2 1.5

1 0
0 1
0 1

x x x
x x x

x xx x
x x
x x

− − − −       
       − − − −       
       = = +
       − −       
             

u  v

. Basis for Nul A: {u, v}. 

27. Construct a nonzero 3×3 matrix A and construct b to be almost any convenient linear combination of the 
columns of A. 
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28. The easiest construction is to write a 3×3 matrix in echelon form that has only 2 pivots, and let b be any 
vector in R3 whose third entry is nonzero. 

29. (Solution in Study Guide) A simple construction is to write any nonzero 3×3 matrix whose columns are 
obviously linearly dependent, and then make b a vector of weights from a linear dependence relation 
among the columns. For instance, if the first two columns of A are equal, then b could be (1, –1, 0). 

30. Since Col A is the set of all linear combinations of a1, … , ap, the set {a1, … , ap} spans Col A. Because 
{a1, … , ap} is also linearly independent, it is a basis for Col A. (There is no need to discuss pivot 
columns and Theorem 13, though a proof could be given using this information.) 

31. If Col F ≠ R5, then the columns of F do not span R5. Since F is square, the IMT shows that F is not 
invertible and the equation Fx = 0 has a nontrivial solution. That is, Nul F contains a nonzero vector. 
Another way to describe this is to write Nul F ≠ {0}. 

32. If Nul R contains nonzero vectors, then the equation Rx = 0 has nontrivial solutions. Since R is square, 
the IMT shows that R is not invertible and the columns of R do not span R6. So Col R is a subspace of 
R6, but Col R ≠ R6. 

33. If Col Q = R4, then the columns of Q span R4. Since Q is square, the IMT shows that Q is invertible and 
the equation Qx = b has a solution for each b in R4. Also, each solution is unique, by Theorem 5 in 
Section 2.2. 

34. If Nul P = {0}, then the equation Px = 0 has only the trivial solution. Since P is square, the IMT shows 
that P is invertible and the equation Px = b has a solution for each b in R5. Also, each solution is unique, 
by Theorem 5 in Section 2.2.  

35. If the columns of B are linearly independent, then the equation Bx = 0 has only the trivial (zero) solution. 
That is, Nul B = {0}. 

36. If the columns of A form a basis, they are linearly independent. This means that A cannot have more 
columns than rows. Since the columns also span Rm, A must have a pivot in each row, which means that 
A cannot have more rows than columns. As a result, A must be a square matrix. 

37. [M] Use the command that produces the reduced echelon form in one step (ref or rref depending  
on the program). See the Section 2.8 in the Study Guide for details. By Theorem 13, the pivot columns of 
A form a basis for Col A. 

   

3 5 0 1 3 1 0 2.5 4.5 3.5
7 9 4 9 11 0 1 1.5 2.5 1.5

~
5 7 2 5 7 0 0 0 0 0
3 7 3 4 0 0 0 0 0 0

A

− − −   
   − − − −   =
   − − −
   − −      

 Basis for Col A: 

3 5
7 9

,
5 7
3 7

−   
   −   
   −
   −      

  

  For Nul A, obtain the solution of Ax = 0 in parametric vector form: 

   1 3 4 5

2 3 4 5

2.5 4.5 3.5 0
1.5 2.5 1.5 0

x x x x
x x x x

+ − + =
+ − + =

 

  Solution: 
1 3 4 5

2 3 4 5

3 4 5

2.5 4.5 3.5
1.5 2.5 1.5

, , and  are free

x x x x
x x x x
x x x

= − + −
 = − + −
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1 3 4 5

2 3 4 5

3 4 53 3

4 4

5 5

2.5 4.5 3.5 2.5 4.5 3.5
1.5 2.5 1.5 1.5 2.5 1.5

1 0 0
0 1 0
0 0 1

x x x x
x x x x

x x xx x
x x
x x

− + − − −         
         − + − − −         
         = = = + +
         
         
                 

x  = x3u + x4v + x5w 

  By the argument in Example 6, a basis for Nul A is {u, v, w}. 

38. [M] 

5 2 0 8 8 1 0 0 60 122
4 1 2 8 9 0 1 0 154 309

~
5 1 3 5 19 0 0 1 47 94
8 5 6 8 5 0 0 0 0 0

A

− −   
   − − − −   =
   − −
   − −      

.  

  The pivot columns of A form a basis for Col A: 

5 2 0
4 1 2

, ,
5 1 3
8 5 6

     
     
     
     
     − −          

.  

  For Nul A, solve Ax = 0:  
1 4 5

2 4 5

3 4 5

60 122 0
154 309 0
47 94 0

x x x
x x x

x x x

+ + =
− − =
− − =

  

  Solution: 

1 4 5

2 4 5

3 4 5

4 5

60 122
154 309
47 94

 and   are free

x x x
x x x
x x x
x x

= − −
 = +
 = +


  

   

1 4 5

2 4 5

4 53 4 5

4 4

5 5

60 122 60 122
154 309 154 309

47 94 47 94
1 0
0 1

x x x
x x x

x xx x x
x x
x x

− − − −       
       +       
       = = = ++
       
       
             

x  = x4u + x5v  

  By the method of Example 6, a basis for Nul A is {u, v} 

Note: The Study Guide for Section 2.8 gives directions for students to construct a review sheet for the 
concept of a subspace and the two main types of subspaces, Col A and Nul A, and a review sheet for the 
concept of a basis. I encourage you to consider making this an assignment for your class. 

2.9 SOLUTIONS 

Notes: This section contains the ideas from Sections 4.4–4.6 that are needed for later work in Chapters 5–7. 
If you have time, you can enrich the geometric content of “coordinate systems” by discussing crystal lattices 
(Example 3 and Exercises 35 and 36 in Section 4.4.) Some students might profit from reading Examples 1–3 
from Section 4.4 and Examples 2, 4, and 5 from Section 4.6. Section 4.5 is probably not a good reference for 
students who have not considered general vector spaces. 

Coordinate vectors are important mainly to give an intuitive and geometric feeling for the isomorphism 
between a k-dimensional subspace and Rk. If you plan to omit Sections 5.4, 5.6, 5.7 and 7.2, you can safely 
omit Exercises 1–8 here.  
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Exercises 1–16 may be assigned after students have read as far as Example 2. Exercises 19 and 20 use the 
Rank Theorem, but they can also be assigned before the Rank Theorem is discussed.  

The Rank Theorem in this section omits the nontrivial fact about Row A which is included in the Rank 
Theorem of Section 4.6, but that is used only in Section 7.4. The row space itself can be introduced in Section 
6.2, for use in Chapter 6 and Section 7.4. 

Exercises 9–16 include important review of techniques taught in Section 2.8 (and in Sections 1.2 and 2.5). 
They make good test questions because they require little arithmetic. My students need the practice here. 
Nearly every time I teach the course and start Chapter 5, I find that at least one or two students cannot find a 
basis for a two-dimensional eigenspace! 

 1. If [x]B = 
3
2
 
 
 

, then x is formed from b1 and b2 using  

weights 3 and 2: 

   x = 3b1 + 2b2 = 
1 2 7

3 2
1 1 1

     
+ =     −     

  

 2. If [x]B = 
1
3

− 
 
 

, then x is formed from b1 and b2 using weights –1 and 3:  

   x = (–1)b1 + 3b2 = 
2 3 11

( 1) 3
1 1 2

−     
− + =     

     
 

 3. To find c1 and c2 that satisfy x = c1b1 + c2b2, row reduce the augmented matrix: 

1 2
1 2 3 1 2 3 1 0 7

[ ] ~ ~
4 7 7 0 1 5 0 1 5

− − − −     
=      − − −     

b b x . Or, one can write a matrix equation as 

suggested by Exercise 7 and solve using the matrix inverse. In either case, 

[x]B = 1

2

7
.

5
c
c
   

=   
  

 

 4. As in Exercise 3, 1 2
1 3 7 1 3 7 1 0 5

[ ] ~ ~
3 5 5 0 4 16 0 1 4

− − − −     
=      − − −     

b b x , and 

   [x]B = 1

2

5
.

4
c
c
   

=   
  

 

 5. 1 2

1 3 4 1 3 4 1 0 1/ 4
[ ] 5 7 10 ~ 0 8 10 ~ 0 1 5/ 4

3 5 7 0 4 5 0 0 0

− −     
     = − − −     
     − − −     

b b x . [x]B = 1

2

1/ 4
.

5 / 4
c
c
   

=   −  
 

b2

2b2

b1

2b1

3b1

x
x1

x2

 

b2

2b2

b1

3b2

–b1

x

x1

x2
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 6. 1 2

3 7 11 1 5 0 1 0 5/ 2
[ ] 1 5 0 ~ 0 22 11 ~ 0 1 1/ 2

4 6 7 0 14 7 0 0 0

− −     
     =      
     − −     

b b x  

   [x]B = 1

2

5 / 2
.

1/ 2
c
c

−   
=   
  

 

 7. Fig. 1 suggests that w = 2b1 – b2 and x = 1.5b1 + .5b2, in which case, 

  [w]B = 
2
1

 
 − 

 and [x]B = 
1.5
.5

 
 
 

. To confirm [x]B, compute 

   1 2
3 1 4

1.5 .5 1.5 .5
0 2 1

−     
+ = + = =     

     
b b x  

   Figure 1 Figure 2 

Note: Figures 1 and 2 display what Section 4.4 calls B-graph paper.  

 8. Fig. 2 suggests that x = 2b1 – b2, y = 1.5b1 + b2, and z = –b1 – .5b2. If so, then 

  [x]B = 
2
1

 
 − 

, [y]B = 
1.5
1.0
 
 
 

, and [z]B = 
1
.5

− 
 − 

. To confirm [y]B and [z]B, compute 

  1 2
0 2 2

1.5 1.5
2 1 4

     
+ = + = =     

     
b b y  and 1 2

0 2 1
.5 1 .5

2 1 2.5
−     

− − = − − = =     −     
b b z . 

 9. The information 

1 3 2 4 1 3 2 4
3 9 1 5 0 0 5 7

~
2 6 4 3 0 0 0 5
4 12 2 7 0 0 0 0

A

− − − −   
   − − −   =
   − −
   −      

 is enough to see that columns 1, 3, and 4 of 

A form a basis for Col A: 

1 2 4
3 1 5

, , .
2 4 3
4 2 7

−     
     − −     
     −
     −          

  

  Columns 1, 2 and 4, of the echelon form certain cannot span Col A since those vectors all have zero in 
their fourth entries. For Nul A, use the reduced echelon form, augmented with a zero column to insure 
that the equation Ax = 0 is kept in mind:  

b 2

b1

x

w

0

 

b2

b1

x

0

z

y
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1 3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

− 
 
 
 
 
  

.      

1 2

3

4

2

3 0
0
0

 is the free variable

x x
x

x
x

− =
=
=

,      x = 

1 2

2 2
2

3

4

3 3
1

.
0 0
0 0

x x
x x

x
x
x

     
     
     = =
     
     

         

 So 

3
1
0
0

 
 
 
 
 
  

 is 

  a basis for Nul A. From this information, dim Col A = 3 (because A has three pivot columns) and dim Nul 
A = 1 (because the equation Ax = 0 has only one free variable). 

10. The information

1 2 9 5 4 1 2 9 5 4
1 1 6 5 3 0 1 3 0 7

~
2 0 6 1 2 0 0 0 1 2
4 1 9 1 9 0 0 0 0 0

A

− −   
   − − − −   =
   − − − −
   −      

 shows that columns 1, 2,  

and 4 of A form a basis for Col A: 

1 2 5
1 1 5

, ,
2 0 1
4 1 1

−     
     −     
     −
     
          

. For Nul A, 

  [ ]

1 0 3 0 0 0
0 1 3 0 7 0

~
0 0 0 1 2 0
0 0 0 0 0 0

A

 
 − − 
 −
 
  

0 .      

1 3

2 3 5

4 5

3 5

3 0
3 7 0

2 0
and  are free variables

x x
x x x

x x
x x

+ =
− − =

− =
 

   

1 3

2 3 5

3 53 3

4 5

5 5

3 3 0
3 7 3 7

.1 0
2 0 2

0 1

x x
x x x

x xx x
x x
x x

− −       
       +       
       = = = +
       
       
             

x  Basis for Nul A: 

3 0
3 7

,1 0
0 2
0 1

−   
   
   
   
   
   
      

. 

  From this, dim Col A = 3 and dim Nul A = 2. 

11. The information 

1 2 5 0 1 1 2 5 0 1
2 5 8 4 3 0 1 2 4 5

~
3 9 9 7 2 0 0 0 1 2
3 10 7 11 7 0 0 0 0 0

A

− − − −   
   −   =
   − − − −
   −      

 shows that columns 1, 2,  

and 4 of A form a basis for Col A: 

1 2 0
2 5 4

, , .
3 9 7
3 10 11

     
     
     
     − − −
     
          

 For Nul A, 

  [ ]

1 0 9 0 5 0
0 1 2 0 3 0

~ .
0 0 0 1 2 0
0 0 0 0 0 0

A

− 
 − 
 
 
  

0   

1 3 5

2 3 5

4 5

3 5

9 5 0
2 3 0

2 0
and  are free variables

x x x
x x x

x x
x x

− + =
+ − =

+ =
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1 3 5

2 3 5

3 53 3

4 5

5 5

9 5 9 5
2 3 2 3

.1 0
2 0 2

0 1

x x x
x x x

x xx x
x x
x x

− −       
       − + −       
       = = = +
       − −       
             

x  Basis for Nul A: 

9 5
2 3

, .1 0
0 2
0 1

−   
   −   
   
   −   
      

 

  From this, dim Col A = 3 and dim Nul A = 2. 

12. The information 

1 2 4 3 3 1 2 4 3 3
5 10 9 7 8 0 0 1 2 0

~
4 8 9 2 7 0 0 0 0 5
2 4 5 0 6 0 0 0 0 0

A

− −   
   − − −   =
   − − −
   − − −      

 shows that columns 1, 3,  

and 5 of A form a basis for Col A: 

1 4 3
5 9 8

, , .
4 9 7
2 5 6

−     
     −     
     −
     − −          

 For Nul A 

  [ ]

1 2 0 5 0 0
0 0 1 2 0 0

~ .
0 0 0 0 1 0
0 0 0 0 0 0

A

− 
 − 
 
 
  

0       

1 2 4

3 4

5

2 4

2 5 0
2 0

0
and  are free variables

x x x
x x

x
x x

+ − =
− =

=
 

  

1 2 4

2 2

2 43 4

4 4

5

2 5 2 5
1 0

.2 0 2
0 1

0 0 0

x x x
x x

x xx x
x x
x

− + −       
       
       
       = = = +
       
       
             

x  Basis for Nul A: 

2 5
1 0

, .0 2
0 1
0 0

−   
   
   
   
   
   
      

 

  From this, dim Col A = 3 and dim Nul A = 2. 

13. The four vectors span the column space H of a matrix that can be reduced to echelon form: 

  

1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4
3 9 1 5 0 0 5 7 0 0 5 7 0 0 5 7

~ ~ ~
2 6 4 3 0 0 0 5 0 0 0 5 0 0 0 5
4 12 2 7 0 0 10 9 0 0 0 5 0 0 0 0

− − − − − − − −       
       − − − − −       
       − −
       − −              

 

  Columns 1, 3, and 4 of the original matrix form a basis for H, so dim H = 3. 

Note: Either Exercise 13 or 14 should be assigned because there are always one or two students who confuse 
Col A with Nul A. Or, they wrongly connect “set of linear combinations” with “parametric vector form” (of 
the general solution of Ax = 0). 

14. The five vectors span the column space H of a matrix that can be reduced to echelon form: 

  

1 2 0 1 3 1 2 0 1 3 1 2 0 1 3
1 3 2 4 8 0 1 2 3 5 0 1 2 3 5

~ ~
2 1 6 7 9 0 3 6 9 15 0 0 0 0 0
5 6 8 7 5 0 4 8 12 20 0 0 0 0 0

− − −     
     − − − − − − −     
     − − − − − −
     − − −          

 

  Columns 1 and 2 of the original matrix form a basis for H, so dim H = 2.  
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15. Col A = R3, because A has a pivot in each row and so the columns of A span R3. Nul A cannot equal R2, 
because Nul A is a subspace of R5. It is true, however, that Nul A is two-dimensional. Reason: the 
equation Ax = 0 has two free variables, because A has five columns and only three of them are pivot 
columns. 

16. Col A cannot be R3 because the columns of A have four entries. (In fact, Col A is a 3-dimensional 
subspace of R4, because the 3 pivot columns of A form a basis for Col A.) Since A has 7 columns and 
3 pivot columns, the equation Ax = 0 has 4 free variables. So, dim Nul A = 4. 

17. a. True. This is the definition of a B-coordinate vector. 
b. False. Dimension is defined only for a subspace. A line must be through the origin in Rn to be a 

subspace of Rn. 
c. True. The sentence before Example 1 concludes that the number of pivot columns of A is the rank of 

A, which is the dimension of Col A by definition. 
d. True. This is equivalent to the Rank Theorem because rank A is the dimension of Col A. 
e. True, by the Basis Theorem. In this case, the spanning set is automatically a linearly independent set. 

18. a. True. This fact is justified in the second paragraph of this section. 
b. True. See the second paragraph after Fig. 1. 
c. False. The dimension of Nul A is the number of free variables in the equation Ax = 0.  

See Example 2. 
d. True, by the definition of rank. 
e. True, by the Basis Theorem. In this case, the linearly independent set is automatically a spanning set. 

19. The fact that the solution space of Ax = 0 has a basis of three vectors means that dim Nul A = 3. Since a 
5×7 matrix A has 7 columns, the Rank Theorem shows that rank A = 7 – dim Nul A = 4.  

Note: One can solve Exercises 19–22 without explicit reference to the Rank Theorem. For instance, in 
Exercise 19, if the null space of a matrix A is three-dimensional, then the equation Ax = 0 has three free 
variables, and three of the columns of A are nonpivot columns. Since a 5×7 matrix has seven columns, A must 
have four pivot columns (which form a basis of Col A). So rank A = dim Col A = 4. 

20. A 4×5 matrix A has 5 columns. By the Rank Theorem, rank A = 5 – dim Nul A. Since the null space is 
three-dimensional, rank A = 2. 

21. A 7×6 matrix has 6 columns. By the Rank Theorem, dim Nul A = 6 – rank A. Since the rank is four, dim 
Nul A = 2. That is, the dimension of the solution space of Ax = 0 is two. 

22. The wording of this problem was poor in the first printing, because the phrase “it spans a four-
dimensional subspace” was never defined. Here is a revision that I will put in later printings of the third 
edition:  

   Show that a set {v1, …, v5} in Rn is linearly dependent if dim Span{v1, …, v5} = 4. 
  Solution: Suppose that the subspace H = Span{v1, …, v5} is four-dimensional. If {v1, …, v5} were 

linearly independent, it would be a basis for H. This is impossible, by the statement just before the 
definition of dimension in Section 2.9, which essentially says that every basis of a p-dimensional 
subspace consists of p vectors. Thus, {v1, …, v5} must be linearly dependent. 

23. A 3×4 matrix A with a two-dimensional column space has two pivot columns. The remaining two 
columns will correspond to free variables in the equation Ax = 0. So the desired construction is possible. 
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There are six possible locations for the two pivot columns, one of which is 
* * *

0 * *
0 0 0 0

 
 
 
  

. A simple 

construction is to take two vectors in R3 that are obviously not linearly dependent, and put two copies of 
these two vectors in any order. The resulting matrix will obviously have a two-dimensional column 
space. There is no need to worry about whether Nul A has the correct dimension, since this is guaranteed 
by the Rank Theorem: dim Nul A = 4 – rank A. 

24. A rank 1 matrix has a one-dimensional column space. Every column is a multiple of some fixed vector. 
To construct a 4×3 matrix, choose any nonzero vector in R4, and use it for one column. Choose any 
multiples of the vector for the other two columns. 

25. The p columns of A span Col A by definition. If dim Col A = p, then the spanning set of p columns is 
automatically a basis for Col A, by the Basis Theorem. In particular, the columns are linearly 
independent. 

26. If columns a1, a3, a5, and a6 of A are linearly independent and if dim Col A = 4, then {a1, a3, a5, a6} is a 
linearly independent set in a 4-dimensional column space. By the Basis Theorem, this set of four vectors 
is a basis for the column space. 

27. a. Start with B = [b1   ⋅ ⋅ ⋅   bp] and A = [a1   ⋅ ⋅ ⋅   aq], where q > p. For j = 1, …, q, the vector aj is 
in W. Since the columns of B span W, the vector aj is in the column space of B. That is, aj = Bcj for 
some vector cj of weights. Note that cj is in Rp because B has p columns. 

b. Let C = [c1   ⋅ ⋅ ⋅   cq]. Then C is a p×q matrix because each of the q columns is in Rp.  
By hypothesis, q is larger than p, so C has more columns than rows. By a theorem, the columns of 
C are linearly dependent and there exists a nonzero vector u in Rq such that Cu = 0. 

c. From part (a) and the definition of matrix multiplication 
   A = [a1   ⋅ ⋅ ⋅   aq] = [Bc1   ⋅ ⋅ ⋅   Bcq] = BC 
  From part (b), Au = (BC)u = B(Cu) = B0 = 0. Since u is nonzero, the columns of A are linearly 

dependent. 

28. If A contained more vectors than B, then A would be linearly dependent, by Exercise 27, because B  
spans W. Repeat the argument with B and A interchanged to conclude that B cannot contain more  
vectors than A. 

29. [M]  Apply the matrix command ref or rref to the matrix [v1   v2   x]:  

   

11 14 19 1 0 1.667
5 8 13 0 1 2.667

~
10 13 18 0 0 0
7 10 15 0 0 0

−   
   − − −   
   
   
      

 

  The equation c1v1 + c2v2 = x is consistent, so x is in the subspace H. The decimal approximations suggest 
c1 = –5/3 and c2 = 8/3, and it can be checked that these values are precise. Thus, the B-coordinate of x is 
(–5/3, 8/3). 

30. [M] Apply the matrix command ref or rref to the matrix [v1   v2   v3   x]: 

   

6 8 9 4 1 0 0 3
4 3 5 7 0 1 0 5

~
9 7 8 8 0 0 1 2
4 3 3 3 0 0 0 0

− −   
   −   
   − − −
   −      
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  The first three columns of [v1   v2   v3   x] are pivot columns, so v1, v2 and v3 are linearly independent. 
Thus v1, v2 and v3 form a basis B for the subspace H which they span. View [v1   v2   v3   x] as an 
augmented matrix for c1v1 + c2v2 + c3v3 = x. The reduced echelon form shows that x is in H and          

[x]B = 
3
5 .
2

 
 
 
  

 

Notes: The Study Guide for Section 2.9 contains a complete list of the statements in the Invertible Matrix 
Theorem that have been given so far. The format is the same as that used in Section 2.3, with three columns: 
statements that are logically equivalent for any m×n matrix and are related to existence concepts, those that 
are equivalent only for any n×n matrix, and those that are equivalent for any n×p matrix and are related to 
uniqueness concepts. Four statements are included that are not in the text’s official list of statements, to give 
more symmetry to the three columns. 

The Study Guide section also contains directions for making a review sheet for “dimension” and “rank.” 

Chapter 2 SUPPLEMENTARY EXERCISES 

 1. a. True. If A and B are m×n matrices, then BT has as many rows as A has columns, so ABT is defined. 
Also, ATB is defined because AT has m columns and B has m rows. 

b. False. B must have 2 columns. A has as many columns as B has rows. 
c. True. The ith row of A has the form (0, …, di, …, 0). So the ith row of AB is (0, …, di, …, 0)B, which 

is di times the ith row of B. 
d. False. Take the zero matrix for B. Or, construct a matrix B such that the equation Bx = 0 has 

nontrivial solutions, and construct C and D so that C ≠ D and the columns of C – D satisfy the 
equation Bx = 0. Then B(C – D) = 0 and BC = BD. 

e. False. Counterexample: A = 
1 0
0 0
 
 
 

 and C = 
0 0
0 1
 
 
 

.  

f. False. (A + B)(A – B) = A2 – AB + BA – B2. This equals A2 – B2 if and only if A commutes with B. 
g. True. An n×n replacement matrix has n + 1 nonzero entries. The n×n scale and interchange matrices 

have n nonzero entries. 
h. True. The transpose of an elementary matrix is an elementary matrix of the same type. 
i. True. An n×n elementary matrix is obtained by a row operation on In. 
j. False. Elementary matrices are invertible, so a product of such matrices is invertible. But not every 

square matrix is invertible. 
k. True. If A is 3×3 with three pivot positions, then A is row equivalent to I3. 
l. False. A must be square in order to conclude from the equation AB = I that A is invertible. 
m. False. AB is invertible, but (AB)–1 = B–1A–1, and this product is not always equal to A–1B–1. 
n. True. Given AB = BA, left-multiply by A–1 to get B = A–1BA, and then right-multiply by A–1 to obtain 

BA–1 = A–1B. 
o. False. The correct equation is (rA)–1 = r–1A–1, because  

  (rA)(r–1A–1) = (rr–1)(AA–1) = 1⋅I = I. 

p. True. If the equation Ax = 
1
0
0

 
 
 
  

 has a unique solution, then there are no free variables in this equation, 

which means that A must have three pivot positions (since A is 3×3). By the Invertible Matrix 
Theorem, A is invertible. 
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 2. C = (C– 1)–1 = 
7 5 7 / 2 5/ 21
6 4 3 22

− −   
=   − −−    

 

 3. 2
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 , 1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 1 0 1 0 0

A A
       
       = = =       
              

 

  3 2
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

A A A
     
     = ⋅ = =     
          

 

  Next, 2 2 2 2 2 3 3( )( ) ( )I A I A A I A A A I A A I A A A A A I A− + + = + + − + + = + + − − − = − .  

  Since A3 = 0, 2( )( )I A I A A I− + + = . 

 4. From Exercise 3, the inverse of I – A is probably I + A + A2 +  ⋅ ⋅ ⋅  + An–1. To verify this, compute 

   1 1 1 1( )( ) ( )n n n n nI A I A A I A A A I A A I AA I A− − − −− + + + = + + + − + + + = − = −  

  If An = 0, then the matrix B = I + A + A2 +  ⋅ ⋅ ⋅  + An–1 satisfies (I – A)B = I. Since I – A and B are square, 
they are invertible by the Invertible Matrix Theorem, and B is the inverse of I – A. 

 5. A2 = 2A – I. Multiply by A: A3 = 2A2 – A. Substitute A2 = 2A – I: A3 = 2(2A – I) – A = 3A – 2I. 
Multiply by A again: A4 = A(3A – 2I) = 3A2 – 2A. Substitute the identity A2 = 2A – I again: 

  Finally, A4 = 3(2A – I) – 2A = 4A – 3I. 

 6. Let 
1 0 0 1

 and  .
0 1 1 0

A B
   

= =   −   
 By direct computation, A2 = I, B2 = I, and AB = 

0 1
1 0

 
 − 

 = – BA. 

 7. (Partial answer in Study Guide) Since A–1B is the solution of AX = B, row reduction of [A   B] to [I   X] 
will produce X = A–1B. See Exercise 12 in Section 2.2.  

   [ ]
1 3 8 3 5 1 3 8 3 5 1 3 8 3 5
2 4 11 1 5 ~ 0 2 5 7 5 ~ 0 1 3 6 1
1 2 5 3 4 0 1 3 6 1 0 2 5 7 5

A B
− − −     

     = − − − −     
     − − − − − −     

 

   
1 3 8 3 5 1 3 0 37 29 1 0 0 10 1

~ 0 1 3 6 1 ~ 0 1 0 9 10 ~ 0 1 0 9 10
0 0 1 5 3 0 0 1 5 3 0 0 1 5 3

− −     
     −     
     − − − − − −     

 

  Thus, A–1B = 
10 1

9 10
5 3

− 
 
 
 − − 

. 

 8. By definition of matrix multiplication, the matrix A satisfies 

   
1 2 1 3
3 7 1 1

A
   

=   
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  Right-multiply both sides by the inverse of 
1 2
3 7
 
 
 

. The left side becomes A. Thus, 

   
1 3 7 2 2 1
1 1 3 1 4 1

A
− −     

= =     − −     
 

 9. Given 
5 4 7 3

 and 
2 3 2 1

AB B
   

= =   −   
, notice that ABB–1 = A. Since det B = 7 – 6 =1,  

   1 11 3 5 4 1 3 3 13
 and ( )

2 7 2 3 2 7 8 27
B A AB B− −− − −       

= = = =       − − − −       
 

Note: Variants of this question make simple exam questions. 

10. Since A is invertible, so is AT, by the Invertible Matrix Theorem. Then ATA is the product of invertible 
matrices and so is invertible. Thus, the formula (ATA)–1AT makes sense. By Theorem 6 in Section 2.2, 

   (ATA)–1⋅AT = A–1(AT)–1AT = A–1I = A–1 

  An alternative calculation: (ATA)–1AT⋅A = (ATA)–1(ATA) = I. Since A is invertible, this equation shows that 
its inverse is (ATA)–1AT. 

11. a. For i = 1,…, n, p(xi) = c0 + c1xi + ⋅ ⋅ ⋅ + 1
1

n
inc x −

−  = 
0

1

row ( ) row ( )

n

i i

c
V V

c −

 
 ⋅ = 
  

c . 

  By a property of matrix multiplication, shown after Example 6 in Section 2.1, and the fact that c was 
chosen to satisfy Vc= y, 

   row ( ) row ( )  row ( )i ii iV V y= = =c c y  

  Thus, p(xi) = yi. To summarize, the entries in Vc are the values of the polynomial p(x) at x1, …, xn. 
b. Suppose x1, …, xn are distinct, and suppose Vc = 0 for some vector c. Then the entries in c are the 

coefficients of a polynomial whose value is zero at the distinct points x1, ..., xn. However, a nonzero 
polynomial of degree n – 1 cannot have n zeros, so the polynomial must be identically zero. That is, 
the entries in c must all be zero. This shows that the columns of V are linearly independent. 

c. (Solution in Study Guide) When x1, …, xn are distinct, the columns of V are linearly independent,  
by (b). By the Invertible Matrix Theorem, V is invertible and its columns span Rn. So, for every  
y = (y1, …, yn) in Rn, there is a vector c such that Vc = y. Let p be the polynomial whose coefficients 
are listed in c. Then, by (a), p is an interpolating polynomial for (x1, y1), …, (xn, yn). 

12. If A = LU, then col1(A) = L⋅col1(U). Since col1(U) has a zero in every entry except possibly the first, 

L⋅col1(U) is a linear combination of the columns of L in which all weights except possibly the first are 
zero. So col1(A) is a multiple of col1(L). 

   Similarly, col2(A) = L⋅col2(U), which is a linear combination of the columns of L using the first two 
entries in col2(U) as weights, because the other entries in col2(U) are zero. Thus col2(A) is a linear 
combination of the first two columns of L. 

13. a. P2 = (uuT)(uuT) = u(uTu)uT = u(1)uT = P, because u satisfies uTu = 1. 
b. PT = (uuT)T = uTTuT = uuT = P 
c. Q2 = (I – 2P)(I – 2P) = I – I(2P) – 2PI + 2P(2P) 
    = I – 4P + 4P2 = I, because of part (a). 
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14. Given 
0
0
1

 
 =  
  

u , define P and Q as in Exercise 13 by  

   [ ]
0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 , 2 0 1 0 2 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1

TP Q I P
         
         = = = = − = − =         
         −         

uu  

  If 
1
5
3

 
 =  
  

x , then
0 0 0 1 0 1 0 0 1 1
0 0 0 5 0     and 0 1 0 5 5
0 0 1 3 3 0 0 1 3 3

P Q
           
           = = = =           
           − −           

x x . 

15. Left-multiplication by an elementary matrix produces an elementary row operation: 
   1 2 1 3 2 1~ ~ ~B E B E E B E E E B C=  

  so B is row equivalent to C. Since row operations are reversible, C is row equivalent to B. (Alternatively, 
show C being changed into B by row operations using the inverse of the Ei .) 

16. Since A is not invertible, there is a nonzero vector v in Rn such that Av = 0. Place n copies of v into an 
n×n matrix B. Then AB = A[v  ⋅ ⋅ ⋅  v] = [Av  ⋅ ⋅ ⋅  Av] = 0. 

17. Let A be a 6×4 matrix and B a 4×6 matrix. Since B has more columns than rows, its six columns are 
linearly dependent and there is a nonzero x such that Bx = 0. Thus ABx = A0 = 0. This shows that the 
matrix AB is not invertible, by the IMT. (Basically the same argument was used to solve Exercise 22 in 
Section 2.1.) 

Note: (In the Study Guide) It is possible that BA is invertible. For example, let C be an invertible 4×4 matrix 

and construct 1 and [ 0].
0
C

A B C− 
= = 
 

 Then BA = I4, which is invertible. 

18. By hypothesis, A is 5×3, C is 3×5, and AC = I3. Suppose x satisfies Ax = b. Then CAx = Cb. Since  
CA = I, x must be Cb. This shows that Cb is the only solution of Ax = b. 

19. [M]  Let 
.4 .2 .3
.3 .6 .3
.3 .2 .4

A
 
 =  
  

. Then 2
.31 .26 .30
.39 .48 .39
.30 .26 .31

A
 
 =  
  

. Instead of computing A3 next, speed up the 

calculations by computing 

   4 2 2 8 4 4
.2875 .2834 .2874 .2857 .2857 .2857
.4251 .4332 .4251 , .4285 .4286 .4285
.2874 .2834 .2875 .2857 .2857 .2857

A A A A A A
   
   = = = =   
      

 

  To four decimal places, as k increases, 

   
.2857 .2857 .2857
.4286 .4286 .4286
.2857 .2857 .2857

kA
 
 →  
  

, or, in rational format, 
2 / 7 2 / 7 2 / 7
3/ 7 3/ 7 3/ 7
2 / 7 2 / 7 2 / 7

kA
 
 →  
  

. 
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  If 2
0 .2 .3 .29 .18 .18
.1 .6 .3 , then .33 .44 .33
.9 .2 .4 .38 .38 .49

B B
   
   = =   
      

,  

   4 8
.2119 .1998 .1998 .2024 .2022 .2022
.3663 .3764 .3663 , .3707 .3709 .3707
.4218 .4218 .4339 .4269 .4269 .4271

B B
   
   = =   
      

 

  To four decimal places, as k increases,  

   
.2022 .2022 .2022
.3708 .3708 .3708
.4270 .4270 .4270

kB
 
 →  
  

, or, in rational format, 
18/89 18/89 18/89
33/89 33/89 33/89
38/89 38/89 38/89

kB
 
 →  
  

. 

20. [M]  The 4×4 matrix A4 is the 4×4 matrix of ones, minus the 4×4 identity matrix. The MATLAB 
command is A4 = ones(4) – eye(4). For the inverse, use inv(A4). 

   1
4 4

0 1 1 1 2 / 3 1/ 3 1/ 3 1/ 3
1 0 1 1 1/ 3 2 / 3 1/ 3 1/ 3

,
1 1 0 1 1/ 3 1/ 3 2 / 3 1/ 3
1 1 1 0 1/ 3 1/ 3 1/ 3 2 / 3

A A−

−   
   −   = =
   −
   −   

 

   1
5 5

0 1 1 1 1 3/ 4 1/ 4 1/ 4 1/ 4 1/ 4
1 0 1 1 1 1/ 4 3/ 4 1/ 4 1/ 4 1/ 4

,1 1 0 1 1 1/ 4 1/ 4 3/ 4 1/ 4 1/ 4
1 1 1 0 1 1/ 4 1/ 4 1/ 4 3/ 4 1/ 4
1 1 1 1 0 1/ 4 1/ 4 1/ 4 1/ 4 3/ 4

A A−

−   
   −   
   = = −
   −   
   −   

 

   1
6 6

0 1 1 1 1 1 4 / 5 1/ 5 1/ 5 1/ 5 1/ 5 1/ 5
1 0 1 1 1 1 1/ 5 4 / 5 1/ 5 1/ 5 1/ 5 1/ 5
1 1 0 1 1 1 1/ 5 1/ 5 4 / 5 1/ 5 1/ 5 1/ 5

,
1 1 1 0 1 1 1/ 5 1/ 5 1/5 4 /5 1/5 1/ 5
1 1 1 1 0 1 1/ 5 1/ 5 1/ 5 1/ 5 4 / 5 1/ 5
1 1 1 1 1 0 1/ 5 1/ 5 1/ 5 1/ 5 1/ 5 4 / 5

A A−

−   
   −   
   −

= =   −   
   −
   

−      

 

  The construction of A6 and the appearance of its inverse suggest that the inverse is related to I6. In fact, 
1

6 6A I− +  is 1/5 times the 6×6 matrix of ones. Let J denotes the n×n matrix of ones. The conjecture is: 

   An = J – In    and    1 1
1n nA J I

n
− = ⋅ −

−
 

  Proof: (Not required) Observe that J 2 = nJ and An J = (J – I ) J = J 2 – J = (n – 1) J. Now compute 
   An((n – 1)–1J – I) = (n – 1)–1A n J  – An = J – (J – I) = I 
  Since An is square, An is invertible and its inverse is (n – 1)–1J – I. 
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3.1 SOLUTIONS 

Notes: Some exercises in this section provide practice in computing determinants, while others allow the 
student to discover the properties of determinants which will be studied in the next section. Determinants are 
developed through the cofactor expansion, which is given in Theorem 1. Exercises 33–36 in this section 
provide the first step in the inductive proof of Theorem 3 in the next section.  

 1. Expanding along the first row:  

  
3 0 4

3 2 2 2 2 3
2 3 2 3 0 4 3( 13) 4(10) 1

5 1 0 1 0 5
0 5 1

= − + = − + =
− −

−
  

  Expanding along the second column:  

  1 2 2 2 3 2
3 0 4

2 2 3 4 3 4
2 3 2 ( 1) 0 ( 1) 3 ( 1) 5 3( 3) 5( 2) 1

0 1 0 1 2 2
0 5 1

+ + += − ⋅ + − ⋅ + − ⋅ = − − − =
− −

−
 

 2. Expanding along the first row:  

  
0 5 1

3 0 4 0 4 3
4 3 0 0 5 1 5(4) 1(22) 2

4 1 2 1 2 4
2 4 1

− −
− = − + = − + =   

  Expanding along the second column:  

  1 2 2 2 3 2
0 5 1

4 0 0 1 0 1
4 3 0 ( 1) 5 ( 1) ( 3) ( 1) 4 5(4) 3( 2) 4( 4) 2

2 1 2 1 4 0
2 4 1

+ + +− = − ⋅ + − ⋅ − + − ⋅ = − − − − − =   

 3. Expanding along the first row:  

  
2 4 3

1 2 3 2 3 1
3 1 2 2 ( 4) 3 2( 9) 4( 5) (3)(11) 5

4 1 1 1 1 4
1 4 1

−
= − − + = − + − + = −

− −
−
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  Expanding along the second column:  

  1 2 2 2 3 2
2 4 3

3 2 2 3 2 3
3 1 2 ( 1) ( 4) ( 1) 1 ( 1) 4 4( 5) 1( 5) 4( 5) 5

1 1 1 1 3 2
1 4 1

+ + +
−

= − ⋅ − + − ⋅ + − ⋅ = − + − − − = −
− −

−
  

 4. Expanding along the first row:  

  
1 3 5

1 1 2 1 2 1
2 1 1 1 3 5 1( 2) 3(1) 5(5) 20

4 2 3 2 3 4
3 4 2

= − + = − − + =   

  Expanding along the second column:  

  1 2 2 2 3 2
1 3 5

2 1 1 5 1 5
2 1 1 ( 1) 3 ( 1) 1 ( 1) 4 3(1) 1( 13) 4( 9) 20

3 2 3 2 2 1
3 4 2

+ + += − ⋅ + − ⋅ + − ⋅ = − + − − − =   

 5. Expanding along the first row:  

  
2 3 4

0 5 4 5 4 0
4 0 5 2 3 ( 4) 2( 5) 3( 1) 4(4) 23

1 6 5 6 5 1
5 1 6

−
= − + − = − − − − = −   

 6. Expanding along the first row:  

  
5 2 4

3 5 0 5 0 3
0 3 5 5 ( 2) 4 5(1) 2(10) 4( 6) 1

4 7 2 7 2 4
2 4 7

−
− −

− = − − + = + + − =
− −

−
  

 7. Expanding along the first row:  

  
4 3 0

5 2 6 2 6 5
6 5 2 4 3 0 4(1) 3(0) 4

7 3 9 3 9 7
9 7 3

= − + = − =  

 8. Expanding along the first row: 

  
8 1 6

0 3 4 3 4 0
4 0 3 8 1 6 8(6) 1(11) 6( 8) 11

2 5 3 5 3 2
3 2 5

= − + = − + − = −
− −

−
  

 9. First expand along the third row, then expand along the first row of the remaining matrix:  

  3 1 1 3

6 0 0 5
0 0 5

1 7 2 5 7 2
( 1) 2 7 2 5 2 ( 1) 5 10(1) 10

2 0 0 0 3 1
3 1 8

8 3 1 8

+ +−
= − ⋅ − = ⋅ − ⋅ = =   
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 10. First expand along the second row, then expand along either the third row or the second column of the 
remaining matrix. 

  2 3

1 2 5 2
1 2 2

0 0 3 0
( 1) 3 2 6 5

2 6 7 5
5 0 4

5 0 4 4

+

−
−

= − ⋅ −
− −

 

  3 1 3 32 2 1 2
( 3) ( 1) 5 ( 1) 4 ( 3)(5(2) 4( 2)) 6

6 5 2 6
+ + − −

= − − ⋅ + − ⋅ = − + − = − − − 
 

  or 

  2 3

1 2 5 2
1 2 2

0 0 3 0
( 1) 3 2 6 5

2 6 7 5
5 0 4

5 0 4 4

+

−
−

= − ⋅ −
− −

 

  1 2 2 22 5 1 2
( 3) ( 1) ( 2) ( 1) ( 6)

5 4 5 4
+ + 

= − − ⋅ − + − ⋅ − 
 

 ( )( 3) 2( 17) 6( 6) 6= − − − − = −  

 11. There are many ways to do this determinant efficiently. One strategy is to always expand along the first 
column of each matrix:  

  1 1 1 1

3 5 8 4
2 3 7

0 2 3 7 1 5
( 1) 3 0 1 5 3 ( 1) ( 2)

0 0 1 5 0 2
0 0 2

0 0 0 2

+ +

−
− −

− −
= − ⋅ = ⋅ − ⋅ −  = 3(–2)(2) = –12 

 12. There are many ways to do this determinant efficiently. One strategy is to always expand along the first 
row of each matrix:  

  1 1 1 1

4 0 0 0
1 0 0

7 1 0 0 3 0
( 1) 4 6 3 0 4 ( 1) ( 1)

2 6 3 0 4 3
8 4 3

5 8 4 3

+ +
−

−
= − ⋅ = ⋅ − ⋅ −

−
− −

− −

 = 4(–1)( –9) = 36  

 13. First expand along either the second row or the second column. Using the second row,  

  2 3

4 0 7 3 5
4 0 3 5

0 0 2 0 0
7 3 4 8

( 1) 27 3 6 4 8
5 0 2 3

5 0 5 2 3
0 0 1 2

0 0 9 1 2

+

− −
−
−

= − ⋅− −
−

−
−

−

 

  Now expand along the second column to find:  

  2 3 2 2

4 0 3 5
4 3 5

7 3 4 8
( 1) 2 2 ( 1) 3 5 2 3

5 0 2 3
0 1 2

0 0 1 2

+ +

−
 −

−  − ⋅ = − − ⋅ − −  − −
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  Now expand along either the first column or third row. The first column is used below. 

  2 2
4 3 5

2 ( 1) 3 5 2 3
0 1 2

+
 −
 − − ⋅ − 
 − 

1 1 2 12 3 3 5
6 ( 1) 4 ( 1) 5 ( 6)(4(1) 5(1)) 6

1 2 1 2
+ + − −

= − − ⋅ + − ⋅ = − − = − − 
  

 14. First expand along either the fourth row or the fifth column. Using the fifth column,  

  3 5

6 3 2 4 0
6 3 2 4

9 0 4 1 0
9 0 4 1

( 1) 18 5 6 7 1
3 0 0 0

3 0 0 0 0
4 2 3 2

4 2 3 2 0

+
−

−
= − ⋅−  

  Now expand along the third row to find:  

  3 5 3 1

6 3 2 4
3 2 4

9 0 4 1
( 1) 1 1 ( 1) 3 0 4 1

3 0 0 0
2 3 2

4 2 3 2

+ +
 

−  − ⋅ = − ⋅ − 
 
 

 

  Now expand along either the first column or second row. The first column is used below. 

  3 1
3 2 4

1 ( 1) 3 0 4 1
2 3 2

+
 
 − ⋅ − 
 
 

1 1 3 14 1 2 4
3 ( 1) 3 ( 1) 2 (3)(3( 11) 2(18)) 9

3 2 4 1
+ + −

= − ⋅ + − ⋅ = − + = − 
 

 15. 
3 0 4
2 3 2
0 5 1

=
−

 (3)(3)(–1) + (0)(2)(0) + (4)(2)(5) – (0)(3)(4) – (5)(2)(3) – (–1)(2)(0) =  

   –9 + 0 + 40 – 0 – 30 –0 = 1 

 16. 
0 5 1
4 3 0
2 4 1

− =  (0)(–3)(1) + (5)(0)(2) + (1)(4)(4) – (2)(–3)(1) – (4)(0)(0) – (1)(4)(5) =  

   0 + 0 + 16 – (–6) – 0 – 20 = 2 

 17. 
2 4 3
3 1 2
1 4 1

−
=

−
 (2)(1)(–1) + (–4)(2)(1) + (3)(3)(4) – (1)(1)(3) – (4)(2)(2) – (–1)(3)(–4) =  

   –2 + (–8) + 36 – 3 – 16 – 12 = –5 

 18. 
1 3 5
2 1 1
3 4 2

=  (1)(1)(2) + (3)(1)(3) + (5)(2)(4) – (3)(1)(5) – (4)(1)(1) – (2)(2)(3) =  

   2 + 9 + 40 – 15 – 4 – 12 = 20 
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 19. ,
a b

ad bc
c d

= −  ( )
c d

cb da ad bc
a b

= − = − −  

  The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinant is reversed. 

 20. ,
a b

ad bc
c d

= −  ( ) ( ) ( )
a b

a kd kc b kad kbc k ad bc
kc kd

= − = − = −  

  The row operation scales row 2 by k, and the determinant is multiplied by k. 

 21. 
3 4

18 20 2,
5 6

= − = −  
3 4

3(6 4 ) (5 3 )4 2
5 3 6 4

k k
k k

= + − + = −
+ +

 

  The row operation replaces row 2 with k times row 1 plus row 2, and the determinant is unchanged. 

 22. ,
a b

ad bc
c d

= −  ( ) ( )
a kc b kd

a kc d c b kd ad kcd bc kcd ad bc
c d
+ +

= + − + = + − − = −  

  The row operation replaces row 1 with k times row 2 plus row 1, and the determinant is unchanged. 

 23. 
1 1 1
3 8 4 1(4) 1(2) 1( 7) 5,
2 3 2

− − = − + − = −
−

 3 8 4 (4) (2) ( 7) 5
2 3 2

k k k
k k k k− − = − + − = −

−
 

  The row operation scales row 1 by k, and the determinant is multiplied by k. 

 24. 3 2 2 (2) (6) (3) 2 6 3 ,
6 5 6

a b c
a b c a b c= − + = − +  

  
3 2 2

3(6 5 ) 2(6 6 ) 2(5 6 ) 2 6 3
6 5 6
a b c b c a c a b a b c= − − − + − = − + −  

  The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinant is reversed. 

 25. Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:  

  
1 0 0
0 1 0 (1)(1)(1) 1
0 1k

= =  

 26. Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:  

  
1 0 0
0 1 0 (1)(1)(1) 1

0 1k
= =  

 27. Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:  

  
0 0

0 1 0 ( )(1)(1)
0 0 1

k
k k= =  
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 28. Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:  

  
1 0 0
0 0 (1)( )(1)
0 0 1

k k k= =  

 29. A cofactor expansion along row 1 gives 

  
0 1 0

1 0
1 0 0 1 1

0 1
0 0 1

= − = −  

 30. A cofactor expansion along row 1 gives 

  
0 0 1

0 1
0 1 0 1 1

1 0
1 0 0

= = −  

 31. A 3 × 3 elementary row replacement matrix looks like one of the six matrices  

  
1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0

1 0 , 0 1 0 , 0 1 0 , 0 1 k , 0 1 0 , 0 1 0
0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1

k k
k

k k

           
           
           
                      

 

  In each of these cases, the matrix is triangular and its determinant is the product of its diagonal entries, 
which is 1. Thus the determinant of a 3 × 3 elementary row replacement matrix is 1. 

 32. A 3 × 3 elementary scaling matrix with k on the diagonal looks like one of the three matrices  

   
0 0 1 0 0 1 0 0

0 1 0 , 0 0 , 0 1 0
0 0 1 0 0 1 0 0

k
k

k

     
     
     
          

 

  In each of these cases, the matrix is triangular and its determinant is the product of its diagonal entries, 
which is k. Thus the determinant of a 3 × 3 elementary scaling matrix with k on the diagonal is k. 

 33. 
0 1

,
1 0

E
 

=  
 

,
a b

A
c d
 

=  
 

c d
EA

a b
 

=  
 

 

  det E = –1, det A = ad – bc,  
det EA = cb – da = –1(ad – bc) = (det E)(det A) 

 34. 
1 0

,
0

E
k

 
=  
 

,
a b

A
c d
 

=  
 

a b
EA

kc kd
 

=  
 

 

  det E = k, det A = ad – bc,  
det EA = a(kd) – (kc)b = k(ad – bc) = (det E)(det A) 

 35. 
1

,
0 1

k
E

 
=  
 

,
a b

A
c d
 

=  
 

a kc b kd
EA

c d
+ + 

=  
 

 

  det E = 1, det A = ad – bc,  
det EA = (a + kc)d – c(b + kd) = ad + kcd – bc – kcd = 1(ad – bc) = (det E)(det A) 
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 36. 
1 0

,
1

E
k
 

=  
 

,
a b

A
c d
 

=  
 

a b
EA

ka c kb d
 

=  + + 
 

  det E = 1, det A = ad – bc,  
det EA = a(kb + d) – (ka + c)b = kab + ad – kab – bc = 1(ad – bc) = (det E)(det A) 

 37. 
3 1

,
4 2

A
 

=  
 

 
15 5

5 ,
20 10

A
 

=  
 

 det A = 2, det 5A = 50 ≠ 5det A 

 38. ,
a b

A
c d
 

=  
 

 ,
ka kb

kA
kc kd
 

=  
 

 det A = ad – bc,  

2 2det ( )( ) ( )( ) ( ) detkA ka kd kb kc k ad bc k A= − = − =  

 39. a. True. See the paragraph preceding the definition of the determinant. 
 b. False. See the definition of cofactor, which precedes Theorem 1. 

 40. a. False. See Theorem 1. 
 b. False. See Theorem 2. 

 41. The area of the parallelogram determined by 
3

,
0
 

=  
 

u  
1

,
2
 

=  
 

v  u + v, and 0 is 6, since the base of the 

parallelogram has length 3 and the height of the parallelogram is 2. By the same reasoning, the area of 

the parallelogram determined by 
3

,
0
 

=  
 

u  ,
2
x 

=  
 

x  u + x, and 0 is also 6. 

X

V

U U

X2

X2

X1 X1

2

1 2

1

1 12 24
 

  Also note that [ ] 3 1
det det 6,

0 2
 

= = 
 

u v  and [ ] 3
det det 6.

0 2
x 

= = 
 

u x  The determinant of the 

matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0 is equal 
to the area of the parallelogram. 

 42. The area of the parallelogram determined by 
a
b
 

=  
 

u , 
0
c 

=  
 

v , u + v, and 0 is cb, since the base of the 

parallelogram has length c and the height of the parallelogram is b. 

X2

a

b

c
X1

U

V
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  Also note that [ ]det det
0

a c
cb

b
 

= = − 
 

u v , and [ ]det det .
0
c a

cb
b

 
= = 

 
v u  The determinant of the 

matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0 either 
is equal to the area of the parallelogram or is equal to the negative of the area of the parallelogram. 

 43. [M] Answers will vary. The conclusion should be that det (A + B) ≠ det A + det B. 

 44. [M] Answers will vary. The conclusion should be that det (AB) = (det A)(det B). 

 45. [M] Answers will vary. For 4 × 4 matrices, the conclusions should be that det det ,TA A=  det(–A) =  

det A, det(2A) = 16det A, and 4det (10 ) 10 detA A= . For 5 × 5 matrices, the conclusions should be that 
det det ,TA A=  det(–A) = –det A, det(2A) = 32det A, and 5det (10 ) 10 det .A A=  For 6 × 6 matrices, the 
conclusions should be that det detTA A= , det(–A) = det A, det(2A) = 64det A, and 6det (10 ) 10 det .A A=  

 46. [M] Answers will vary. The conclusion should be that 1det 1/ det .A A− =  

3.2 SOLUTIONS 

Notes: This section presents the main properties of the determinant, including the effects of row operations 
on the determinant of a matrix. These properties are first studied by examples in Exercises 1–20. The 
properties are treated in a more theoretical manner in later exercises. An efficient method for computing the 
determinant using row reduction and selective cofactor expansion is presented in this section and used in 
Exercises 11–14. Theorems 4 and 6 are used extensively in Chapter 5. The linearity property of the 
determinant studied in the text is optional, but is used in more advanced courses. 

 1. Rows 1 and 2 are interchanged, so the determinant changes sign (Theorem 3b.). 

 2. The constant 2 may be factored out of the Row 1 (Theorem 3c.). 

 3. The row replacement operation does not change the determinant (Theorem 3a.). 

 4. The row replacement operation does not change the determinant (Theorem 3a.). 

 5. 
1 5 6 1 5 6 1 5 6
1 4 4 0 1 2 0 1 2 3
2 7 9 0 3 3 0 0 3

− − −
− − = − = − =
− − −

 

 6. 
1 5 3 1 5 3 1 5 3 1 5 3
3 3 3 0 18 12 6 0 3 2 6 0 3 2 (6)( 3) 18
2 13 7 0 3 1 0 3 1 0 0 1

− − − −
− = − = − = − = − = −

− − −
 

 7. 

1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2
2 5 7 4 0 1 7 8 0 1 7 8 0 1 7 8

0
3 5 2 1 0 4 2 5 0 0 30 27 0 0 30 27
1 1 2 3 0 4 2 5 0 0 30 27 0 0 0 0

− −
= = = =

− −
− − − −
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 8. 

1 3 3 4 1 3 3 4 1 3 3 4
0 1 2 5 0 1 2 5 0 1 2 5

0
2 5 4 3 0 1 2 5 0 0 0 0
3 7 5 2 0 2 4 10 0 0 0 0

− − −
− − −

= = =
− − −

− − − −

 

 9. 

1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0
0 1 5 4 0 1 5 4 0 1 5 4 0 1 5 4

( 3) 3
1 2 8 5 0 1 5 5 0 0 0 1 0 0 3 5
3 1 2 3 0 2 7 3 0 0 3 5 0 0 0 1

− − − − − − − −

= = = − = − − =
− − −

− − − −

 

 10. 

1 3 1 0 2 1 3 1 0 2 1 3 1 0 2
0 2 4 1 6 0 2 4 1 6 0 2 4 1 6
2 6 2 3 9 0 0 0 3 5 0 0 0 3 5
3 7 3 8 7 0 2 0 8 1 0 0 4 7 7
3 5 5 2 7 0 4 8 2 13 0 0 0 0 1

− − − − − −
− − − − − − − − −

= = =− −
− − − − − −

−

 

   

1 3 1 0 2
0 2 4 1 6

( 24) 240 0 4 7 7
0 0 0 3 5
0 0 0 0 1

− −
− − −

− = − − =− −  

 11. First use a row replacement to create zeros in the second column, and then expand down the second 
column: 

  

2 5 3 1 2 5 3 1
3 1 3

3 0 1 3 3 0 1 3
5 6 4 9

6 0 4 9 6 0 4 9
0 2 1

4 10 4 1 0 0 2 1

− − − −
−

− −
= = − − −

− − − −
− −

 

  Now use a row replacement to create zeros in the first column, and then expand down the first column:  

  
3 1 3 3 1 3

2 3
5 6 4 9 5 0 2 3 ( 5)(3) ( 5)(3)( 8) 120

2 1
0 2 1 0 2 1

− −
−

− − − = − − = − = − − =  

 12. First use a row replacement to create zeros in the fourth column, and then expand down the fourth 
column: 

  

1 2 3 0 1 2 3 0
1 2 3

3 4 3 0 3 4 3 0
3 3 4 3

5 4 6 6 3 0 2 0
3 0 2

4 2 4 3 4 2 4 3

− −
−

= =
− −

− −
 

  Now use a row replacement to create zeros in the first column, and then expand down the first column: 
1 2 3 1 2 3

10 12
3 3 4 3 3 0 10 12 3( 1) 3( 1)( 38) 114

6 11
3 0 2 0 6 11

− −
= = − = − − =

− −
− − − −
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 13. First use a row replacement to create zeros in the fourth column, and then expand down the fourth 
column: 

  

2 5 4 1 2 5 4 1
0 3 2

4 7 6 2 0 3 2 0
1 6 2 4

6 2 4 0 6 2 4 0
6 7 7

6 7 7 0 6 7 7 0

− −
− −

= = − − −
− − − −

−
− −

 

  Now use a row replacement to create zeros in the first column, and then expand down the first column: 
0 3 2 0 3 2

3 2
1 6 2 4 1 6 2 4 ( 1)( 6) ( 1)( 6)(1) 6

5 3
6 7 7 0 5 3

− − − −
− −

− − − = − − − = − − = − − =
−

  

 14. First use a row replacement to create zeros in the third column, and then expand down the third column:  

  

3 2 1 4 3 2 1 4
1 3 3

1 3 0 3 1 3 0 3
1 9 0 0

3 4 2 8 9 0 0 0
3 4 4

3 4 0 4 3 4 0 4

− − − − − −
−

− −
= = −

− − −
−

− −

 

  Now expand along the second row:  

  
1 3 3

3 3
1 9 0 0 1( ( 9)) (1)(9)(0) 0

4 4
3 4 4

−
−

− = − − = =
−

−
  

 15. 5 5(7) 35
5 5 5

a b c a b c
d e f d e f
g h i g h i

= = =  

 16. 3 3 3 3 3(7) 21
a b c a b c
d e f d e f
g h i g h i

= = =  

 17. 7
a b c a b c
g h i d e f
d e f g h i

= − = −   

 18. ( 7) 7
g h i a b c a b c
a b c g h i d e f
d e f d e f g h i

 
 = − = − − = − − = 
 
 

  

 19. 2 2 2 2 2 2 2 2(7) 14
a b c a b c a b c

d a e b f c d e f d e f
g h i g h i g h i
+ + + = = = =  
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 20. 7
a d b e c f a b c

d e f d e f
g h i g h i

+ + +
= =  

 21. Since 
2 3 0
1 3 4 1 0
1 2 1

= − ≠ , the matrix is invertible. 

 22. Since 
5 0 1
1 3 2 0
0 5 3

−
− − = , the matrix is not invertible. 

 23. Since 

2 0 0 8
1 7 5 0

0
3 8 6 0
0 7 5 4

− −
= , the matrix is not invertible. 

 24. Since 
4 7 3
6 0 5 11 0
7 2 6

− −
− = ≠

−
, the columns of the matrix form a linearly independent set. 

 25. Since 
7 8 7
4 5 0 1 0
6 7 5

−
− = − ≠
− −

, the columns of the matrix form a linearly independent set. 

 26. Since 

3 2 2 0
5 6 1 0

0
6 0 3 0
4 7 0 3

−
− −

=
−

−

, the columns of the matrix form a linearly dependent set. 

 27. a. True. See Theorem 3. 
 b. True. See the paragraph following Example 2. 
 c. True. See the paragraph following Theorem 4. 
 d. False. See the warning following Example 5. 

 28. a. True. See Theorem 3. 
 b. False. See the paragraphs following Example 2. 
 c. False. See Example 3. 
 d. False. See Theorem 5. 

 29. By Theorem 6, 5 5 5det (det ) ( 2) 32B B= = − = − . 

 30. Suppose the two rows of a square matrix A are equal. By swapping these two rows, the matrix A is not 
changed so its determinant should not change. But since swapping rows changes the sign of the 
determinant, det A = – det A. This is only possible if det A = 0. The same may be proven true for columns 
by applying the above result to TA  and using Theorem 5. 
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 31. By Theorem 6, 1(det )(det ) det 1A A I− = = , so 1det 1/ det .A A− =  

 32. By factoring an r out of each of the n rows, det ( ) det .nrA r A=  

 33. By Theorem 6, det AB = (det A)(det B) = (det B)(det A) = det BA. 

 34. By Theorem 6 and Exercise 31,  

   1 1 1det ( ) (det )(det )(det ) (det )(det )(det )PAP P A P P P A− − −= =  

   1(det ) (det ) 1det
det

P A A
P

 
= = 

 
 

   det A=  

 35. By Theorem 6 and Theorem 5, 2det (det )(det ) (det ) .T TU U U U U= =  Since ,TU U I=  

det det 1TU U I= = , so 2(det ) 1.U =  Thus det U = ±1. 

 36. By Theorem 6 4 4det (det )A A= . Since 4det 0A = , then 4(det ) 0A = . Thus det A = 0, and A is not 
invertible by Theorem 4. 

 37. One may compute using Theorem 2 that det A = 3 and det B = 8, while 
6 0

17 4
AB

 
=  
 

. Thus  

det AB = 24 = 3 × 8 = (det A)(det B). 

 38. One may compute that det A = 0 and det B = –2, while 
6 0
2 0

AB
 

=  − 
. Thus det AB = 0 =  

0 × –2 = (det A)(det B). 

 39. a. By Theorem 6, det AB = (det A)(det B) = 4 × –3 = –12. 

 b. By Exercise 32, 3det 5 5 det 125 4 500A A= = × = . 

 c. By Theorem 5, det det 3TB B= = − . 

 d. By Exercise 31, 1det 1/ det 1/ 4A A− = = . 

 e. By Theorem 6, 3 3 3det (det ) 4 64A A= = = . 

 40. a. By Theorem 6, det AB = (det A)(det B) = –1 × 2 = –2. 

 b. By Theorem 6, 5 5 5det (det ) 2 32B B= = = . 

 c. By Exercise 32, 4det 2 2 det 16 1 16A A= = × − = − . 

 d. By Theorems 5 and 6, det (det )(det ) (det )(det ) 1 1 1T TA A A A A A= = = − × − = . 

 e. By Theorem 6 and Exercise 31,  
1 1det (det )(det )(det ) (1/ det )(det )(det ) det 1B AB B A B B A B A− −= = = = − . 

 41. det A = (a + e)d – c(b + f) = ad + ed – bc – cf = (ad – bc) + (ed – cf) = det B + det C. 

 42. 
1

det ( ) (1 )(1 ) 1 det det
1

a b
A B a d cb a d ad cb A a d B

c d
+

+ = = + + − = + + + − = + + +
+

, so  

det (A + B) = det A + det B if and only if a + d = 0. 
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 43. Compute det A by using a cofactor expansion down the third column:  
   1 1 13 2 2 23 3 3 33det ( )det ( )det ( )detA u v A u v A u v A= + − + + +  

   1 13 2 23 3 33 1 13 2 23 3 33det det det det det detu A u A u A v A v A v A= − + + − +  

   det detB C= +  

 44. By Theorem 5, det det ( ) .TAE AE=  Since ( )T T TAE E A= , det det( ).T TAE E A=  Now TE  is itself an 
elementary matrix, so by the proof of Theorem 3, det ( ) (det )(det ).T T T TE A E A=  Thus it is true that 
det (det )(det ),T TAE E A=  and by applying Theorem 5, det AE = (det E)(det A). 

 45. [M] Answers will vary, but will show that det TA A  always equals 0 while det TAA  should seldom be 
zero. To see why TA A  should not be invertible (and thus det 0TA A = ), let A be a matrix with more 
columns than rows. Then the columns of A must be linearly dependent, so the equation Ax = 0 must have 
a non-trivial solution x. Thus ( ) ( ) ,T T TA A A A A= = =x x 0 0  and the equation ( )TA A =x 0  has a  
non-trivial solution. Since TA A  is a square matrix, the Invertible Matrix Theorem now says that TA A  is 
not invertible. Notice that the same argument will not work in general for ,TAA  since TA  has more rows 
than columns, so its columns are not automatically linearly dependent. 

 46. [M] One may compute for this matrix that det A = 1 and cond A ≈ 23683. Note that this is the 2  
condition number, which is used in Section 2.3. Since det A ≠ 0, it is invertible and  

   1

19 14 0 7
549 401 2 196
267 195 1 95
278 203 1 99

A−

− − 
 − − − =
 −
 − − −  

 

  The determinant is very sensitive to scaling, as 4det10 10 det 10,000A A= =  and det 0.1A =  
4(0.1) det 0.0001.A =  The condition number is not changed at all by scaling: cond(10A) =  

cond(0.1A) = condA ≈ 23683. 
  When 4A I= , det A=1 and cond A = 1. As before the determinant is sensitive to scaling: 

4det10 10 det 10,000A A= =  and 4det 0.1 (0.1) det 0.0001.A A= =  Yet the condition number is not 
changed by scaling: cond(10A) = cond(0.1A) = cond A = 1. 

3.3 SOLUTIONS 

Notes: This section features several independent topics from which to choose. The geometric interpretation 
of the determinant (Theorem 10) provides the key to changes of variables in multiple integrals. Students of 
economics and engineering are likely to need Cramer’s Rule in later courses. Exercises 1–10 concern 
Cramer’s Rule, exercises 11–18 deal with the adjugate, and exercises 19–32 cover the geometric 
interpretation of the determinant. In particular, Exercise 25 examines students’ understanding of linear 
independence and requires a careful explanation, which is discussed in the Study Guide. The Study Guide also 
contains a heuristic proof of Theorem 9 for 2 × 2 matrices. 
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 1. The system is equivalent to Ax = b, where 
5 7
2 4

A
 

=  
 

 and 
3
1
 

=  
 

b . We compute  

1 2 1 2
3 7 5 3

( ) , ( ) , det 6, det ( ) 5, det ( ) 1,
1 4 2 1

A A A A A
   

= = = = = −   
   

b b b b   

1 2
1 2

det ( ) det ( )5 1, .
det 6 det 6

A Ax x
A A

= = = = −b b  

 2. The system is equivalent to Ax = b, where 
4 1
5 2

A
 

=  
 

 and 
6
7
 

=  
 

b . We compute  

1 2 1 2
6 1 4 6

( ) , ( ) , det 3, det ( ) 5, det ( ) 2,
7 2 5 7

A A A A A
   

= = = = = −   
   

b b b b   

1 2
1 2

det ( ) det ( )5 2, .
det 3 det 3

A Ax x
A A

= = = = −b b  

 3. The system is equivalent to Ax = b, where 
3 2
5 6

A
− 

=  − 
 and 

7
5

 
=  − 

b . We compute  

1 2 1 2
7 2 3 7

( ) , ( ) , det 8, det ( ) 32, det ( ) 20,
5 6 5 5

A A A A A
−   

= = = = =   − − −   
b b b b   

1 2
1 2

det ( ) det ( )32 20 54, .
det 8 det 8 2

A Ax x
A A

= = = = = =b b  

 4. The system is equivalent to Ax = b, where 
5 3
3 1

A
− 

=  − 
 and 

9
5

 
=  − 

b . We compute  

1 2 1 2
9 3 5 9

( ) , ( ) , det 4, det ( ) 6, det ( ) 2,
5 1 3 5

A A A A A
−   

= = = − = = −   − − −   
b b b b   

1 2
1 2

det ( ) det ( )6 3 2 1, .
det 4 2 det 4 2

A Ax x
A A

−= = = − = = =
− −

b b  

 5. The system is equivalent to Ax = b, where 
2 1 0
3 0 1
0 1 2

A
 
 = − 
  

 and 
7
8
3

 
 = − 
 − 

b . We compute  

1 2 3

7 1 0 2 7 0 2 1 7
( ) 8 0 1 , ( ) 3 8 1 , ( ) 3 0 8 ,

3 1 2 0 3 2 0 1 3
A A A

     
     = − = − − = − −     
     − − −     

b b b   

  1 2 3det 4,det ( ) 6,det ( ) 16,det ( ) 14,A A A A= = = = −b b b   

  31 2
1 2 3

det ( )det ( ) det ( )6 3 16 14 7, 4, .
det 4 2 det 4 det 4 2

AA Ax x x
A A A

−= = = = = = = = = −bb b  
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 6. The system is equivalent to Ax = b, where 
2 1 1
1 0 2
3 1 3

A
 
 = − 
  

 and 
4
2
2

 
 =  
 − 

b . We compute  

1 2 3

4 1 1 2 4 1 2 1 4
( ) 2 0 2 , ( ) 1 2 2 , ( ) 1 0 2 ,

2 1 3 3 2 3 3 1 2
A A A

     
     = = − = −     
     − − −     

b b b  

  1 2 3det 4, det ( ) 16, det ( ) 52, det ( ) 4,A A A A= = − = = −b b b   

  31 2
1 2 3

det ( )det ( ) det ( )16 52 44, 13, 1.
det 4 det 4 det 4

AA Ax x x
A A A

− −= = = − = = = = = = −bb b  

 7. The system is equivalent to Ax = b, where 
6 4
9 2
s

A
s

 
=  
 

 and 
5
2

 
=  − 

b . We compute  

1 2 1 2
5 4 6 5

( ) , ( ) , det ( ) 10 8, det ( ) 12 45.
2 2 9 2

s
A A A s A s

s
   

= = = + = − −   − −   
b b b b   

Since 2 2det 12 36 12( 3) 0A s s= − = − ≠  for 3s ≠ ± , the system will have a unique solution when 
3s ≠ ± . For such a system, the solution will be  

1 2
1 22 2 2 2

det ( ) det ( )10 8 5 4 12 45 4 15, .
det det12( 3) 6( 3) 12( 3) 4( 3)

A As s s sx x
A As s s s

+ + − − − −= = = = = =
− − − −

b b  

 8. The system is equivalent to Ax = b, where 
3 5
9 5
s

A
s

− 
=  
 

 and 
3
2
 

=  
 

b . We compute  

1 2 1 2
3 5 3 3

( ) , ( ) , det ( ) 15 10, det ( ) 6 27.
2 5 9 2

s
A A A s A s

s
−   

= = = + = −   
   

b b b b   

Since 2 2det 15 45 15( 3) 0A s s= + = + ≠  for all values of s, the system will have a unique solution for all 
values of s. For such a system, the solution will be  

1 2
1 22 2 2 2

det ( ) det ( )15 10 3 2 6 27 2 9, .
det det15( 3) 3( 3) 15( 3) 5( 3)

A As s s sx x
A As s s s

+ + − −= = = = = =
+ + + +

b b  

 9. The system is equivalent to Ax = b, where 
2

3 6
s s

A
s

− 
=  
 

 and 
1
4

− 
=  
 

b . We compute  

1 2 1 2
1 2 1

( ) , ( ) , det ( ) 2 , det ( ) 4 3.
4 6 3 4

s s
A A A s A s

s
− − −   

= = = = +   
   

b b b b   

Since 2det 6 6 6 ( 1) 0A s s s s= + = + =  for s = 0, –1, the system will have a unique solution when s ≠ 0, –1. 
For such a system, the solution will be  

1 2
1 2

det ( ) det ( )2 1 4 3, .
det 6 ( 1) 3( 1) det 6 ( 1)

A As sx x
A s s s A s s

+= = = = =
+ + +

b b  

 10. The system is equivalent to Ax = b, where 
2 1
3 6
s

A
s s

 
=  
 

 and 
1
2
 

=  
 

b . We compute  

1 2 1 2
1 1 2 1

( ) , ( ) , det ( ) 6 2, det ( ) .
2 6 3 2

s
A A A s A s

s s
   

= = = − =   
   

b b b b   
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Since 2det 12 3 3 (4 1) 0A s s s s= − = − =  for s = 0,1/4, the system will have a unique solution when  
s ≠ 0,1/4. For such a system, the solution will be  

1 2
1 2

det ( ) det ( )6 2 1, .
det 3 (4 1) det 3 (4 1) 3(4 1)

A As sx x
A s s A s s s

−= = = = =
− − −

b b  

 11. Since det A = 3 and the cofactors of the given matrix are  

   11
0 0

0,
1 1

C = =  12
3 0

3,
1 1

C = − = −
−

 13
3 0

3,
1 1

C = =
−

 

   21
2 1

1,
1 1

C
− −

= − =  22
0 1

1,
1 1

C
−

= = −
−

 23
0 2

2,
1 1

C
−

= − =
−

 

   31
2 1

0,
0 0

C
− −

= =  32
0 1

3,
3 0

C
−

= − = −  33
0 2

6,
3 0

C
−

= =  

  
0 1 0

adj 3 1 3
3 2 6

A
 
 = − − − 
  

 and 1
0 1/ 3 0

1 adj 1 1/ 3 1 .
det

1 2 / 3 2
A A

A
−

 
 = = − − − 
  

 

 12. Since det A = 5 and the cofactors of the given matrix are  

   11
2 1

1,
1 0

C
−

= = −  12
2 1

0,
0 0

C = − =  13
2 2

2,
0 1

C
−

= =  

   21
1 3

3,
1 0

C = − =  22
1 3

0,
0 0

C = =  23
1 1

1,
0 1

C = − = −  

   31
1 3

7,
2 1

C = =
−

 32
1 3

5,
2 1

C = − =  33
1 1

4,
2 2

C = = −
−

 

  
1 3 7

adj 0 0 5
2 1 4

A
− 
 =  
 − − 

 and 1
1/ 5 3/ 5 7 / 5

1 adj 0 0 1 .
det

2 / 5 1/ 5 4 / 5
A A

A
−

− 
 = =  
 − − 

 

 13. Since det A = 6 and the cofactors of the given matrix are  

   11
0 1

1,
1 1

C = = −  12
1 1

1,
2 1

C = − =  13
1 0

1,
2 1

C = =  

   21
5 4

1,
1 1

C = − = −  22
3 4

5,
2 1

C = = −  23
3 5

7,
2 1

C = − =  

   31
5 4

5,
0 1

C = =  32
3 4

1,
1 1

C = − =  33
3 5

5,
1 0

C = = −  

  
1 1 5

adj 1 5 1
1 7 5

A
− − 
 = − 
 − 

 and 1
1/ 6 1/ 6 5/ 6

1 adj 1/ 6 5/ 6 1/ 6 .
det

1/ 6 7 / 6 5/ 6
A A

A
−

− − 
 = = − 
 − 
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 14. Since det A = –1 and the cofactors of the given matrix are  

   11
2 1

5,
3 4

C = =  12
0 1

2,
2 4

C = − =  13
0 2

4,
2 3

C = = −  

   21
6 7

3,
3 3

C = − = −  22
3 7

2,
2 4

C = = −  23
3 6

3,
2 3

C = − =  

   31
6 7

8,
2 1

C = = −  32
3 7

3,
0 1

C = − = −  33
3 6

6,
0 2

C = =  

  
5 3 8

adj 2 2 3
4 3 6

A
− − 

 = − − 
 − 

 and 1
5 3 8

1 adj 2 2 3 .
det

4 3 6
A A

A
−

− 
 = = − 
 − − 

 

 15. Since det A = 6 and the cofactors of the given matrix are  

   11
1 0

2,
3 2

C = =  12
1 0

2,
2 2

C
−

= − =
−

 13
1 1

1,
2 3

C
−

= = −
−

 

   21
0 0

0,
3 2

C = − =  22
3 0

6,
2 2

C = =
−

 23
3 0

9,
2 3

C = − = −
−

 

   31
0 0

0,
1 0

C = =  31
0 0

0,
1 0

C = =  33
3 0

3,
1 1

C = =
−

 

  
2 0 0

adj 2 6 0
1 9 3

A
 
 =  
 − − 

 and 1
1/ 3 0 0

1 adj 1/ 3 1 0 .
det

1/ 6 3/ 2 1/ 2
A A

A
−

 
 = =  
 − − 

 

 16. Since det A = –9 and the cofactors of the given matrix are  

   11
3 1

9,
0 3

C
−

= = −  12
0 1

0,
0 3

C = − =  13
0 3

0,
0 0

C
−

= =  

   21
2 4

6,
0 3

C = − = −  22
1 4

3,
0 3

C = =  23
1 2

0,
0 0

C = − =  

   31
2 4

14,
3 1

C = =
−

 32
1 4

1,
0 1

C = − = −  33
1 2

3,
0 3

C = = −
−

 

  
9 6 14

adj 0 3 1
0 0 3

A
− − 
 = − 
 − 

 and 1
1 2 / 3 14 / 9

1 adj 0 1/ 3 1/ 9 .
det

0 0 1/ 3
A A

A
−

− 
 = = − 
  

 

 17. Let 
a b

A
c d
 

=  
 

. Then the cofactors of A are 11 ,C d d= =  12 ,C c c= − = −   

21C b b= − = − , and 22C a a= = . Thus adj
d b

A
c a

− 
=  − 

. Since det A = ad – bc, Theorem 8 gives that 

1 1 1adj
det

d b
A A

c aA ad bc
− − 

= =  −−  
. This result is identical to that of Theorem 4 in Section 2.2. 
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 18. Each cofactor of A is an integer since it is a sum of products of entries in A. Hence all entries in adj A 
will be integers. Since det A = 1, the inverse formula in Theorem 8 shows that all the entries in 1A−  will 
be integers. 

 19. The parallelogram is determined by the columns of 
5 6
2 4

A
 

=  
 

, so the area of the parallelogram is  

|det A| = |8| = 8. 

 20. The parallelogram is determined by the columns of 
1 4
3 5

A
− 

=  − 
, so the area of the parallelogram is 

|det A| = |–7| = 7. 

 21. First translate one vertex to the origin. For example, subtract (–1, 0) from each vertex to get a new 
parallelogram with vertices (0, 0),(1, 5),(2, –4), and (3, 1). This parallelogram has the same area as the 

original, and is determined by the columns of 
1 2
5 4

A
 

=  − 
, so the area of the parallelogram is  

|det A| = |–14| = 14. 

 22. First translate one vertex to the origin. For example, subtract (0, –2) from each vertex to get a new 
parallelogram with vertices (0, 0),(6, 1),(–3, 3), and (3, 4). This parallelogram has the same area as  

the original, and is determined by the columns of 
6 3
1 3

A
− 

=  
 

, so the area of the parallelogram is  

|det A| = |21| = 21. 

 23. The parallelepiped is determined by the columns of 
1 1 7
0 2 1
2 4 0

A
 
 =  
 − 

, so the volume of the 

parallelepiped is |det A| = |22| = 22. 

 24. The parallelepiped is determined by the columns of 
1 2 1
4 5 2
0 2 1

A
− − 

 = − 
 − 

, so the volume of the 

parallelepiped is |det A| = |–15| = 15. 

 25. The Invertible Matrix Theorem says that a 3 × 3 matrix A is not invertible if and only if its columns are 
linearly dependent. This will happen if and only if one of the columns is a linear combination of the 
others; that is, if one of the vectors is in the plane spanned by the other two vectors. This is equivalent to 
the condition that the parallelepiped determined by the three vectors has zero volume, which is in turn 
equivalent to the condition that det A = 0. 

 26. By definition, p + S is the set of all vectors of the form p + v, where v is in S. Applying T to a typical 
vector in p + S, we have T(p + v) = T(p) + T(v). This vector is in the set denoted by T(p) + T(S). This 
proves that T maps the set p + S into the set T(p) + T(S). 

  Conversely, any vector in T(p) + T(S) has the form T(p) + T(v) for some v in S. This vector may be 
written as T(p + v). This shows that every vector in T(p) + T(S) is the image under T of some point  
p + v in p + S. 
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 27. Since the parallelogram S is determined by the columns of 
2 2
3 5

− − 
 
 

, the area of S is 

2 2
det | 4 | 4.

3 5
− − 

= − = 
 

 The matrix A has 
6 2

det 6
3 2

A
−

= =
−

. By Theorem 10, the area of T(S) is 

|det A|{area of S} = 6 ⋅ 4 = 24. 
  Alternatively, one may compute the vectors that determine the image, namely, the columns of  

   [ ]1 2
6 2 2 2 18 22
3 2 3 5 12 16

A
− − − − −     

= =     −     
b b  

  The determinant of this matrix is –24, so the area of the image is 24. 

 28. Since the parallelogram S is determined by the columns of 
4 0
7 1

 
 − 

, the area of S is 

4 0
det | 4 | 4

7 1
 

= = − 
. The matrix A has 

7 2
det 5

1 1
A = = . By Theorem 10, the area of T(S) is  

|det A|{area of S} =5 ⋅ 4 = 20. 
  Alternatively, one may compute the vectors that determine the image, namely, the columns of  

   [ ]1 2
7 2 4 0 14 2
1 1 7 1 3 1

A
     

= =     − −     
b b  

  The determinant of this matrix is 20, so the area of the image is 20. 

 29. The area of the triangle will be one half of the area of the parallelogram determined by 1v  and 2.v  By 
Theorem 9, the area of the triangle will be (1/2)|det A|, where [ ]1 2 .A = v v  

 30. Translate R to a new triangle of equal area by subtracting 3 3( , )x y  from each vertex. The new triangle has 
vertices (0, 0), 1 3 1 3( , )x x y y− − , and 2 3 2 3( , ).x x y y− −  By Exercise 29, the area of the triangle will be  

   1 3 2 3

1 3 2 3

1 det .
2

x x x x
y y y y

− − 
 − − 

 

  Now consider using row operations and a cofactor expansion to compute the determinant in the formula:  

   
1 1 1 3 1 3

1 3 1 3
2 2 2 3 2 3

2 3 2 3
3 3 3 3

1 0
det 1 det 0 det

1 1

x y x x y y
x x y y

x y x x y y
x x y y

x y x y

− −   
− −    = − − =      − −       

 

  By Theorem 5,  

   1 3 1 3 1 3 2 3

2 3 2 3 1 3 2 3
det det

x x y y x x x x
x x y y y y y y

− − − −   
=   − − − −   

 

  So the above observation allows us to state that the area of the triangle will be  

   
1 1

1 3 2 3
2 2

1 3 2 3
3 3

1
1 1det det 1
2 2

1

x y
x x x x

x y
y y y y

x y

 
− −   =   − −    
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 31. a. To show that T(S) is bounded by the ellipsoid with equation 
22 2
31 2

2 2 2 1xx x
a b c

+ + = , let 
1

2

3

u
u
u

 
 =  
  

u  and let 

1

2

3

x
x A
x

 
 = = 
  

x u . Then 1 1 /u x a= , 2 2 /u x b= , and 3 3 /u x c= , and u lies inside S (or 2 2 2
1 2 3 1u u u+ + ≤ ) if 

and only if x lies inside T(S) (or 
22 2
31 2

2 2 2 1xx x
a b c

+ + ≤ ). 

b. By the generalization of Theorem 10,  
   {volume of ellipsoid} {volume of ( )}T S=  

   4 4| det | {volume of }
3 3

abcA S abc π π= ⋅ = =  

 32. a. A linear transformation T that maps S onto S ′ will map 1e  to 1,v  2e  to 2 ,v  and 3e  to 3;v  that is, 

1 1( )T =e v , 2 2( )T =e v , and 3 3( ) .T =e v  The standard matrix for this transformation will be 
[ ] [ ]1 2 3 1 2 3( ) ( ) ( ) .A T T T= =e e e v v v  

b. The area of the base of S is (1/2)(1)(1) = 1/2, so the volume of S is (1/3)(1/2)(1) = 1/6. By part a.  
T(S) = S′ , so the generalization of Theorem 10 gives that the volume of S′  is |det A|{volume of S} = 
(1/6)|det A|. 

 33. [M] Answers will vary. In MATLAB, entries in B – inv(A) are approximately 1510−  or smaller. 

 34. [M] Answers will vary, as will the commands which produce the second entry of x. For example, the 
MATLAB command is x2 = det([A(:,1) b A(:,3:4)])/det(A) while the Mathematica 
command is x2 = Det[{Transpose[A][[1]],b,Transpose[A][[3]], 
Transpose[A][[4]]}]/Det[A]. 

 35. [M] MATLAB Student Version 4.0 uses 57,771 flops for inv A and 14,269,045 flops for the inverse 
formula. The inv(A) command requires only about 0.4% of the operations for the inverse formula. 

Chapter 3 SUPPLEMENTARY EXERCISES 

 1. a. True. The columns of A are linearly dependent. 
 b. True. See Exercise 30 in Section 3.2. 
 c. False. See Theorem 3(c); in this case 3det 5 5 detA A= . 

 d. False. Consider 
2 0
0 1

A
 

=  
 

, 
1 0
0 3

B
 

=  
 

, and 
3 0
0 4

A B
 

+ =  
 

. 

 e. False. By Theorem 6, 3 3det 2A = . 
 f. False. See Theorem 3(b). 
 g. True. See Theorem 3(c). 
 h. True. See Theorem 3(a). 
 i. False. See Theorem 5. 
 j. False. See Theorem 3(c); this statement is false for n × n invertible matrices with n an even integer. 
 k. True. See Theorems 6 and 5; 2det (det )TA A A= . 
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 l. False. The coefficient matrix must be invertible. 
m. False. The area of the triangle is 5. 
 n. True. See Theorem 6; 3 3det (det )A A= . 
 o. False. See Exercise 31 in Section 3.2. 
 p. True. See Theorem 6. 

 2. 
12 13 14 12 13 14
15 16 17 3 3 3 0
18 19 20 6 6 6

= =  

 3. 
1 1 1
1 0 ( )( ) 0 1 1 0
1 0 0 1 1

a b c a b c a b c
b a c b a a b b a c a
c a b c a a c

+ + +
+ = − − = − − − =
+ − − −

 

 4. 1 1 1 0
1 1 1

a b c a b c a b c
a x b x c x x x x xy
a y b y c y y y y

+ + + = = =
+ + +

 

 5. 

9 1 9 9 9
9 9 9 2

4 0 59 0 9 9 2
4 0 5 0

( 1) ( 1)( 2) 9 3 94 0 0 5 0
9 3 9 0

6 0 79 0 3 9 0
6 0 7 0

6 0 0 7 0

= − = − −  

  
4 5

( 1)( 2)(3) ( 1)( 2)(3)( 2) 12
6 7

= − − = − − − = −  

 6. 

4 8 8 8 5
4 8 8 5

4 8 50 1 0 0 0
6 8 8 7 4 5

(1) (1)(2) 6 8 7 (1)(2)( 3) (1)(2)( 3)( 2) 126 8 8 8 7
0 8 3 0 6 7

0 3 00 8 8 3 0
0 2 0 0

0 8 2 0 0

= = = − = − − =  

 7. Expand along the first row to obtain  

1 1 1 1
1 1

2 2 2 2
2 2

1
1 1

1 1 0.
1 1

1

x y
x y y x

x y x y
x y y x

x y
= − + =  This is an equation of the form ax + by + c = 0, 

and since the points 1 1( , )x y  and 2 2( , )x y  are distinct, at least one of a and b is not zero. Thus the 
equation  
is the equation of a line. The points 1 1( , )x y  and 2 2( , )x y  are on the line, because when the coordinates  
of one of the points are substituted for x and y, two rows of the matrix are equal and so the determinant  
is zero. 
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 8. Expand along the first row to obtain  

1 1 1 1
1 1 1 1

1
1 1

1 1 1( ) ( ) (1) 0.
1 0 0 1

0 1

x y
x y y x

x y x y mx y x m y
m m

m
= − + = − − + =  This equation may be 

rewritten as 1 1 0,mx y mx y− − + =  or 1 1( ).y y m x x− = −  

 9. 

2 2 2

2 2 2

2 2 2

1 1 1
det 1 0 0 ( )( )

0 ( )( )1 0

a a a a a a
T b b b a b a b a b a b a

c a c a c ac c c a c a

= = − − = − − +
− − +− −

 

   

2 21 1
( )( ) 0 1 ( )( ) 0 1 ( )( )( )

0 1 0 0

a a a a
b a c a b a b a c a b a b a c a c b

c a c b
= − − + = − − + = − − −

+ −
 

 10. Expanding along the first row will show that 2 3
0 1 2 3( ) det .f t V c c t c t c t= = + + +  By Exercise 9,  

   

2
1 1

2
3 2 2 2 1 3 1 3 2

2
3 3

1

1 ( )( )( ) 0

1

x x

c x x x x x x x x

x x

= = − − − ≠  

  since 1x , 2x , and 3x  are distinct. Thus f (t) is a cubic polynomial. The points 1( ,0)x , 2( ,0)x , and 3( ,0)x  
are on the graph of f, since when any of 1x , 2x  or 3x  are substituted for t, the matrix has two equal rows 
and thus its determinant (which is f (t)) is zero. Thus ( ) 0if x =  for i = 1, 2, 3. 

 11. To tell if a quadrilateral determined by four points is a parallelogram, first translate one of the vertices to 
the origin. If we label the vertices of this new quadrilateral as 0, 1v , 2v , and 3v , then they will be the 
vertices of a parallelogram if one of 1v , 2v , or 3v  is the sum of the other two. In this example, subtract 
(1, 4) from each vertex to get a new parallelogram with vertices 0 = (0, 0), 1 ( 2,1)= −v , 2 (2,5)=v , and 

3 (4,4)=v . Since 2 3 1= +v v v , the quadrilateral is a parallelogram as stated. The translated 
parallelogram has the same area as the original, and is determined by the columns of 

[ ]1 3
2 4
1 4

A
− 

= =  
 

v v , so the area of the parallelogram is |det A| = |–12| = 12. 

 12. A 2 × 2 matrix A is invertible if and only if the parallelogram determined by the columns of A has 
nonzero area. 

 13. By Theorem 8, 11(adj )
det

A A A A I
A

−⋅ = = . By the Invertible Matrix Theorem, adj A is invertible and 

1 1(adj )
det

A A
A

− = . 

 14. a. Consider the matrix k
k

A O
A

O I
 

=  
 

, where 1 ≤ k ≤ n and O is an appropriately sized zero matrix. We 

will show that det detkA A=  for all 1 ≤ k ≤ n by mathematical induction. 
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  First let k = 1. Expand along the last row to obtain  
( 1) ( 1)

1det det ( 1) 1 det det .
1

n nA O
A A A

O
+ + + 

= = − ⋅ ⋅ = 
 

 

  Now let 1 < k ≤ n and assume that 1det det .kA A− =  Expand along the last row of kA  to obtain  

( ) ( )
1 1det det ( 1) 1 det det det .n k n k

k k k
k

A O
A A A A

O I
+ + +

− −
 

= = − ⋅ ⋅ = = 
 

 Thus we have proven the result, 

and the determinant of the matrix in question is det A. 

b. Consider the matrix k
k

k

I O
A

C D
 

=  
 

, where 1 ≤ k ≤ n, kC  is an n × k matrix and O is an appropriately 

sized zero matrix. We will show that det detkA D=  for all 1 ≤ k ≤ n by mathematical induction.  

  First let k = 1. Expand along the first row to obtain  
1 1

1
1

1
det det ( 1) 1 det det .

O
A D D

C D
+ 

= = − ⋅ ⋅ = 
 

 

  Now let 1 < k ≤ n and assume that 1det det .kA D− =  Expand along the first row of kA  to obtain  

1 1
1 1det det ( 1) 1 det det det .k

k k k
k

I O
A A A D

C D
+

− −
 

= = − ⋅ ⋅ = = 
 

 Thus we have proven the result, and the 

determinant of the matrix in question is det D. 
c. By combining parts a. and b., we have shown that  

det det det (det )(det ).
A O A O I O

A D
C D O I C D

       
= =       

       
 

  From this result and Theorem 5, we have  

det det det (det )(det )
T T

T T
T T

A B A B A O
A D

O D O D B D

    
= = =    

      
(det )(det ).A D=  

 15. a. Compute the right side of the equation:  

   
I O A B A B
X I O Y XA XB Y
     

=     +     
 

  Set this equal to the left side of the equation: 

   so that
A B A B

XA C XB Y D
C D XA XB Y
   

= = + =   +   
 

  Since XA = C and A is invertible, 1.X CA−=  Since XB + Y = D, 1Y D XB D CA B−= − = − . Thus by 
Exercise 14(c),  

   1 1det det det
I O A BA B

C D CA I O D CA B− −

    
=      −     

 

   1(det )(det ( ))A D CA B−= −  

b. From part a.,  

   1 1det (det )(det ( )) det[ ( )]
A B

A D CA B A D CA B
C D

− − 
= − = − 

 
 

   1 1det[ ] det[ ]AD ACA B AD CAA B− −= − = −  
   det[ ]AD CB= −  
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 16. a. Doing the given operations does not change the determinant of A since the given operations are all 
row replacement operations. The resulting matrix is  

   

0 0
0 0
0 0 0

a b a b
a b a b

a b

b b b a

− − + … 
 − − + … 
 − …
 
 
 … 

 

b. Since column replacement operations are equivalent to row operations on TA  and det detTA A= , the 
given operations do not change the determinant of the matrix. The resulting matrix is 

   

0 0 0
0 0 0
0 0 0

2 3 ( 1)

a b
a b

a b

b b b a n b

− … 
 − … 
 − …
 
 
 … + − 

 

c. Since the preceding matrix is a triangular matrix with the same determinant as A,  

   1det ( ) ( ( 1) ).nA a b a n b−= − + −  

 17. First consider the case n = 2. In this case  

   2det ( ),det ,
0

a b b b b
B a a b C ab b

a b a
−

= = − = = −  

  so 2 2 2 2 1det det det ( ) ( )( ) ( ) ( (2 1) )A B C a a b ab b a b a b a b a b a b−= + = − + − = − = − + = − + − , and the 
formula holds for n = 2. 

  Now assume that the formula holds for all (k – 1) × (k – 1) matrices, and let A, B, and C be k × k 
matrices. By a cofactor expansion along the first column,  

  2 1det ( ) ( )( ) ( ( 2) ) ( ) ( ( 2) )k k

a b b
b a b

B a b a b a b a k b a b a k b

b b a

− −

…
…

= − = − − + − = − + −

…

 

  since the matrix in the above formula is a (k – 1) × (k – 1) matrix. We can perform a series of row 
operations on C to “zero out” below the first pivot, and produce the following matrix whose determinant 
is det C: 

   
0 0

.

0 0

b b b
a b

a b

… 
 − … 
 
 … −  

 

  Since this is a triangular matrix, we have found that 1det ( )kC b a b −= − . Thus  

  1 1 1det det det ( ) ( ( 2) ) ( ) ( ) ( ( 1) ),k k kA B C a b a k b b a b a b a k b− − −= + = − + − + − = − + −  

  which is what was to be shown. Thus the formula has been proven by mathematical induction. 

 18. [M] Since the first matrix has a = 3, b = 8, and n = 4, its determinant is 
4 1 3(3 8) (3 (4 1)8) ( 5) (3 24) ( 125)(27) 3375.−− + − = − + = − = −  Since the second matrix has a = 8, b = 3, 

and n = 5, its determinant is 5 1 4(8 3) (8 (5 1)3) (5) (8 12) (625)(20) 12,500.−− + − = + = =  
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 19. [M] We find that  

   

1 1 1 1 1
1 1 1 1

1 1 1 1 2 2 2 2
1 2 2 2

1 2 2 1, 1, 1.1 2 3 3 3
1 2 3 3

1 2 3 1 2 3 4 4
1 2 3 4

1 2 3 4 5

= = =  

  Our conjecture then is that  

   

1 1 1 1
1 2 2 2

1.1 2 3 3

1 2 3 n

…
…

=…

…

 

  To show this, consider using row replacement operations to “zero out” below the first pivot. The 
resulting matrix is  

   

1 1 1 1
0 1 1 1

.0 1 2 2

0 1 2 1n

… 
 … 
 …
 
 
 … − 

 

  Now use row replacement operations to “zero out” below the second pivot, and so on. The final matrix 
which results from this process is  

   

1 1 1 1
0 1 1 1

,0 0 1 1

0 0 0 1

… 
 … 
 …
 
 
 … 

 

  which is an upper triangular matrix with determinant 1. 

 20. [M] We find that  

   

1 1 1 1 1
1 1 1 1

1 1 1 1 3 3 3 3
1 3 3 3

1 3 3 6, 18, 54.1 3 6 6 6
1 3 6 6

1 3 6 1 3 6 9 9
1 3 6 9

1 3 6 9 12

= = =  

  Our conjecture then is that  

   2

1 1 1 1
1 3 3 3

2 3 .1 3 6 6

1 3 6 3( 1)

n

n

−

…
…

= ⋅…

… −

 



184 CHAPTER 3 • Determinants 

  To show this, consider using row replacement operations to “zero out” below the first pivot. The 
resulting matrix is  

   

1 1 1 1
0 2 2 2

.0 2 5 5

0 2 5 3( 1) 1n

… 
 … 
 …
 
 
 … − − 

 

  Now use row replacement operations to “zero out” below the second pivot. The matrix which results 
from this process is  

   

1 1 1 1 1 1 1
0 2 2 2 2 2 2
0 0 3 3 3 3 3

.0 0 3 6 6 6 6
0 0 3 6 9 9 9

0 0 3 6 9 12 3( 2)n

… 
 … 
 …
 … 
 …
 
 
 … − 

 

  This matrix has the same determinant as the original matrix, and is recognizable as a block matrix of the 
form  

   ,
A B
O D
 
 
 

 

  where  

  

3 3 3 3 3 1 1 1 1 1
3 6 6 6 6 1 2 2 2 2

1 1
and 3 .3 6 9 9 9 1 2 3 3 3

0 2

3 6 9 12 3( 2) 1 2 3 4 2

A D

n n

… …   
   … …        = = =… …      
   
   … − −   …

 

  As in Exercise 14(c), the determinant of the matrix 
A B
O D
 
 
 

 is (det A)(det D) = 2 det D.  

Since D is an (n – 2) × (n – 2) matrix,  

   2 2 2

1 1 1 1 1
1 2 2 2 2

det 3 3 (1) 31 2 3 3 3

1 2 3 4 2

n n nD

n

− − −

…
…

= = =…

… −

 

  by Exercise 19. Thus the determinant of the matrix 
A B
O D
 
 
 

 is 22det 2 3 .nD −= ⋅  
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4.1 SOLUTIONS 

Notes: This section is designed to avoid the standard exercises in which a student is asked to check ten 
axioms on an array of sets. Theorem 1 provides the main homework tool in this section for showing that a set 
is a subspace. Students should be taught how to check the closure axioms. The exercises in this section (and 
the next few sections) emphasize n, to give students time to absorb the abstract concepts. Other vectors do 
appear later in the chapter: the space  of signals is used in Section 4.8, and the spaces n of polynomials are 
used in many sections of Chapters 4 and 6.  

 1. a. If u and v are in V, then their entries are nonnegative. Since a sum of nonnegative numbers is 
nonnegative, the vector u + v has nonnegative entries. Thus u + v is in V. 

b. Example: If 
2
2
 

=  
 

u  and c = –1, then u is in V but cu is not in V. 

 2. a. If 
x
y
 

=  
 

u  is in W, then the vector 
x cx

c c
y cy
   

= =   
   

u  is in W because 2( )( ) ( ) 0cx cy c xy= ≥   

since xy ≥ 0. 

b. Example: If 
1
7

− 
=  − 

u  and 
2
3
 

=  
 

v , then u and v are in W but u + v is not in W. 

 3. Example: If 
.5
.5
 

=  
 

u  and c = 4, then u is in H but cu is not in H. Since H is not closed under scalar 

multiplication, H is not a subspace of 2. 

 4. Note that u and v are on the line L, but u + v is not. 

u

v

L

u+v

 

 5. Yes. Since the set is 2Span{ }t , the set is a subspace by Theorem 1. 
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 6. No. The zero vector is not in the set. 

 7. No. The set is not closed under multiplication by scalars which are not integers. 

 8. Yes. The zero vector is in the set H. If p and q are in H, then (p + q)(0) = p(0) + q(0) = 0 + 0 = 0,  
so p + q is in H. For any scalar c, (cp)(0) = c ⋅ p(0) = c ⋅ 0 = 0, so cp is in H. Thus H is a subspace by 
Theorem 1. 

 9. The set H = Span {v}, where 
1
3
2

 
 =  
  

v . Thus H is a subspace of 3 by Theorem 1. 

 10. The set H = Span {v}, where 
2
0
1

 
 =  
 − 

v . Thus H is a subspace of 3 by Theorem 1. 

 11. The set W = Span {u, v}, where 
5
1
0

 
 =  
  

u  and 
2
0
1

 
 =  
  

v . Thus W is a subspace of 3 by Theorem 1. 

 12. The set W = Span {u, v}, where 

1
1
2
0

 
 
 =
 
 
  

u  and 

3
1
1
4

 
 − =
 −
 
  

v . Thus W is a subspace of 4 by Theorem 1. 

 13. a. The vector w is not in the set 1 2 3{ , , }v v v . There are 3 vectors in the set 1 2 3{ , , }.v v v  

b. The set 1 2 3Span{ , , }v v v  contains infinitely many vectors. 

c. The vector w is in the subspace spanned by 1 2 3{ , , }v v v  if and only if the equation 

1 1 2 2 3 3x x x+ + =v v v w  has a solution. Row reducing the augmented matrix for this system of linear 
equations gives  

   
1 2 4 3 1 0 0 1
0 1 2 1 0 1 2 1 ,
1 3 6 2 0 0 0 0

   
   ∼   
   −   

 

  so the equation has a solution and w is in the subspace spanned by 1 2 3{ , , }v v v . 

 14. The augmented matrix is found as in Exercise 13c. Since  

   
1 2 4 8 1 0 0 0
0 1 2 4 0 1 2 0 ,
1 3 6 7 0 0 0 1

   
   ∼   
   −   

 

  the equation 1 1 2 2 3 3x x x+ + =v v v w  has no solution, and w is not in the subspace spanned by 

1 2 3{ , , }.v v v  

 15. Since the zero vector is not in W, W is not a vector space. 

 16. Since the zero vector is not in W, W is not a vector space. 
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 17. Since a vector w in W may be written as  

   

1 1 0
0 1 1
1 0 1
0 1 0

a b c

−     
     −     = + +
     −
     
          

w  

   

1 1 0
0 1 1

, ,
1 0 1
0 1 0

S

 −     
      −      =       −                  

 

  is a set that spans W. 

 18. Since a vector w in W may be written as  

   

4 3 0
0 0 0
1 1 1
2 0 1

a b c

     
     
     = + +
     
     −          

w  

   

4 3 0
0 0 0

, ,
1 1 1
2 0 1

S

      
      
      =              −           

 

  is a set that spans W. 

 19. Let H be the set of all functions described by 1 2( ) cos sin .y t c t c tω ω= +  Then H is a subset of the vector 
space V of all real-valued functions, and may be written as H = Span {cos ωt, sin ωt}. By Theorem 1,  
H is a subspace of V and is hence a vector space. 

 20. a. The following facts about continuous functions must be shown.  
   1. The constant function f(t) = 0 is continuous.  
   2. The sum of two continuous functions is continuous.  
   3. A constant multiple of a continuous function is continuous.  
b. Let H = {f in C[a, b]: f(a) = f(b)}.  
   1. Let g(t) = 0 for all t in [a, b]. Then g(a) = g(b) = 0, so g is in H.  
   2. Let g and h be in H. Then g(a) = g(b) and h(a) = h(b), and (g + h)(a) = g(a) + h(a) =  
    g(b) + h(b) = (g + h)(b), so g + h is in H.  
   3. Let g be in H. Then g(a) = g(b), and (cg)(a) = cg(a) = cg(b) = (cg)(b), so cg is in H.  
  Thus H is a subspace of C[a, b].  

 21. The set H is a subspace of 2 2.M ×  The zero matrix is in H, the sum of two upper triangular matrices is 
upper triangular, and a scalar multiple of an upper triangular matrix is upper triangular. 

 22. The set H is a subspace of 2 4.M ×  The 2 × 4 zero matrix 0 is in H because F0 = 0. If A and B are matrices 
in H, then F(A + B) = FA + FB = 0 + 0 = 0, so A + B is in H. If A is in H and c is a scalar, then  
F(cA) = c(FA) = c0 = 0, so cA is in H. 
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 23. a. False. The zero vector in V is the function f whose values f(t) are zero for all t in .  
 b. False. An arrow in three-dimensional space is an example of a vector, but not every arrow is a vector.  
 c. False. See Exercises 1, 2, and 3 for examples of subsets which contain the zero vector but are not 

subspaces.  
 d. True. See the paragraph before Example 6.  
 e. False. Digital signals are used. See Example 3.  

 24. a. True. See the definition of a vector space.  
 b. True. See statement (3) in the box before Example 1.  
 c. True. See the paragraph before Example 6.  
 d. False. See Example 8.  
 e. False. The second and third parts of the conditions are stated incorrectly. For example, part (ii) does 

not state that u and v represent all possible elements of H.  

 25. 2, 4 

 26. a. 3  
 b. 5  
 c. 4  

 27. a. 8  
 b. 3  
 c. 5  
 d. 4  

 28. a. 4  
 b. 7  
 c. 3  
 d. 5  
 e. 4  

 29. Consider u + (–1)u. By Axiom 10, u + (–1)u = 1u + (–1)u. By Axiom 8, 1u + (–1)u = (1 + (–1))u = 0u. 
By Exercise 27, 0u = 0. Thus u + (–1)u = 0, and by Exercise 26 (–1)u = –u. 

 30. By Axiom 10 u = 1u. Since c is nonzero, 1 1c c− = , and 1( )c c−=u u . By Axiom 9, 
1 1 1( ) ( )c c c c c− − −= =u u 0  since cu = 0. Thus 1c−= =u 0 0  by Property (2), proven in Exercise 28. 

 31. Any subspace H that contains u and v must also contain all scalar multiples of u and v, and hence must 
also contain all sums of scalar multiples of u and v. Thus H must contain all linear combinations of u  
and v, or Span {u, v}. 

Note: Exercises 32–34 provide good practice for mathematics majors because these arguments involve 
simple symbol manipulation typical of mathematical proofs. Most students outside mathematics might profit 
more from other types of exercises. 

 32. Both H and K contain the zero vector of V because they are subspaces of V. Thus the zero vector of V is 
in H ∩ K. Let u and v be in H ∩ K. Then u and v are in H. Since H is a subspace u + v is in H. Likewise 
u and v are in K. Since K is a subspace u + v is in K. Thus u + v is in H ∩ K. Let u be in H ∩ K. Then u 
is in H. Since H is a subspace cu is in H. Likewise v is in K. Since K is a subspace cu is in K. Thus cu is 
in H ∩ K for any scalar c, and H ∩ K is a subspace of V. 
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  The union of two subspaces is not in general a subspace. For an example in 2 let H be the x-axis and let 
K be the y-axis. Then both H and K are subspaces of 2, but H ∪ K is not closed under vector addition. 
The subset H ∪ K is thus not a subspace of 2. 

 33. a. Given subspaces H and K of a vector space V, the zero vector of V belongs to H + K, because 0 is in 
both H and K (since they are subspaces) and 0 = 0 + 0. Next, take two vectors in H + K, say 

1 1 1= +w u v  and 2 2 2= +w u v  where 1u  and 2u  are in H, and 1v  and 2v  are in K. Then  

   1 2 1 1 2 2 1 2 1 2( ) ( )+ = + + + = + + +w w u v u v u u v v  

  because vector addition in V is commutative and associative. Now 1 2+u u  is in H and 1 2+v v  is in K 
because H and K are subspaces. This shows that 1 2+w w  is in H + K. Thus H + K is closed under 
addition of vectors. Finally, for any scalar c,  

   1 1 1 1 1( )c c c c= + = +w u v u v  

  The vector 1cu  belongs to H and 1cv  belongs to K, because H and K are subspaces. Thus, 1cw  
belongs to H + K, so H + K is closed under multiplication by scalars. These arguments show that  
H + K satisfies all three conditions necessary to be a subspace of V. 

b. Certainly H is a subset of H + K because every vector u in H may be written as u + 0, where the zero 
vector 0 is in K (and also in H, of course). Since H contains the zero vector of H + K, and H is closed 
under vector addition and multiplication by scalars (because H is a subspace of V ), H is a subspace of 
H + K. The same argument applies when H is replaced by K, so K is also a subspace of H + K. 

 34. A proof that 1 1Span{ , , , , , }p qH K+ = … …u u v v  has two parts. First, one must show that H + K is  
a subset of 1 1Span{ , , , , , }.p q… …u u v v  Second, one must show that 1 1Span{ , , , , , }p q… …u u v v  is a subset 
of H + K. 
(1) A typical vector H has the form 1 1 p pc c+…+u u  and a typical vector in K has the form 

1 1 .q qd d+…+v v  The sum of these two vectors is a linear combination of 1 1, , , , ,p q… …u u v v  and so 
belongs to 1 1Span{ , , , , , }.p q… …u u v v  Thus H + K is a subset of 1 1Span{ , , , , , }.p q… …u u v v  

(2) Each of the vectors 1 1, , , , ,p q… …u u v v  belongs to H + K, by Exercise 33(b), and so any linear 
combination of these vectors belongs to H + K, since H + K is a subspace, by Exercise 33(a). Thus, 

1 1Span{ , , , , , }p q… …u u v v  is a subset of H + K. 

 35. [M] Since  

   

7 4 9 9 1 0 0 15/ 2
4 5 4 7 0 1 0 3

,
2 1 4 4 0 0 1 11/ 2
9 7 7 8 0 0 0 0

− − −   
   −   ∼
   − −
   − −      

 

  w is in the subspace spanned by 1 2 3{ , , }.v v v  

 36. [M] Since  

   [ ]

5 5 9 6 1 0 0 11/ 2
8 8 6 7 0 1 0 2

,
5 9 3 1 0 0 1 7 / 2
3 2 7 4 0 0 0 0

A

− −   
   − −   = ∼
   − −
   − − −      

y  

  y is in the subspace spanned by the columns of A. 
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 37. [M] The graph of f(t) is given below. A conjecture is that f(t) = cos 4t. 

1 2 3 4 5 6

–1

–0.5

0.5

1

 

  The graph of g(t) is given below. A conjecture is that g(t) = cos 6t. 

1 2 3 4 5 6

–1

–0.5

0.5

1

 

 38. [M] The graph of f(t) is given below. A conjecture is that f(t) = sin 3t. 

1 2 3 4 5 6

–1

–0.5

0.5

1

 

  The graph of g(t) is given below. A conjecture is that g(t) = cos 4t. 

1 2 3 4 5 6

–1

–0.5

0.5

1

 

  The graph of h(t) is given below. A conjecture is that h(t) = sin 5t. 

1 2 3 4 5 6

–1

–0.5

0.5

1
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4.2 SOLUTIONS 

Notes: This section provides a review of Chapter 1 using the new terminology. Linear tranformations are 
introduced quickly since students are already comfortable with the idea from n. The key exercises are  
17–26, which are straightforward but help to solidify the notions of null spaces and column spaces. Exercises 
30–36 deal with the kernel and range of a linear transformation and are progressively more advanced 
theoretically. The idea in Exercises 7–14 is for the student to use Theorems 1, 2, or 3 to determine whether  
a given set is a subspace. 

 1. One calculates that  

   
3 5 3 1 0
6 2 0 3 0 ,
8 4 1 4 0

A
− −     

     = − =     
     − −     

w  

  so w is in Nul A. 

 2. One calculates that  

   
5 21 19 5 0

13 23 2 3 0 ,
8 14 1 2 0

A
     
     = − =     
          

w  

  so w is in Nul A. 

 3. First find the general solution of Ax = 0 in terms of the free variables. Since  

   [ ] 1 0 7 6 0
,

0 1 4 2 0
A

− 
∼  − 

0  

  the general solution is 1 3 47 6x x x= − , 2 3 44 2x x x= − + , with 3x  and 4x  free. So  

   

1

2
3 4

3

4

7 6
4 2

,
1 0
0 1

x
x

x x
x
x

−     
     −     = = +
     
     

         

x  

  and a spanning set for Nul A is  

   

7 6
4 2

, .
1 0
0 1

 −   
    −                    

 

 4. First find the general solution of Ax = 0 in terms of the free variables. Since  

   [ ] 1 6 0 0 0
,

0 0 1 0 0
A

− 
∼  
 

0  

  the general solution is 1 26x x= , 3 0x = , with 2x  and 4x  free. So  

   

1

2
2 4

3

4

6 0
1 0

,
0 0
0 1

x
x

x x
x
x

     
     
     = = +
     
     

         

x  
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  and a spanning set for Nul A is  

   

6 0
1 0

, .
0 0
0 1

    
    
                    

 

 5. First find the general solution of Ax = 0 in terms of the free variables. Since  

   [ ]
1 2 0 4 0 0
0 0 1 9 0 0 ,
0 0 0 0 1 0

A
− 

 ∼ − 
  

0  

  the general solution is 1 2 42 4x x x= − , 3 49x x= , 5 0x = , with 2x  and 4x  free. So  

   

1

2

2 43

4

5

2 4
1 0

,0 9
0 1
0 0

x
x

x xx
x
x

−     
     
     
     = = +
     
     
         

x  

  and a spanning set for Nul A is  

   

2 4
1 0

, .0 9
0 1
0 0

 −   
    
         
    
    
        

 

 6. First find the general solution of Ax = 0 in terms of the free variables. Since  

   [ ]
1 0 6 8 1 0
0 1 2 1 0 0 ,
0 0 0 0 0 0

A
− 

 ∼ − 
  

0  

  the general solution is 1 3 4 56 8x x x x= − + − , 2 3 42x x x= − , with 3x , 4x , and 5x  free. So  

   

1

2

3 4 53

4

5

6 8 1
2 1 0

,1 0 0
0 1 0
0 0 1

x
x

x x xx
x
x

− −       
       −       
       = = + +
       
       
             

x  

  and a spanning set for Nul A is  

   

6 8 1
2 1 0

, , .1 0 0
0 1 0
0 0 1

 − −     
      −             
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 7. The set W is a subset of 3. If W were a vector space (under the standard operations in 3), then it  
would be a subspace of 3. But W is not a subspace of 3 since the zero vector is not in W. Thus W is  
not a vector space. 

 8. The set W is a subset of 3. If W were a vector space (under the standard operations in 3), then it  
would be a subspace of 3. But W is not a subspace of 3 since the zero vector is not in W. Thus W is  
not a vector space. 

 9. The set W is the set of all solutions to the homogeneous system of equations a – 2b – 4c = 0,  

2a – c – 3d = 0. Thus W = Nul A, where 
1 2 4 0
2 0 1 3

A
− − 

=  − − 
. Thus W is a subspace of 4 by 

Theorem 2, and is a vector space. 

 10. The set W is the set of all solutions to the homogeneous system of equations a + 3b – c = 0,  

a + b + c – d = 0. Thus W = Nul A, where 
1 3 1 0
1 1 1 1

A
− 

=  − 
. Thus W is a subspace of 4 by  

Theorem 2, and is a vector space. 

 11. The set W is a subset of 4. If W were a vector space (under the standard operations in 4), then it  
would be a subspace of 4. But W is not a subspace of 4 since the zero vector is not in W. Thus W is not 
a vector space. 

 12. The set W is a subset of 4. If W were a vector space (under the standard operations in 4), then it would 
be a subspace of 4. But W is not a subspace of 4 since the zero vector is not in W. Thus W is not a 
vector space. 

 13. An element w on W may be written as  

   
1 6 1 6
0 1 0 1
1 0 1 0

c
c d

d

− −     
      = + =                   

w  

  where c and d are any real numbers. So W = Col A where 
1 6
0 1
1 0

A
− 

 =  
  

. Thus W is a subspace of 3 by 

Theorem 3, and is a vector space. 

 14. An element w on W may be written as  

   
1 2 1 2
1 2 1 2
3 6 3 6

a
a b

b

− −     
      = + − = −              − −     

w  

  where a and b are any real numbers. So W = Col A where 
1 2
1 2
3 6

A
− 
 = − 
 − 

. Thus W is a subspace of 3 by 

Theorem 3, and is a vector space. 
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 15. An element in this set may be written as  

   

0 2 3 0 2 3
1 1 2 1 1 2
4 1 0 4 1 0
3 1 1 3 1 1

r
r s t s

t

       
        − −         + + =         
          − − − −              

 

  where r, s and t are any real numbers. So the set is Col A where 

0 2 3
1 1 2
4 1 0
3 1 1

A

 
 − =
 
 − −  

. 

 16. An element in this set may be written as  

   

1 1 0 1 1 0
2 1 1 2 1 1
0 5 4 0 5 4
0 0 1 0 0 1

b
b c d c

d

− −       
        
        + + =         − −
                        

 

  where b, c and d are any real numbers. So the set is Col A where 

1 1 0
2 1 1
0 5 4
0 0 1

A

− 
 
 =
 −
 
  

. 

 17. The matrix A is a 4 × 2 matrix. Thus  
(a)  Nul A is a subspace of 2, and  
(b)  Col A is a subspace of 4. 

 18. The matrix A is a 4 × 3 matrix. Thus  
(a)  Nul A is a subspace of 3, and  
(b)  Col A is a subspace of 4.  

 19. The matrix A is a 2 × 5 matrix. Thus  
(a)  Nul A is a subspace of 5, and  
(b)  Col A is a subspace of 2.  

 20. The matrix A is a 1 × 5 matrix. Thus  
(a)  Nul A is a subspace of 5, and  
(b)  Col A is a subspace of 1 = .  

 21. Either column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general 
solution of Ax = 0 in terms of the free variables. Since  

   [ ]

1 3 0
0 0 0

,
0 0 0
0 0 0

A

− 
 
 ∼
 
 
  

0  
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  the general solution is 1 23x x= , with 2x  free. Letting 2x  be a nonzero value (say 2 1x = ) gives the 
nonzero vector  

   1

2

3
1

x
x
   

= =   
  

x  

  which is in Nul A. 

 22. Any column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general 
solution of Ax = 0 in terms of the free variables. Since  

   [ ] 1 0 7 6 0
,

0 1 4 2 0
A

− 
∼  − 

0  

  the general solution is 1 3 47 6x x x= − , 2 3 44 2x x x= − + , with 3x  and 4x  free. Letting 3x  and 4x  be 
nonzero values (say 3 4 1x x= = ) gives the nonzero vector  

   

1

2

3

4

1
2
1
1

x
x
x
x

   
   −   = =
   
   

     

x  

  which is in Nul A. 

 23. Consider the system with augmented matrix [ ]A w . Since  

   [ ] 1 2 1/ 3
,

0 0 0
A

− − 
∼  
 

w  

  the system is consistent and w is in Col A. Also, since  

   
6 12 2 0
3 6 1 0

A
−     

= =     −     
w  

  w is in Nul A. 

 24. Consider the system with augmented matrix [ ]A w . Since  

   [ ]
1 0 1 1/ 2
0 1 1/ 2 1 ,
0 0 0 0

A
− 

 ∼  
  

w  

  the system is consistent and w is in Col A. Also, since  

   
8 2 9 2 0
6 4 8 1 0
4 0 4 2 0

A
− − −     
     = =     
     −     

w  

  w is in Nul A. 

 25. a. True. See the definition before Example 1.  
 b. False. See Theorem 2.  
 c. True. See the remark just before Example 4.  
 d. False. The equation Ax = b must be consistent for every b. See #7 in the table on page 226.  
 e. True. See Figure 2.  
 f. True. See the remark after Theorem 3.  
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 26. a. True. See Theorem 2.  
 b. True. See Theorem 3.  
 c. False. See the box after Theorem 3.  
 d. True. See the paragraph after the definition of a linear transformation.  
 e. True. See Figure 2.  
 f. True. See the paragraph before Example 8. 

 27. Let A be the coefficient matrix of the given homogeneous system of equations. Since Ax = 0 for 
3
2
1

 
 =  
 − 

x , x is in Nul A. Since Nul A is a subspace of 3, it is closed under scalar multiplication. Thus 

30
10 20

10

 
 =  
 − 

x  is also in Nul A, and 1 30x = , 2 20x = , 3 10x = −  is also a solution to the system of 

equations. 

 28. Let A be the coefficient matrix of the given systems of equations. Since the first system has a solution, 

the constant vector 
0
1
9

 
 =  
  

b  is in Col A. Since Col A is a subspace of 3, it is closed under scalar 

multiplication. Thus 
0

5 5
45

 
 =  
  

b  is also in Col A, and the second system of equations must thus have a 

solution. 

 29.  a. Since ,A =0 0  the zero vector is in Col A. 
 b. Since ( ),A A A A A+ = + +x w x w x w  is in Col A. 

 c. Since ( ) ( ),c A A c cA=x x x  is in Col A.  

 30. Since ( )V WT =0 0 , the zero vector W0  of W is in the range of T. Let T(x) and T(w) be typical elements in 
the range of T. Then since ( ) ( ) ( ), ( ) ( )T T T T T+ = + +x w x w x w  is in the range of T and the range of T is 
closed under vector addition. Let c be any scalar. Then since ( ) ( ), ( )cT T c cT=x x x  is in the range of T 
and the range of T is closed under scalar multiplication. Hence the range of T is a subspace of W. 

 31. a. Let p and q be arbitary polynomials in 2, and let c be any scalar. Then 

   
( )(0) (0) (0) (0) (0)

( ) ( ) ( )
( )(1) (1) (1) (1) (1)

T T T
+ +       

+ = = = + = +       + +       

p q p q p q
p q p q

p q p q p q
 

  and 

   
( )(0) (0)

( ) ( )
( )(1) (1)
c

T c c cT
c

   
= = =   
   

p p
p p

p p
 

  so T is a linear transformation. 
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b. Any quadratic polynomial q for which (0) 0=q  and (1) 0=q  will be in the kernel of T. The 

polynomial q must then be a multiple of ( ) ( 1).t t t= −p  Given any vector 1

2

x
x
 
 
 

 in 2, the polynomial 

1 2 1( )x x x t= + −p  has 1(0) x=p  and 2(1) .x=p  Thus the range of T is all of 2. 

 32. Any quadratic polynomial q for which (0) 0=q  will be in the kernel of T. The polynomial q must then 
be 2.at bt= +q  Thus the polynomials 1( )t t=p  and 2

2 ( )t t=p  span the kernel of T. If a vector is in the 

range of T, it must be of the form .
a
a
 
 
 

 If a vector is of this form, it is the image of the polynomial 

( )t a=p  in 2. Thus the range of T is : real .
a

a
a

   
  
   

 

 33. a. For any A and B in 2 2M ×  and for any scalar c,  

   ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T TT A B A B A B A B A B A A B B T A T B+ = + + + = + + + = + + + = +  

  and 

   ( ) ( ) ( ) ( )T TT cA cA c A cT A= = =  

  so T is a linear transformation. 

b. Let B be an element of 2 2M ×  with ,TB B=  and let 1
2 .A B=  Then  

   1 1 1 1 1 1( ) ( )
2 2 2 2 2 2

T T TT A A A B B B B B B B= + = + = + = + =  

c. Part b. showed that the range of T contains the set of all B in 2 2M ×  with .TB B=  It must also be 
shown that any B in the range of T has this property. Let B be in the range of T. Then B = T(A) for 
some A in 2 2.M ×  Then ,TB A A= +  and  

   ( ) ( )T T T T T T T TB A A A A A A A A B= + = + = + = + =  

  so B has the property that .TB B=  

d. Let 
a b

A
c d
 

=  
 

 be in the kernel of T. Then ( ) 0TT A A A= + = , so  

   
2 0 0

2 0 0
T a b a c a c b

A A
c d b d b c d

+       
+ = + = =       +       

 

  Solving it is found that 0a d= =  and c b= − . Thus the kernel of T is  
0

: real .
0
b

b
b

   
  −   

 

 34. Let f and g be any elements in C[0, 1] and let c be any scalar. Then T(f) is the antiderivative F of f with 
F(0) = 0 and T(g) is the antiderivative G of g with G(0) = 0. By the rules for antidifferentiation +F G  
will be an antiderivative of ,+f g  and ( )(0) (0) (0) 0 0 0.+ = + = + =F G F G Thus ( ) ( ) ( ).T T T+ = +f g f g  
Likewise cF will be an antiderivative of cf, and ( )(0) (0) 0 0.c c c= = =F F  Thus ( ) ( ),T c cT=f f  and T is a 
linear transformation. To find the kernel of T, we must find all functions f in C[0,1] with antiderivative 
equal to the zero function. The only function with this property is the zero function 0, so the kernel of T 
is {0}. 
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 35. Since U is a subspace of V, V0  is in U. Since T is linear, ( ) .V WT =0 0  So W0  is in T(U). Let T(x) and 
T(y) be typical elements in T(U). Then x and y are in U, and since U is a subspace of V, +x y  is also 
in U. Since T is linear, ( ) ( ) ( ).T T T+ = +x y x y  So ( ) ( )T T+x y  is in T(U), and T(U) is closed under 
vector addition. Let c be any scalar. Then since x is in U and U is a subspace of V, cx is in U. Since T is 
linear, ( ) ( )T c cT=x x  and cT(x) is in T(U ). Thus T(U) is closed under scalar multiplication, and T(U) is 
a subspace of W. 

 36. Since Z is a subspace of W, W0  is in Z. Since T is linear, ( ) .V WT =0 0  So V0  is in U. Let x and y be 
typical elements in U. Then T(x) and T(y) are in Z, and since Z is a subspace of W, ( ) ( )T T+x y  is also in 
Z. Since T is linear, ( ) ( ) ( ).T T T+ = +x y x y  So ( )T +x y  is in Z, and +x y  is in U. Thus U is closed 
under vector addition. Let c be any scalar. Then since x is in U, T(x) is in Z. Since Z is a subspace of W, 
cT(x) is also in Z. Since T is linear, ( ) ( )cT T c=x x  and T(cx) is in T(U). Thus cx is in U and U is closed 
under scalar multiplication. Hence U is a subspace of V. 

 37. [M] Consider the system with augmented matrix [ ].A w  Since  

   [ ]

1 0 0 1/ 95 1/ 95
0 1 0 39 /19 20 /19

,
0 0 1 267 / 95 172 / 95
0 0 0 0 0

A

− 
 − ∼
 −
 
  

w  

  the system is consistent and w is in Col A. Also, since  

   

7 6 4 1 1 14
5 1 0 2 1 0
9 11 7 3 1 0

19 9 7 1 3 0

A

−     
     − − −     = =
     − − −
     − −          

w  

  w is not in Nul A. 

 38. [M] Consider the system with augmented matrix [ ]A w . Since  

   [ ]

1 0 1 0 2
0 1 2 0 3

,
0 0 0 1 1
0 0 0 0 0

A

− − 
 − − ∼
 
 
  

w  

  the system is consistent and w is in Col A. Also, since  

   

8 5 2 0 1 0
5 2 1 2 2 0

10 8 6 3 1 0
3 2 1 0 0 0

A

− −     
     − −     = =
     − −
     −          

w  

  w is in Nul A. 
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 39. [M]  
a. To show that 3a  and 5a  are in the column space of B, we can row reduce the matrices [ ]3B a  and 

[ ]3B a :  

   [ ]3

1 0 0 1/ 3
0 1 0 1/ 3
0 0 1 0
0 0 0 0

B

 
 
 ∼
 
 
  

a  

   [ ]5

1 0 0 10 / 3
0 1 0 26 / 3
0 0 1 4
0 0 0 0

B

 
 − ∼
 −
 
  

a  

  Since both these systems are consistent, 3a  and 5a  are in the column space of B. Notice that the same 
conclusions can be drawn by observing the reduced row echelon form for A:  

   

1 0 1/ 3 0 10 / 3
0 1 1/ 3 0 26 / 3
0 0 0 1 4
0 0 0 0 0

A

 
 − ∼
 −
 
  

 

b. We find the general solution of Ax = 0 in terms of the free variables by using the reduced row echelon 
form of A given above: 1 3 5( 1/ 3) (10 / 3)x x x= − − , 2 3 5( 1/ 3) (26 / 3)x x x= − + , 4 54x x=  with 3x  and 5x  
free. So  

   

1

2

3 53

4

5

1/ 3 10 / 3
1/ 3 26 / 3

,1 0
0 4
0 1

x
x

x xx
x
x

− −     
     −     
     = = +
     
     
         

x  

  and a spanning set for Nul A is  

   

1/ 3 10 / 3
1/ 3 26 / 3

, .1 0
0 4
0 1

 − −   
    −         
    
    
        

 

c. The reduced row echelon form of A shows that the columns of A are linearly dependent and do not 
span 4. Thus by Theorem 12 in Section 1.9, T is neither one-to-one nor onto. 

 40. [M] Since the line lies both in 1 2Span{ , }H = v v  and in 3 4Span{ , }K = v v , w can be written both as 

1 1 2 2c c+v v  and 3 3 4 4c c+v v . To find w we must find the cj’s which solve 1 1 2 2 3 3 4 4c c c c+ − − =v v v v 0 . 
Row reduction of [ ]1 2 3 4− −v v v v 0  yields  

   
5 1 2 0 0 1 0 0 10 / 3 0
3 3 1 12 0 0 1 0 26 / 3 0 ,
8 4 5 28 0 0 0 1 4 0

− −   
   ∼   
   − −   
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  so the vector of cj’s must be a multiple of (10/3, –26/3, 4, 1). One simple choice is (10, –26, 12, 3), which 
gives 1 2 3 410 26 12 3 (24, 48, 24)= − = + = − −w v v v v . Another choice for w is (1, –2, –1). 

4.3 SOLUTIONS 

Notes: The definition for basis is given initially for subspaces because this emphasizes that the basis elements 
must be in the subspace. Students often overlook this point when the definition is given for a vector space (see 
Exercise 25). The subsection on bases for Nul A and Col A is essential for Sections 4.5 and 4.6. The 
subsection on “Two Views of a Basis” is also fundamental to understanding the interplay between linearly 
independent sets, spanning sets, and bases. Key exercises in this section are Exercises 21–25, which help to 
deepen students’ understanding of these different subsets of a vector space. 

 1. Consider the matrix whose columns are the given set of vectors. This 3 × 3 matrix is in echelon form, and 
has 3 pivot positions. Thus by the Invertible Matrix Theorem, its columns are linearly independent and 
span 3. So the given set of vectors is a basis for 3. 

 2. Since the zero vector is a member of the given set of vectors, the set cannot be linearly independent  
and thus cannot be a basis for 3. Now consider the matrix whose columns are the given set of vectors. 
This 3 × 3 matrix has only 2 pivot positions. Thus by the Invertible Matrix Theorem, its columns do  
not span 3.  

 3. Consider the matrix whose columns are the given set of vectors. The reduced echelon form of this matrix 
is  

   
1 3 3 1 0 9 / 2
0 2 5 0 1 5/ 2
2 4 1 0 0 0

−   
   − ∼ −   
   − −   

 

  so the matrix has only two pivot positions. Thus its columns do not form a basis for 3; the set of vectors 
is neither linearly independent nor does it span 3. 

 4. Consider the matrix whose columns are the given set of vectors. The reduced echelon form of this  
matrix is  

   
2 1 7 1 0 0
2 3 5 0 1 0
1 2 4 0 0 1

−   
   − − ∼   
      

 

  so the matrix has three pivot positions. Thus its columns form a basis for 3. 

 5. Since the zero vector is a member of the given set of vectors, the set cannot be linearly independent and 
thus cannot be a basis for 3. Now consider the matrix whose columns are the given set of vectors. The 
reduced echelon form of this matrix is  

   
1 2 0 0 1 0 0 0
3 9 0 3 0 1 0 0
0 0 0 5 0 0 0 1

−   
   − − ∼   
      

 

  so the matrix has a pivot in each row. Thus the given set of vectors spans 3. 
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 6. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot in 
each row, its columns cannot span 3; thus the given set of vectors is not a basis for 3. The reduced 
echelon form of the matrix is  

   
1 4 1 0
2 5 0 1
3 6 0 0

−   
   − ∼   
   −   

 

  so the matrix has a pivot in each column. Thus the given set of vectors is linearly independent. 

 7. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot in 
each row, its columns cannot span 3; thus the given set of vectors is not a basis for 3. The reduced 
echelon form of the matrix is  

   
2 6 1 0
3 1 0 1
0 5 0 0

−   
   − ∼   
      

 

  so the matrix has a pivot in each column. Thus the given set of vectors is linearly independent. 

 8. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot in 
each column, the set cannot be linearly independent and thus cannot be a basis for 3. The reduced 
echelon form of this matrix is  

   
1 0 3 0 1 0 0 3/ 2
4 3 5 2 0 1 0 1/ 2
3 1 4 2 0 0 1 1/ 2

−   
   − − ∼ −   
   − −   

 

  so the matrix has a pivot in each row. Thus the given set of vectors spans 3. 

 9. We find the general solution of Ax = 0 in terms of the free variables by using the reduced echelon  
form of A: 

   
1 0 3 2 1 0 3 2
0 1 5 4 0 1 5 4 .
3 2 1 2 0 0 0 0

− −   
   − ∼ −   
   − −   

 

  So 1 3 43 2x x x= − , 2 3 45 4x x x= − , with 3x  and 4x  free. So  

   

1

2
3 4

3

4

3 2
5 4

,
1 0
0 1

x
x

x x
x
x

−     
     −     = = +
     
     

         

x  

  and a basis for Nul A is  

   

3 2
5 4

, .
1 0
0 1

 −   
    −                    
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 10. We find the general solution of Ax = 0 in terms of the free variables by using the reduced echelon  
form of A: 

   
1 0 5 1 4 1 0 5 0 7
2 1 6 2 2 0 1 4 0 6 .
0 2 8 1 9 0 0 0 1 3

− −   
   − − − ∼ −   
   − −   

 

  So 1 3 55 7x x x= − , 2 3 54 6x x x= − , 4 53x x= , with 3x  and 5x  free. So  

   

1

2

3 53

4

5

5 7
4 6

,1 0
0 3
0 1

x
x

x xx
x
x

−     
     −     
     = = +
     
     
         

x  

  and a basis for Nul A is  

   

5 7
4 6

, .1 0
0 3
0 1

 −   
    −         
    
    
        

 

 11. Let [ ]1 2 1A = . Then we wish to find a basis for Nul A. We find the general solution of Ax = 0 in 
terms of the free variables: x = –2y – z with y and z free. So  

   
2 1
1 0 ,
0 1

x
y y z
z

− −     
     = = +     
          

x  

  and a basis for Nul A is  

   
2 1
1 , 0 .
0 1

 − −   
    
    
        

 

 12. We want to find a basis for the set of vectors in 2 in the line 5x – y = 0. Let [ ]5 1A = − . Then we wish 
to find a basis for Nul A. We find the general solution of Ax = 0 in terms of the free variables: y = 5x with 
x free. So  

   
1

,
5

x
x

y
   

= =   
   

x  

  and a basis for Nul A is  

   
1

.
5
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 13. Since B is a row echelon form of A, we see that the first and second columns of A are its pivot columns. 
Thus a basis for Col A is  

   
2 4
2 , 6 .
3 8

 −   
    −    
    −    

 

  To find a basis for Nul A, we find the general solution of Ax = 0 in terms of the free variables: 
1 3 46 5 ,x x x= − −  2 3 4( 5 / 2) (3/ 2) ,x x x= − −  with 3x  and 4x  free. So  

   

1

2
3 4

3

4

6 5
5/ 2 3/ 2

,
1 0
0 1

x
x

x x
x
x

− −     
     − −     = = +
     
     

         

x  

  and a basis for Nul A is  

   

6 5
5/ 2 3/ 2

, .
1 0
0 1

 − −   
    − −                    

 

 14. Since B is a row echelon form of A, we see that the first, third, and fifth columns of A are its pivot 
columns. Thus a basis for Col A is  

   

1 5 3
2 5 2

, , .
1 0 5
3 5 2

 − −     
      −                   − −           

 

  To find a basis for Nul A, we find the general solution of Ax = 0 in terms of the free variables, mentally 
completing the row reduction of B to get: 1 2 42 4 ,x x x= − −  3 4(7 / 5) ,x x=  5 0,x =  with 2x  and 4x  free. 
So  

   

1

2

2 43

4

5

2 4
1 0

,0 7 / 5
0 1
0 0

x
x

x xx
x
x

− −     
     
     
     = = +
     
     
         

x  

  and a basis for Nul A is  

   

2 4
1 0

, .0 7 / 5
0 1
0 0

 − −   
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 15. This problem is equivalent to finding a basis for Col A, where [ ]1 2 3 4 5A = v v v v v . Since the 
reduced echelon form of A is  

   

1 0 3 1 2 1 0 3 0 4
0 1 4 3 1 0 1 4 0 5

,
3 2 1 8 6 0 0 0 1 2
2 3 6 7 9 0 0 0 0 0

− −   
   − − − −   ∼
   − − − −
   −      

 

  we see that the first, second, and fourth columns of A are its pivot columns. Thus a basis for the space 
spanned by the given vectors is  

   

1 0 1
0 1 3

, , .
3 2 8
2 3 7

      
      −            − −       −           

 

 16. This problem is equivalent to finding a basis for Col A, where [ ]1 2 3 4 5A = v v v v v . Since the 
reduced echelon form of A is  

   

1 2 6 5 0 1 0 0 1 2
0 1 1 3 3 0 1 0 3 5

,
0 1 2 3 1 0 0 1 0 2
1 1 1 4 1 0 0 0 0 0

− − −   
   − − −   ∼
   − −
   − −      

 

  we see that the first, second, and third columns of A are its pivot columns. Thus a basis for the space 
spanned by the given vectors is  

   

1 2 6
0 1 1

, , .
0 1 2
1 1 1

 −     
      −            −       −           

 

 17. [M] This problem is equivalent to finding a basis for Col A, where [ ]1 2 3 4 5A = v v v v v . Since 
the reduced echelon form of A is  

   

8 4 1 6 1 1 0 0 1/ 2 3
9 5 4 8 4 0 1 0 5/ 2 7

,3 1 9 4 11 0 0 1 0 3
6 4 6 7 8 0 0 0 0 0
0 4 7 10 7 0 0 0 0 0

− − −   
   − −   
   ∼− − −
   − − − −   
   − −   

 

  we see that the first, second, and third columns of A are its pivot columns. Thus a basis for the space 
spanned by the given vectors is  

   

8 4 1
9 5 4

, , .3 1 9
6 4 6
0 4 7

 −     
      −            − − 
      − −      
     −       
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 18. [M] This problem is equivalent to finding a basis for Col A, where [ ]1 2 3 4 5 .A = v v v v v  Since 
the reduced echelon form of A is  

   

8 8 8 1 9 1 0 5/ 3 0 4 / 3
7 7 7 4 3 0 1 2 / 3 0 1/ 3

,6 9 4 9 4 0 0 0 1 1
5 5 5 6 1 0 0 0 0 0
7 7 7 7 0 0 0 0 0 0

− − −   
   −   
   ∼− − −
   − −   
   − − −   

 

  we see that the first, second, and fourth columns of A are its pivot columns. Thus a basis for the space 
spanned by the given vectors is  

   

8 8 1
7 7 4

, , .6 9 9
5 5 6
7 7 7

 −     
      −            − 
      −      
     − −       

 

 19. Since 1 2 34 5 3 ,+ − =v v v 0  we see that each of the vectors is a linear combination of the others. Thus the 
sets 1 2{ , },v v  1 3{ , },v v  and 2 3{ , }v v  all span H. Since we may confirm that none of the three vectors is  
a multiple of any of the others, the sets 1 2{ , },v v  1 3{ , },v v  and 2 3{ , }v v  are linearly independent and thus 
each forms a basis for H. 

 20. Since 1 2 33 5 ,− + =v v v 0  we see that each of the vectors is a linear combination of the others. Thus the 
sets 1 2{ , },v v  1 3{ , },v v  and 2 3{ , }v v  all span H. Since we may confirm that none of the three vectors is a 
multiple of any of the others, the sets 1 2{ , },v v  1 3{ , },v v  and 2 3{ , }v v  are linearly independent and thus 
each forms a basis for H. 

 21. a. False. The zero vector by itself is linearly dependent. See the paragraph preceding Theorem 4.  
 b. False. The set 1{ , , }p…b b  must also be linearly independent. See the definition of a basis.  

 c. True. See Example 3.  
 d. False. See the subsection “Two Views of a Basis.”  
 e. False. See the box before Example 9.  

 22. a. False. The subspace spanned by the set must also coincide with H. See the definition of a basis.  
 b. True. Apply the Spanning Set Theorem to V instead of H. The space V is nonzero because the 

spanning set uses nonzero vectors.  
 c. True. See the subsection “Two Views of a Basis.”  
 d. False. See the two paragraphs before Example 8.  
 e. False. See the warning after Theorem 6.  

 23. Let [ ]1 2 3 4 .A = v v v v  Then A is square and its columns span 4 since 4
1 2 3 4Span{ , , , }.= v v v v  

So its columns are linearly independent by the Invertible Matrix Theorem, and 1 2 3 4{ , , , }v v v v  is a basis 
for 4. 

 24. Let [ ]1 .nA = …v v  Then A is square and its columns are linearly independent, so its columns span 
n by the Invertible Matrix Theorem. Thus 1{ , , }n…v v  is a basis for n. 
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 25. In order for the set to be a basis for H, 1 2 3{ , , }v v v  must be a spanning set for H; that is, 

1 2 3Span{ , , }.H = v v v  The exercise shows that H is a subset of 1 2 3Span{ , , }.v v v  but there are vectors in 

1 2 3Span{ , , }v v v  which are not in H ( 1v and 3,v  for example). So 1 2 3Span{ , , },H ≠ v v v  and 1 2 3{ , , }v v v  
is not a basis for H. 

 26. Since sin t cos t = (1/2) sin 2t, the set {sin t, sin 2t} spans the subspace. By inspection we note that this 
set is linearly independent, so {sin t, sin 2t} is a basis for the subspace. 

 27. The set {cos ωt, sin ωt} spans the subspace. By inspection we note that this set is linearly independent, 
so {cos ωt, sin ωt} is a basis for the subspace. 

 28. The set { , }bt bte te− −  spans the subspace. By inspection we note that this set is linearly independent, so 

{ , }bt bte te− −  is a basis for the subspace. 

 29. Let A be the n × k matrix [ ]1 k…v v . Since A has fewer columns than rows, there cannot be a pivot 
position in each row of A. By Theorem 4 in Section 1.4, the columns of A do not span n and thus are not 
a basis for n. 

 30. Let A be the n × k matrix [ ]1 k…v v . Since A has fewer rows than columns rows, there cannot be a 
pivot position in each column of A. By Theorem 8 in Section 1.6, the columns of A are not linearly 
independent and thus are not a basis for n. 

 31. Suppose that 1{ , , }p…v v  is linearly dependent. Then there exist scalars 1, , pc c…  not all zero with  

   1 1 .p pc c+…+ =v v 0  

  Since T is linear,  
   1 1 1 1( ) ( ) ( )p p p pT c c c T c T+…+ = +…+v v v v  

  and  
   1 1( ) ( ) .p pT c c T+…+ = =v v 0 0  

  Thus  
   1 1( ) ( )p pc T c T+…+ =v v 0  

  and since not all of the ic  are zero, 1{ ( ), , ( )}pT T…v v  is linearly dependent. 

 32. Suppose that 1{ ( ), , ( )}pT T…v v  is linearly dependent. Then there exist scalars 1, , pc c…  not all zero with  

   1 1( ) ( ) .p pc T c T+…+ =v v 0  

  Since T is linear,  
   1 1 1 1( ) ( ) ( ) ( )p p p pT c c c T c T T+…+ = +…+ = =v v v v 0 0  

  Since T is one-to-one  
   1 1( ) ( )p pT c c T+…+ =v v 0  

  implies that  
   1 1 .p pc c+…+ =v v 0  

  Since not all of the ic  are zero, 1{ , , }p…v v  is linearly dependent. 
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 33. Neither polynomial is a multiple of the other polynomial. So 1 2{ , }p p  is a linearly independent set in 3. 
Note: 1 2{ , }p p  is also a linearly independent set in 2 since 1p  and 2p  both happen to be in 2. 

 34. By inspection, 3 1 2= +p p p , or 1 2 3+ − =p p p 0 . By the Spanning Set Theorem, 

1 2 3 1 2Span{ , , } Span{ , }=p p p p p . Since neither 1p  nor 2p  is a multiple of the other, they are linearly 
independent and hence 1 2{ , }p p  is a basis for 1 2 3Span{ , , }.p p p  

 35. Let 1 3{ , }v v  be any linearly independent set in a vector space V, and let 2v  and 4v  each be linear 
combinations of 1v  and 3.v  For instance, let 2 15=v v  and 4 1 3.= +v v v  Then 1 3{ , }v v  is a basis for 

1 2 3 4Span{ , , , }.v v v v  

 36. [M] Row reduce the following matrices to identify their pivot columns:  

  [ ]1 2 3

1 0 2 1 0 2
2 2 2 0 1 1

,
3 1 7 0 0 0
1 1 3 0 0 0

   
   −   = ∼
   −
   − −      

u u u  so 1 2{ , }u u  is a basis for H. 

  [ ]1 2 3

1 2 1 1 0 3
0 2 4 0 1 2

,
8 9 6 0 0 0
4 5 2 0 0 0

−   
   − −   = ∼
   
   − − −      

v v v  so 1 2{ , }v v  is a basis for K. 

  [ ]1 2 3 1 2 3

1 0 2 1 2 1
2 2 2 0 2 4
3 1 7 8 9 6
1 1 3 4 5 2

− 
 − =
 −
 − − − − −  

u u u v v v  

   

1 0 2 0 2 4
0 1 1 0 3 6

,
0 0 0 1 0 3
0 0 0 0 0 0

− 
 − − ∼
 
 
  

 so 1 2 1{ , , }u u v  is a basis for H + K. 

 37. [M] For example, writing  
   1 2 3 4sin cos 2 sin cos 0c t c t c t c t t⋅ + ⋅ + + =  

  with t = 0, .1, .2, .3 gives the following coefficent matrix A for the homogeneous system Ac = 0 (to four 
decimal places): 

   

0 sin 0 cos 0 sin 0 cos 0 0 0 1 0
.1 sin .1 cos .2 sin .1cos .1 .1 .0998 .9801 .0993

.
.2 sin .2 cos .4 sin .2 cos .2 .2 .1987 .9211 .1947
.3 sin .3 cos .6 sin .3 cos .3 .3 .2955 .8253 .2823

A

   
   
   = =
   
   
      

 

  This matrix is invertible, so the system Ac = 0 has only the trivial solution and  
{t, sin t, cos 2t, sin t cos t} is a linearly independent set of functions. 
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 38. [M] For example, writing  

   2 3 4 5 6
1 2 3 4 5 6 71 cos cos cos cos cos cos 0c c t c t c t c t c t c t⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =  

  with t = 0, .1, .2, .3, .4, .5, .6 gives the following coefficent matrix A for the homogeneous system Ac = 0 
(to four decimal places): 

   

2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

2 3 4

1 cos0 cos 0 cos 0 cos 0 cos 0 cos 0

1 cos.1 cos .1 cos .1 cos .1 cos .1 cos .1

1 cos.2 cos .2 cos .2 cos .2 cos .2 cos .2

1 cos.3 cos .3 cos .3 cos .3 cos .3 cos .3

1 cos.4 cos .4 cos .4 cos .4 cos .4 cos .4

1 cos.5 cos .5 cos .5 cos .5

A =

5 6

2 3 4 5 6

cos .5 cos .5

1 cos.6 cos .6 cos .6 cos .6 cos .6 cos .6

 
 
 
 
 
 
 
 
 
 
 
  

 

   

1 1 1 1 1 1 1
1 .9950 .9900 .9851 .9802 .9753 .9704
1 .9801 .9605 .9414 .9226 .9042 .8862
1 .9553 .9127 .8719 .8330 .7958 .7602
1 .9211 .8484 .7814 .7197 .6629 .6106
1 .8776 .7702 .6759 .5931 .5205 .4568
1 .8253 .6812 .5622 .4640 .3830 .3161





=









 
 
 
 
 

 

  This matrix is invertible, so the system Ac = 0 has only the trivial solution and  
{1, cos t, cos2t, cos3t, cos4t, cos5t, cos6t} is a linearly independent set of functions. 

4.4 SOLUTIONS 

Notes: Section 4.7 depends heavily on this section, as does Section 5.4. It is possible to cover the n parts of 
the two later sections, however, if the first half of Section 4.4 (and perhaps Example 7) is covered. The 
linearity of the coordinate mapping is used in Section 5.4 to find the matrix of a transformation relative to two 
bases. The change-of-coordinates matrix appears in Section 5.4, Theorem 8 and Exercise 27. The concept of 
an isomorphism is needed in the proof of Theorem 17 in Section 4.8. Exercise 25 is used in Section 4.7 to 
show that the change-of-coordinates matrix is invertible. 

 1. We calculate that  

   
3 4 3

5 3 .
5 6 7

−     
= + =     − −     

x  

 2. We calculate that  

   
4 6 2

8 ( 5) .
5 7 5
     

= + − =     
     

x  

 3. We calculate that  

   
1 5 4 1

3 4 0 2 ( 1) 7 5 .
3 2 0 9

−       
       = − + + − − = −       
       −       

x  
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 4. We calculate that  

   
1 3 4 0

( 4) 2 8 5 ( 7) 7 1 .
0 2 3 5

−       
       = − + − + − − =       
       −       

x  

 5. The matrix [ ]1 2b b x  row reduces to 
1 0 8

,
0 1 5
 
 − 

 so 
8

[ ] .
5B

 
=  − 

x  

 6. The matrix [ ]1 2b b x  row reduces to 
1 0 6

,
0 1 2

− 
 
 

 so 
6

[ ] .
2B

− 
=  
 

x  

 7. The matrix [ ]1 2 3b b b x  row reduces to 
1 0 0 1
0 1 0 1 ,
0 0 1 3

− 
 − 
  

 so 
1

[ ] 1 .
3

B

− 
 = − 
  

x  

 8. The matrix [ ]1 2 3b b b x  row reduces to 
1 0 0 2
0 1 0 0 ,
0 0 1 5

− 
 
 
  

 so 
2

[ ] 0 .
5

B

− 
 =  
  

x  

 9. The change-of-coordinates matrix from B to the standard basis in 2 is  

[ ]1 2
2 1

.
9 8BP

 
= =  − 

b b  

 10. The change-of-coordinates matrix from B to the standard basis in 3 is  

[ ]1 2 3

3 2 8
1 0 2 .
4 5 7

BP
 
 = = − − 
 − 

b b b  

 11. Since 1
BP −  converts x into its B-coordinate vector, we find that  

   
1

1 3 4 2 3 2 2 6
[ ] .

5 6 6 5/ 2 3/ 2 6 4B BP
−

− − − −         
= = = =         − − − − −         

x x  

 12. Since 1
BP −  converts x into its B-coordinate vector, we find that  

   
1

1 4 6 2 7 / 2 3 2 7
[ ] .

5 7 0 5/ 2 2 0 5B BP
−

− − −         
= = = =         −         

x x  

 13. We must find 1c , 2c , and 3c  such that  

   2 2 2 2
1 2 3(1 ) ( ) (1 2 ) ( ) 1 4 7 .c t c t t c t t t t t+ + + + + + = = + +p  

  Equating the coefficients of the two polynomials produces the system of equations  

   
1 3

2 3

1 2 3

1
2 4

7

c c
c c

c c c

+ =
+ =

+ + =
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  We row reduce the augmented matrix for the system of equations to find  

   
1 0 1 1 1 0 0 2 2
0 1 2 4 0 1 0 6 , so [ ] 6 .
1 1 1 7 0 0 1 1 1

B

     
     ∼ =     
     − −     

p  

  One may also solve this problem using the coordinate vectors of the given polynomials relative to the 
standard basis 2{1, , };t t  the same system of linear equations results. 

 14. We must find 1c , 2c , and 3c  such that  

   2 2 2 2
1 2 3(1 ) ( ) (2 2 ) ( ) 3 6 .c t c t t c t t t t t− + − + − + = = + −p  

  Equating the coefficients of the two polynomials produces the system of equations  

   
1 3

2 3

1 2 3

2 3
2 1

6

c c
c c

c c c

+ =
− =

− − + = −
 

  We row reduce the augmented matrix for the system of equations to find  

   
1 0 2 3 1 0 0 7 7
0 1 2 1 0 1 0 3 , so [ ] 3 .
1 1 1 6 0 0 1 2 2

B

     
     − ∼ − = −     
     − − − − −     

p  

  One may also solve this problem using the coordinate vectors of the given polynomials relative to the 
standard basis 2{1, , };t t  the same system of linear equations results. 

 15. a. True. See the definition of the B-coordinate vector.  
 b. False. See Equation (4).  
 c. False. 3 is isomorphic to 4. See Example 5.  

 16. a. True. See Example 2.  
 b. False. By definition, the coordinate mapping goes in the opposite direction.  
 c. True. If the plane passes through the origin, as in Example 7, the plane is isomorphic to 2.  

 17. We must solve the vector equation 1 2 3
1 2 3 1
3 8 7 1

x x x
−       

+ + =       − −       
. We row reduce the augmented 

matrix for the system of equations to find  

   
1 2 3 1 1 0 5 5

.
3 8 7 1 0 1 1 2

− −   
∼   − − −   

 

  Thus we can let 1 35 5x x= +  and 2 32x x= − − , where 3x  can be any real number. Letting 3 0x =  and 

3 1x =  produces two different ways to express 
1
1
 
 
 

 as a linear combination of the other vectors: 

1 25 2−v v  and 2 310 3− +1v v v . There are infintely many correct answers to this problem. 

 18. For each k, 10 1 0k k n= ⋅ + ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅b b b b , so [ ] (0, ,1, ,0) .k B k= … … =b e  

 19. The set S spans V because every x in V has a representation as a (unique) linear combination of elements 
in S. To show linear independence, suppose that 1{ , , }nS = …v v  and that 1 1 n nc c+ ⋅ ⋅ ⋅ + =v v 0  for some 
scalars 1c , …, .nc  The case when 1 0nc c= ⋅⋅ ⋅ = =  is one possibility. By hypothesis, this is the unique 
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(and thus the only) possible representation of the zero vector as a linear combination of the elements in S. 
So S is linearly independent and is thus a basis for V. 

 20. For w in V there exist scalars 1k , 2k , 3k , and 4k  such that  

   1 1 2 2 3 3 4 4k k k k= + + +w v v v v  (1) 

  because 1 2 3 4{ , , , }v v v v  spans V. Because the set is linearly dependent, there exist scalars 1c , 2c , 3c , and 

4c  not all zero, such that  

   1 1 2 2 3 3 4 4c c c c= + + +0 v v v v  (2) 

  Adding (1) and (2) gives  
   1 1 1 2 2 2 3 3 3 4 4 4( ) ( ) ( ) ( )k c k c k c k c= + = + + + + + + +w w 0 v v v v  (3) 

  At least one of the weights in (3) differs from the corresponding weight in (1) because at least one of the 
ic  is nonzero. So w is expressed in more than one way as a linear combination of 1v , 2v , 3v , and 4.v  

 21. The matrix of the transformation will be 
1

1 1 2 9 2
4 9 4 1BP

−
− −   

= =   −   
. 

 22. The matrix of the transformation will be [ ] 11
1 .B nP −− = ⋅ ⋅ ⋅b b  

 23. Suppose that  

   [ ] [ ]B B

n

c

c

1 
 = = . 
  

u w  

  By definition of coordinate vectors,  
   1 1 .n nc c= = + ⋅ ⋅ ⋅ +u w b b  

  Since u and w were arbitrary elements of V, the coordinate mapping is one-to-one. 

 24. Given 1( , , )ny y= …y  in n, let 1 1 n ny y= + ⋅⋅ ⋅ +u b b . Then, by definition, [ ]B =u y . Since y was 
arbitrary, the coordinate mapping is onto n. 

 25. Since the coordinate mapping is one-to-one, the following equations have the same solutions 1, , pc c… :  

   1 1 p pc c+ ⋅ ⋅ ⋅ + =u u 0  (the zero vector in V ) (4) 

   [ ]1 1 p p BB
c c + ⋅⋅ ⋅ + = u u 0  (the zero vector in n) (5) 

  Since the coordinate mapping is linear, (5) is equivalent to  

   1 1

0
[ ] [ ]

0
B p p Bc c

 
 + ⋅ ⋅ ⋅ + =  
  

u u  (6) 

  Thus (4) has only the trivial solution if and only if (6) has only the trivial solution. It follows that 
1{ , , }p…u u  is linearly independent if and only if 1{[ ] , ,[ ] }B p B…u u  is linearly independent. This result 

also follows directly from Exercises 31 and 32 in Section 4.3. 
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 26. By definition, w is a linear combination of 1, , p…u u  if and only if there exist scalars 1, , pc c…  such that  

   1 1 p pc c= + ⋅ ⋅ ⋅ +w u u  (7) 

  Since the coordinate mapping is linear,  
   1 1[ ] [ ] [ ]B B p p Bc c= + ⋅ ⋅ ⋅ +w u u  (8) 

  Conversely, (8) implies (7) because the coordinate mapping is one-to-one. Thus w is a linear 
combination of 1, , p…u u  if and only if [ ]Bw  is a linear combination of 1[ ] , ,[ ] .p…u u  

Note: Students need to be urged to write not just to compute in Exercises 27–34. The language in the Study 
Guide solution of Exercise 31 provides a model for the students. In Exercise 32, students may have difficulty 
distinguishing between the two isomorphic vector spaces, sometimes giving a vector in 3 as an answer for 
part (b). 

 27. The coordinate mapping produces the coordinate vectors (1, 0, 0, 1), (3, 1, –2, 0), and (0, –1, 3, –1) 
respectively. We test for linear independence of these vectors by writing them as columns of a matrix and 
row reducing: 

   

1 3 0 1 0 0
0 1 1 0 1 0

.
0 2 3 0 0 1
1 0 1 0 0 0

   
   −   ∼
   −
   −      

 

  Since the matrix has a pivot in each column, its columns (and thus the given polynomials) are linearly 
independent. 

 28. The coordinate mapping produces the coordinate vectors (1, 0, –2, –3), (0, 1, 0, 1), and (1, 3, –2, 0) 
respectively. We test for linear independence of these vectors by writing them as columns of a matrix and 
row reducing: 

   

1 0 1 1 0 1
0 1 3 0 1 3

.
2 0 2 0 0 0
3 1 0 0 0 0

   
   
   ∼
   − −
   −      

 

  Since the matrix does not have a pivot in each column, its columns (and thus the given polynomials) are 
linearly dependent. 

 29. The coordinate mapping produces the coordinate vectors (1, –2, 1, 0), (–2, 0, 0, 1), and (–8, 12, –6, 1) 
respectively. We test for linear independence of these vectors by writing them as columns of a matrix and 
row reducing:  

   

1 2 8 1 0 6
2 0 12 0 1 1

.
1 0 6 0 0 0
0 1 1 0 0 0

− − −   
   −   ∼
   −
   
      

 

  Since the matrix does not have a pivot in each column, its columns (and thus the given polynomials) are 
linearly dependent. 
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 30. The coordinate mapping produces the coordinate vectors (1, –3, 3, –1), (4, –12, 9, 0), and (0, 0, 3, –4) 
respectively. We test for linear independence of these vectors by writing them as columns of a matrix and 
row reducing: 

   

1 4 0 1 0 4
3 12 0 0 1 1

.
3 9 3 0 0 0
1 0 4 0 0 0

   
   − − −   ∼
   
   − −      

 

  Since the matrix does not have a pivot in each column, its columns (and thus the given polynomials) are 
linearly dependent. 

 31. In each part, place the coordinate vectors of the polynomials into the columns of a matrix and reduce the 
matrix to echelon form. 

a. 
1 3 4 1 1 3 4 1
3 5 5 0 0 4 7 3
5 7 6 1 0 0 0 0

− − − −   
   − ∼ − −   
   − − −   

 

  Since there is not a pivot in each row, the original four column vectors do not span 3. By the 
isomorphism between 3 and 2, the given set of polynomials does not span 2. 

b. 
0 1 3 2 1 2 2 0
5 8 4 3 0 2 6 3
1 2 2 0 0 0 0 7 / 2

− −   
   − − ∼ − −   
   −   

 

  Since there is a pivot in each row, the original four column vectors span 3. By the isomorphism 
between 3 and 2, the given set of polynomials spans 2. 

 32. a. Place the coordinate vectors of the polynomials into the columns of a matrix and reduce the matrix to 

echelon form: 
1 2 1 1 2 1
0 1 2 0 1 2
1 3 4 0 0 3

   
   − ∼ −   
   − −   

 

  The resulting matrix is invertible since it row equivalent to 3.I  The original three column vectors 
form a basis for 3 by the Invertible Matrix Theorem. By the isomorphism between 3 and 2, the 
corresponding polynomials form a basis for 2. 

b. Since [ ] ( 3, 1, 2),B = −q  1 2 33 2 .= − + +q p p p  One might do the algebra in 2 or choose to compute 
1 2 1 3 1
0 1 2 1 3 .
1 3 4 2 8

−     
     − =     
     − −     

 This combination of the columns of the matrix corresponds to the same 

combination of 1,p  2 ,p  and 3.p  So 2( ) 1 3 8 .t t t= + −q  

 33. The coordinate mapping produces the coordinate vectors (3, 7, 0, 0), (5, 1, 0, –2), (0, 1, –2, 0) and  
(1, 16, –6, 2) respectively. To determine whether the set of polynomials is a basis for 3, we investigate 
whether the coordinate vectors form a basis for 4. Writing the vectors as the columns of a matrix and 
row reducing  

   

3 5 0 1 1 0 0 2
7 1 1 16 0 1 0 1

,
0 0 2 6 0 0 1 3
0 2 0 2 0 0 0 0

   
   −   ∼
   − −
   −      
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  we find that the matrix is not row equivalent to 4.I  Thus the coordinate vectors do not form a basis for 
4. By the isomorphism between 4 and 3, the given set of polynomials does not form a basis for 3. 

 34. The coordinate mapping produces the coordinate vectors (5, –3, 4, 2), (9, 1, 8, –6), (6, –2, 5, 0), and  
(0, 0, 0, 1) respectively. To determine whether the set of polynomials is a basis for 3, we investigate 
whether the coordinate vectors form a basis for 4. Writing the vectors as the columns of a matrix, and 
row reducing 

   

5 9 6 0 1 0 3/ 4 0
3 1 2 0 0 1 1/ 4 0
4 8 5 0 0 0 0 1
2 6 0 1 0 0 0 0

   
   − −   ∼
   
   −      

 

  we find that the matrix is not row equivalent to I4. Thus the coordinate vectors do not form a basis for 4. 
By the isomorphism between 4 and 3, the given set of polynomials does not form a basis for 3. 

 35. To show that x is in 1 2Span{ , },H = v v  we must show that the vector equation 1 1 2 2x x+ =v v x  has a 
solution. The augmented matrix [ ]1 2v v x  may be row reduced to show  

   

11 14 19 1 0 5/ 3
5 8 13 0 1 8/ 3

.
10 13 18 0 0 0
7 10 15 0 0 0

−   
   − − −   ∼
   
   
      

 

  Since this system has a solution, x is in H. The solution allows us to find the B-coordinate vector for x: 

since 1 1 2 2 1 2( 5 / 3) (8 / 3)x x= + = − +x v v v v , 
5 / 3

[ ]
8 / 3B

− 
=  
 

x . 

 36. To show that x is in 1 2 3Span{ , , }H = v v v , we must show that the vector equation 1 1 2 2 3 3x x x+ + =v v v x  
has a solution. The augmented matrix [ ]1 2 3v v v x  may be row reduced to show  

   

6 8 9 4 1 0 0 3
4 3 5 7 0 1 0 5

.
9 7 8 8 0 0 1 2
4 3 3 3 0 0 0 0

− −   
   −   ∼
   − − −
   −      

 

  The first three columns show that B is a basis for H. Moreover, since this system has a solution, x is in H. 
The solution allows us to find the B-coordinate vector for x: since 

1 1 2 2 3 3 1 2 33 5 2x x x= + + = + +x v v v v v v , 
3

[ ] 5 .
2

B

 
 =  
  

x  

 37. We are given that 
1/ 2

[ ] 1/ 4 ,
1/ 6

B

 
 =  
  

x  where 
2.6 0 0
1.5 , 3 , 0 .

0 0 4.8
B

      
      = −      
            

 To find the coordinates of x relative 

to the standard basis in 3, we must find x. We compute that  

   
2.6 0 0 1/ 2 1.3

[ ] 1.5 3 0 1/ 4 0 .
0 0 4.8 1/ 6 0.8

B BP
     
     = = − =     
          

x x  
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 38. We are given that 
1/ 2

[ ] 1/ 2 ,
1/ 3

B

 
 =  
  

x  where 
2.6 0 0
1.5 , 3 , 0 .

0 0 4.8
B

      
      = −      
            

 To find the coordinates of x relative 

to the standard basis in 3, we must find x. We compute that  

   
2.6 0 0 1/ 2 1.3

[ ] 1.5 3 0 1/ 2 0.75 .
0 0 4.8 1/ 3 1.6

B BP
     
     = = − =     
          

x x  

4.5 SOLUTIONS 

Notes: Theorem 9 is true because a vector space isomorphic to n has the same algebraic properties as n; a 
proof of this result may not be needed to convince the class. The proof of Theorem 9 relies upon the fact that 
the coordinate mapping is a linear transformation (which is Theorem 8 in Section 4.4). If you have skipped 
this result, you can prove Theorem 9 as is done in Introduction to Linear Algebra by Serge Lang (Springer-
Verlag, New York, 1986). There are two separate groups of true-false questions in this section; the second 
batch is more theoretical in nature. Example 4 is useful to get students to visualize subspaces of different 
dimensions, and to see the relationships between subspaces of different dimensions. Exercises 31 and 32 
investigate the relationship between the dimensions of the domain and the range of a linear transformation; 
Exercise 32 is mentioned in the proof of Theorem 17 in Section 4.8. 

 1. This subspace is 1 2Span{ , },H = v v  where 1

1
1
0

 
 =  
  

v  and 2

2
1 .
3

− 
 =  
  

v  Since 1v  and 2v  are not multiples 

of each other, 1 2{ , }v v  is linearly independent and is thus a basis for H. Hence the dimension of H is 2. 

 2. This subspace is 1 2Span{ , },H = v v  where 1

4
3
0

 
 = − 
  

v  and 2

0
0 .
1

 
 =  
 − 

v  Since 1v  and 2v  are not multiples 

of each other, 1 2{ , }v v  is linearly independent and is thus a basis for H. Hence the dimension of H is 2. 

 3. This subspace is 1 2 3Span{ , , },H = v v v  where 1

0
1

,
0
1

 
 
 =
 
 
  

v  2

0
1

,
1
2

 
 − =
 
 
  

v  and 3

2
0

.
3
0

 
 
 =
 −
 
  

v  Theorem 4 in 

Section 4.3 can be used to show that this set is linearly independent: 1 ,≠v 0  2v  is not a multiple of 1,v  
and (since its first entry is not zero) 3v  is not a linear combination of 1v  and 2.v  Thus 1 2 3{ , , }v v v  is 
linearly independent and is thus a basis for H. Alternatively, one can show that this set is linearly 
independent by row reducing the matrix [ ]1 2 3 .v v v 0  Hence the dimension of the subspace is 3. 

 4. This subspace is 1 2Span{ , },H = v v  where 1

1
2
3
0

 
 
 =
 
 
  

v  and 2

1
0

.
1
1

 
 
 =
 −
 −  

v  Since 1v  and 2v  are not multiples 

of each other, 1 2{ , }v v  is linearly independent and is thus a basis for H. Hence the dimension of H is 2. 
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 5. This subspace is 1 2 3Span{ , , },H = v v v  where 1

1
2

,
1
3

 
 
 =
 −
 −  

v  2

4
5

,
0
7

− 
 
 =
 
 
  

v  and 3

2
4

.
2
6

− 
 − =
 
 
  

v  Since 3 12 ,= −v v  

1 2 3{ , , }v v v  is linearly dependent. By the Spanning Set Theorem, 3v  may be removed from the set with 
no change in the span of the set, so 1 2Span{ , }.H = v v  Since 1v  and 2v  are not multiples of each other, 

1 2{ , }v v  is linearly independent and is thus a basis for H. Hence the dimension of H is 2. 

 6. This subspace is 1 2 3Span{ , , },H = v v v  where 1

3
6

,
9
3

 
 
 =
 −
 −  

v  2

6
2

,
5
1

 
 − =
 
 
  

v  and 3

1
2

.
3
1

− 
 − =
 
 
  

v  Since 

3 1(1/ 3) ,= −v v  1 2 3{ , , }v v v  is linearly dependent. By the Spanning Set Theorem, 3v  may be removed 
from the set with no change in the span of the set, so 1 2Span{ , }.H = v v  Since 1v  and 2v  are not 
multiples of each other, 1 2{ , }v v  is linearly independent and is thus a basis for H. Hence the dimension 
of H is 2. 

 7. This subspace is H = Nul A, where 
1 3 1
0 1 2 .
0 2 1

A
− 

 = − 
 − 

 Since [ ]
1 0 0 0
0 1 0 0 ,
0 0 1 0

A
 
 ∼  
  

0  the 

homogeneous system has only the trivial solution. Thus H = Nul A = {0}, and the dimension of H is 0. 

 8. From the equation a – 3b + c = 0, it is seen that (a, b, c, d) = b(3, 1, 0, 0) + c(–1, 0, 1, 0) + d(0, 0, 0, 1). 
Thus the subspace is 1 2 3Span{ , , },H = v v v  where 1 (3,1,0,0),=v  2 ( 1,0,1,0),= −v  and 3 (0,0,0,1).=v  It 
is easily checked that this set of vectors is linearly independent, either by appealing to Theorem 4 in 
Section 4.3, or by row reducing [ ]1 2 3 .v v v 0  Hence the dimension of the subspace is 3. 

 9. This subspace is : , in
a

H b a b
a

  
  =   
   

  1 2Span{ , },

 =



v v  where 1

1
0
1

 
 =  
  

v  and 2

0
1 .
0

 
 =  
  

v  Since 1v  and 

2v  are not multiples of each other, 1 2{ , }v v  is linearly independent and is thus a basis for H. Hence the 
dimension of H is 2.  

 10. The matrix A with these vectors as its columns row reduces to  

   
2 4 3 1 2 0

.
5 10 6 0 0 1

− − −   
∼   −   

 

  There are two pivot columns, so the dimension of Col A (which is the dimension of H) is 2. 

 11. The matrix A with these vectors as its columns row reduces to  

   
1 3 9 7 1 0 3 2
0 1 4 3 0 1 4 3 .
2 1 2 1 0 0 0 0

− −   
   − ∼ −   
   −   

 

  There are two pivot columns, so the dimension of Col A (which is the dimension of the subspace spanned 
by the vectors) is 2. 
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 12. The matrix A with these vectors as its columns row reduces to  

   
1 3 8 3 1 0 7 0
2 4 6 0 0 1 5 0 .
0 1 5 7 0 0 0 1

− − −   
   − ∼   
      

 

  There are three pivot columns, so the dimension of Col A (which is the dimension of the subspace 
spanned by the vectors) is 3. 

 13. The matrix A is in echelon form. There are three pivot columns, so the dimension of Col A is 3. There  
are two columns without pivots, so the equation Ax = 0 has two free variables. Thus the dimension of 
Nul A is 2. 

 14. The matrix A is in echelon form. There are three pivot columns, so the dimension of Col A is 3. There are 
three columns without pivots, so the equation Ax = 0 has three free variables. Thus the dimension of  
Nul A is 3. 

 15. The matrix A is in echelon form. There are two pivot columns, so the dimension of Col A is 2. There 
 are two columns without pivots, so the equation Ax = 0 has two free variables. Thus the dimension of 
Nul A is 2. 

 16. The matrix A row reduces to  

   
3 4 1 0

.
6 10 0 1

   
∼   −   

 

  There are two pivot columns, so the dimension of Col A is 2. There are no columns without pivots, so the 
equation Ax = 0 has only the trivial solution 0. Thus Nul A = {0}, and the dimension of Nul A is 0. 

 17. The matrix A is in echelon form. There are three pivot columns, so the dimension of Col A is 3. There are 
no columns without pivots, so the equation Ax = 0 has only the trivial solution 0. Thus Nul A = {0}, and 
the dimension of Nul A is 0. 

 18. The matrix A is in echelon form. There are two pivot columns, so the dimension of Col A is 2. There  
is one column without a pivot, so the equation Ax = 0 has one free variable. Thus the dimension of  
Nul A is 1. 

 19. a. True. See the box before Example 5.  
 b. False. The plane must pass through the origin; see Example 4.  
 c. False. The dimension of n is n + 1; see Example 1.  
 d. False. The set S must also have n elements; see Theorem 12.  
 e. True. See Theorem 9.  

 20. a. False. The set 2 is not even a subset of 3.  
 b. False. The number of free variables is equal to the dimension of Nul A; see the box before Example 5.  
 c. False. A basis could still have only finitely many elements, which would make the vector space finite-

dimensional.  
 d. False. The set S must also have n elements; see Theorem 12.  
 e. True. See Example 4.  
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 21. The matrix whose columns are the coordinate vectors of the Hermite polynomials relative to the standard 
basis 2 3{1, , , }t t t  of 3 is  

   

1 0 2 0
0 2 0 12

.
0 0 4 0
0 0 0 8

A

− 
 − =
 
 
  

 

  This matrix has 4 pivots, so its columns are linearly independent. Since their coordinate vectors form a 
linearly independent set, the Hermite polynomials themselves are linearly independent in 3. Since there 
are four Hermite polynomials and dim 3 = 4, the Basis Theorem states that the Hermite polynomials 
form a basis for 3. 

 22. The matrix whose columns are the coordinate vectors of the Laguerre polynomials relative to the 
standard basis 2 3{1, , , }t t t  of 3 is  

   

1 1 2 6
0 1 4 18

.
0 0 1 9
0 0 0 1

A

 
 − − − =
 
 −  

 

  This matrix has 4 pivots, so its columns are linearly independent. Since their coordinate vectors form a 
linearly independent set, the Laguerre polynomials themselves are linearly independent in 3. Since there 
are four Laguerre polynomials and dim 3 = 4, the Basis Theorem states that the Laguerre polynomials 
form a basis for 3. 

 23. The coordinates of 2 3( ) 7 12 8 12t t t t= − − +p  with respect to B satisfy  

   2 3 2 3
1 2 3 4(1) (2 ) ( 2 4 ) ( 12 8 ) 7 12 8 12c c t c t c t t t t t+ + − + + − + = − − +  

  Equating coefficients of like powers of t produces the system of equations  

   

1 3

2 4

3

4

2 7
2 12 12

4 8
8 12

c c
c c

c
c

− =
− = −

= −
=

 

  Solving this system gives 1 3,c =  2 3,c =  3 2,c = −  4 3/ 2,c =  and 

3
3

[ ] .
2

3/ 2

B

 
 
 =
 −
 
  

p  

 24. The coordinates of 2( ) 7 8 3t t t= − +p  with respect to B satisfy  

   2 2
1 2 3(1) (1 ) (2 4 ) 7 8 3c c t c t t t t+ − + − + = − +  

  Equating coefficients of like powers of t produces the system of equations  

   
1 2 3

2 3

3

2 7
4 8

3

c c c
c c

c

+ + =
− − = −

=
 

  Solving this system gives 1 5,c =  2 4,c = −  3 3,c =  and 
5

[ ] 4 .
3

B

 
 = − 
  

p  
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 25. Note first that n ≥ 1 since S cannot have fewer than 1 vector. Since n ≥ 1, V ≠ 0. Suppose that S spans V 
and that S contains fewer than n vectors. By the Spanning Set Theorem, some subset S ′  of S is a basis 
for V. Since S contains fewer than n vectors, and S ′  is a subset of S, S ′  also contains fewer than n 
vectors. Thus there is a basis S ′  for V with fewer than n vectors, but this is impossible by Theorem 10 
since dimV = n. Thus S cannot span V. 

 26. If dimV = dim H = 0, then V = {0} and H = {0}, so H = V. Suppose that dim V = dim H > 0. Then H 
contains a basis S consisting of n vectors. But applying the Basis Theorem to V, S is also a basis for V. 
Thus H = V = SpanS. 

 27. Suppose that dim  = k < ∞. Now n is a subspace of  for all n, and dim k–1 = k, so dim k–1 = dim .  
This would imply that k–1 = , which is clearly untrue: for example ( ) kt t=p  is in  but not in  

k–1. Thus the dimension of  cannot be finite. 

 28. The space C( ) contains  as a subspace. If C( ) were finite-dimensional, then  would also be finite-
dimensional by Theorem 11. But  is infinite-dimensional by Exercise 27, so C( ) must also be infinite-
dimensional. 

 29. a. True. Apply the Spanning Set Theorem to the set 1{ , , }p…v v  and produce a basis for V. This basis 
will not have more than p elements in it, so dimV ≤ p.  

 b. True. By Theorem 11, 1{ , , }p…v v  can be expanded to find a basis for V. This basis will have at least 
p elements in it, so dimV ≥ p.  

 c. True. Take any basis (which will contain p vectors) for V and adjoin the zero vector to it.  

 30. a. False. For a counterexample, let v be a non-zero vector in 3, and consider the set {v, 2v}. This is a 
linearly dependent set in 3, but dim 3 3 2= > .  

 b. True. If dimV ≤ p, there is a basis for V with p or fewer vectors. This basis would be a spanning set 
for V with p or fewer vectors, which contradicts the assumption.  

 c. False. For a counterexample, let v be a non-zero vector in 3, and consider the set {v, 2v}. This is a 
linearly dependent set in 3 with 3 – 1 = 2 vectors, and dim 3 3= .  

 31. Since H is a nonzero subspace of a finite-dimensional vector space V, H is finite-dimensional and has a 
basis. Let 1{ , , }p…u u  be a basis for H. We show that the set 1{ ( ), , ( )}pT T…u u  spans T(H). Let y be in 
T(H). Then there is a vector x in H with T(x) = y. Since x is in H and 1{ , , }p…u u  is a basis for H, x may 
be written as 1 1 p pc c= +…+x u u  for some scalars 1, , .pc c…  Since the transformation T is linear,  

   1 1 1 1( ) ( ) ( ) ( )p p p pT T c c c T c T= = +…+ = +…+y x u u u u  

  Thus y is a linear combination of 1( ), , ( )pT T…u u , and 1{ ( ), , ( )}pT T…u u  spans T(H). By the Spanning 
Set Theorem, this set contains a basis for T(H). This basis then has not more than p vectors, and  
dimT(H) ≤ p = dim H. 

 32. Since H is a nonzero subspace of a finite-dimensional vector space V, H is finite-dimensional and has a 
basis. Let 1{ , }p…u u  be a basis for H. In Exercise 31 above it was shown that 1{ ( ), , ( )}pT T…u u  spans 
T(H). In Exercise 32 in Section 4.3, it was shown that 1{ ( ), , ( )}pT T…u u  is linearly independent. Thus 

1{ ( ), , ( )}pT T…u u  is a basis for T(H), and dimT(H) = p = dim H. 
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 33. [M]  
  a. To find a basis for 5 which contains the given vectors, we row reduce  

   

9 9 6 1 0 0 0 0 1 0 0 1/ 3 0 0 1 3/ 7
7 4 7 0 1 0 0 0 0 1 0 0 0 0 1 5/ 7

.8 1 8 0 0 1 0 0 0 0 1 1/ 3 0 0 0 3/ 7
5 6 5 0 0 0 1 0 0 0 0 0 1 0 3 22 / 7
7 7 7 0 0 0 0 1 0 0 0 0 0 1 9 53/ 7

− −   
   −   
   ∼− − −
   −   
   − − − −   

 

  The first, second, third, fifth, and sixth columns are pivot columns, so these columns of the 
original matrix ( 1 2 3 2 3{ , , , , }v v v e e ) form a basis for 5:  

b. The original vectors are the first k columns of A. Since the set of original vectors is assumed to  
be linearly independent, these columns of A will be pivot columns and the original set of vectors 
will be included in the basis. Since the columns of A include all the columns of the identity 
matrix, Col A = n. 

 34. [M]  
  a. The B-coordinate vectors of the vectors in C are the columns of the matrix  

   

1 0 1 0 1 0 1
0 1 0 3 0 5 0
0 0 2 0 8 0 18

.0 0 0 4 0 20 0
0 0 0 0 8 0 48
0 0 0 0 0 16 0
0 0 0 0 0 0 32

P

− − 
 − 
 −
 = − 
 −
 
 
  

 

 The matrix P is invertible because it is triangular with nonzero entries along its main diagonal. 
Thus its columns are linearly independent. Since the coordinate mapping is an isomorphism, this 
shows that the vectors in C are linearly independent. 

b. We know that dim H = 7 because B is a basis for H. Now C is a linearly independent set, and  
the vectors in C lie in H by the trigonometric identities. Thus by the Basis Theorem, C is  
a basis for H. 

4.6 SOLUTIONS 

Notes: This section puts together most of the ideas from Chapter 4. The Rank Theorem is the main result in 
this section. Many students have difficulty with the difference in finding bases for the row space and the 
column space of a matrix. The first process uses the nonzero rows of an echelon form of the matrix. The 
second process uses the pivots columns of the original matrix, which are usually found through row reduction. 
Students may also have problems with the varied effects of row operations on the linear dependence relations 
among the rows and columns of a matrix. Problems of the type found in Exercises 19–26 make excellent test 
questions. Figure 1 and Example 4 prepare the way for Theorem 3 in Section 6.1; Exercises 27–29 anticipate 
Example 6 in Section 7.4. 
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 1. The matrix B is in echelon form. There are two pivot columns, so the dimension of Col A is 2. There are 
two pivot rows, so the dimension of Row A is 2. There are two columns without pivots, so the equation 
Ax = 0 has two free variables. Thus the dimension of Nul A is 2. A basis for Col A is the pivot columns 
of A: 

   
1 4
1 , 2 .
5 6

 −   
    −    
    −    

 

  A basis for Row A is the pivot rows of B: { }(1,0, 1,5),(0, 2,5, 6) .− − −  To find a basis for Nul A row reduce 
to reduced echelon form:  

   
1 0 1 5

.
0 1 5/ 2 3

A
− 

∼  − 
 

  The solution to A =x 0  in terms of free variables is 1 3 45x x x= − , 2 3 4(5 / 2) 3x x x= −  with 3x  and 4x  
free. Thus a basis for Nul A is  

   

1 5
5/ 2 3

, .
1 0
0 1

 −   
    −                    

 

 2. The matrix B is in echelon form. There are three pivot columns, so the dimension of Col A is 3. There are 
three pivot rows, so the dimension of Row A is 3. There are two columns without pivots, so the equation 
A =x 0  has two free variables. Thus the dimension of Nul A is 2. A basis for Col A is the pivot columns  
of A:  

   

1 4 9
2 6 10

, , .
3 6 3
3 4 0

      
      − − −            − − −                  

 

  A basis for Row A is the pivot rows of B: { }(1, 3,0,5, 7),(0,0,2, 3,8),(0,0,0,0,5) .− − −  To find a basis for 
Nul A row reduce to reduced echelon form:  

   

1 3 0 5 0
0 0 1 3/ 2 0

.
0 0 0 0 1
0 0 0 0 0

A

− 
 − ∼
 
 
  

 

  The solution to A =x 0  in terms of free variables is 1 2 43 5x x x= − , 3 4(3/ 2)x x= , 5 0x = , with 2x  and 

4x  free. Thus a basis for Nul A is  

   

3 5
1 0

, .0 3/ 2
0 1
0 0

 −   
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 3. The matrix B is in echelon form. There are three pivot columns, so the dimension of Col A is 3. There are 
three pivot rows, so the dimension of Row A is 3. There are two columns without pivots, so the equation 
A =x 0  has two free variables. Thus the dimension of Nul A is 2. A basis for Col A is the pivot columns 
of A:  

   

2 6 2
2 3 3

, , .
4 9 5
2 3 4

      
      − − −                   − −           

 

  A basis for Row A is the pivot rows of B: { }(2, 3,6,2,5),(0,0,3, 1,1),(0,0,0,1,3) .− −  To find a basis for  
Nul A row reduce to reduced echelon form:  

   

1 3/ 2 0 0 9 / 2
0 0 1 0 4 / 3

.
0 0 0 1 3
0 0 0 0 0

A

− − 
 
 ∼
 
 
  

 

  The solution to A =x 0  in terms of free variables is 1 2 5(3/ 2) (9 / 2) ,x x x= +  3 5(4 / 3) ,x x= −  4 53 ,x x= −  
with 2x  and 5x  free. Thus a basis for Nul A is  

   

3/ 2 9 / 2
1 0

, .0 4 / 3
0 3
0 1

    
    
        − 
    −    
        

 

 4. The matrix B is in echelon form. There are three pivot columns, so the dimension of Col A is 3. There are 
three pivot rows, so the dimension of Row A is 3. There are three columns without pivots, so the equation 
A =x 0  has three free variables. Thus the dimension of Nul A is 3. A basis for Col A is the pivot columns 
of A:  

   

1 1 7
1 2 10

, , .1 1 1
1 3 5
1 2 0

      
      
            − 
      − −      
     −       

 

  A basis for Row A is the pivot rows of B:  
   { }(1,1, 3, 7, 9, 9), (0,1, 1, 3, 4, 3), (0, 0, 0,1, 1, 2) .− − − − − −  

  To find a basis for Nul A row reduce to reduced echelon form:  

   

1 0 2 0 9 2
0 1 1 0 7 3

.0 0 0 1 1 2
0 0 0 0 0 0
0 0 0 0 0 0

A

− 
 − 
 ∼ − −
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  The solution to A =x 0  in terms of free variables is 1 3 5 62 9 2x x x x= − − , 2 3 5 67 3x x x x= − − , 

4 5 62x x x= + , with 3x , 5x , and 6x  free. Thus a basis for Nul A is  

   

2 9 2
1 7 3
1 0 0

, , .
0 1 2
0 1 0
0 0 1

 − −     
      − −      
       
      
      
      
      
            

 

 5. By the Rank Theorem, dimNul 8 rank 8 3 5.A A= − = − =  Since dimRow rank ,dimRow 3.A A A= =  
Since rank dimCol dimRow ,T TA A A= =  rank 3.TA =  

 6. By the Rank Theorem, dimNul 3 rank 3 3 0.A A= − = − =  Since dimRow rank , dimRow 3.A A A= =  
Since rank dimCol dimRow , rank 3.T T TA A A A= = =  

 7. Yes, Col A = 4. Since A has four pivot columns, dimCol 4.A = Thus Col A is a four-dimensional 
subspace of 4, and Col A = 4. 

  No, Nul A ≠ 3. It is true that dimNul 3A = , but Nul A is a subspace of 7. 

 8. Since A has four pivot columns, rank 4,A =  and dimNul 6 rank 6 4 2.A A= − = − =  

  No. Col A ≠ 4. It is true that dimCol rank 4,A A= =  but Col A is a subspace of 5. 

 9. Since dimNul 4, rank 6 dimNul 6 4 2.A A A= = − = − =  So dimCol rank 2.A A= =  

 10. Since dimNul 5, rank 6 dimNul 6 5 1.A A A= = − = − =  So dimCol rank 1.A A= =  

 11. Since dimNul 2, rank 5 dimNul 5 2 3.A A A= = − = − =  So dimRow dimCol rank 3.A A A= = =  

 12. Since dimNul 4, rank 6 dimNul 6 4 2.A A A= = − = − =  So dimRow dimCol rank 2.A A A= = =  

 13. The rank of a matrix A equals the number of pivot positions which the matrix has. If A is either a 7 5×  
matrix or a 5 7×  matrix, the largest number of pivot positions that A could have is 5. Thus the largest 
possible value for rank A is 5. 

 14. The dimension of the row space of a matrix A is equal to rank A, which equals the number of pivot 
positions which the matrix has. If A is either a 4 3×  matrix or a 3 4×  matrix, the largest number of pivot 
positions that A could have is 3. Thus the largest possible value for dimRow A is 3. 

 15. Since the rank of A equals the number of pivot positions which the matrix has, and A could have at most 
6 pivot positions, rank 6.A ≤  Thus dimNul 8 rank 8 6 2.A A= − ≥ − =  

 16. Since the rank of A equals the number of pivot positions which the matrix has, and A could have at most 
4 pivot positions, rank 4.A ≤  Thus dimNul 4 rank 4 4 0.A A= − ≥ − =  

 17. a. True. The rows of A are identified with the columns of .TA  See the paragraph before Example 1.  
 b. False. See the warning after Example 2.  
 c. True. See the Rank Theorem.  
 d. False. See the Rank Theorem.  
 e. True. See the Numerical Note before the Practice Problem.  
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 18. a. False. Review the warning after Theorem 6 in Section 4.3.  
 b. False. See the warning after Example 2.  
 c. True. See the remark in the proof of the Rank Theorem.  
 d. True. This fact was noted in the paragraph before Example 4. It also follows from the fact that the 

rows of TA  are the columns of ( ) .T TA A=  

 e. True. See Theorem 13.  

 19. Yes. Consider the system as ,A =x 0  where A is a 5 6×  matrix. The problem states that dimNul 1A = . 
By the Rank Theorem, rank 6 dimNul 5.A A= − =  Thus dimCol rank 5,A A= =  and since Col A is a 
subspace of 5, Col A = 5 So every vector b in 5 is also in Col A, and ,A =x b  has a solution for all b. 

 20. No. Consider the system as ,A =x b  where A is a 6 8×  matrix. The problem states that dimNul 2.A =  
By the Rank Theorem, rank 8 dimNul 6.A A= − =  Thus dimCol rank 6,A A= =  and since Col A is a 
subspace of 6, Col A = 6 So every vector b in 6 is also in Col A, and A =x b  has a solution for all b. 
Thus it is impossible to change the entries in b to make A =x b  into an inconsistent system. 

 21. No. Consider the system as ,A =x b  where A is a 9 10×  matrix. Since the system has a solution for all b 
in 9, A must have a pivot in each row, and so rank 9.A =  By the Rank Theorem, dimNul 10 9 1.A = − =  
Thus it is impossible to find two linearly independent vectors in Nul A. 

 22. No. Consider the system as ,A =x 0  where A is a 10 12×  matrix. Since A has at most 10 pivot positions, 
rank 10.A ≤  By the Rank Theorem, dimNul 12 rank 2.A A= − ≥  Thus it is impossible to find a single 
vector in Nul A which spans Nul A. 

 23. Yes, six equations are sufficient. Consider the system as ,A =x 0  where A is a 12 8×  matrix. The 
problem states that dimNul 2.A =  By the Rank Theorem, rank 8 dimNul 6.A A= − =  Thus 
dimCol rank 6.A A= =  So the system A =x 0  is equivalent to the system ,B =x 0  where B is an echelon 
form of A with 6 nonzero rows. So the six equations in this system are sufficient to describe the solution 
set of .A =x 0  

 24. Yes, No. Consider the system as ,A =x b  where A is a 7 6×  matrix. Since A has at most 6 pivot 
positions, rank 6.A ≤  By the Rank Theorem, dim Nul 6 rank 0.A A= − ≥  If dimNul 0,A =  then the 
system A =x b  will have no free variables. The solution to ,A =x b  if it exists, would thus have to be 
unique. Since rank 6,A ≤  Col A will be a proper subspace of 7. Thus there exists a b in 7 for which 
the system A =x b  is inconsistent, and the system A =x b  cannot have a unique solution for all b. 

 25. No. Consider the system as ,A =x b  where A is a 10 12×  matrix. The problem states that dim Nul 3.A =  
By the Rank Theorem, dimCol rank 12 dimNul 9.A A A= = − =  Thus Col A will be a proper subspace of 

10 Thus there exists a b in 10 for which the system A =x b  is inconsistent, and the system A =x b  
cannot have a solution for all b.  

 26. Consider the system ,A =x 0  where A is a m n×  matrix with .m n>  Since the rank of A is the number of 
pivot positions that A has and A is assumed to have full rank, rank .A n=  By the Rank Theorem, 
dimNul rank 0.A n A= − =  So Nul { },A = 0  and the system A =x 0  has only the trivial solution. This 
happens if and only if the columns of A are linearly independent. 

 27. Since A is an m × n matrix, Row A is a subspace of n, Col A is a subspace of m, and Nul A is a 
subspace of n. Likewise since TA  is an n × m matrix, Row TA  is a subspace of m, Col TA  is a 
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subspace of n, and Nul TA  is a subspace of m. Since Row Col TA A=  and Col Row ,TA A=  there are 
four dinstict subspaces in the list: Row A, Col A, Nul A, and Nul .TA  

 28. a. Since A is an m × n matrix and dimRow A = rank A,  
   dimRow A + dimNul A = rank A + dimNul A = n. 

b. Since TA  is an n × m matrix and dimCol dimRow dimCol rank ,T TA A A A= = =  

   dimCol dimNul rank dimNul .T T TA A A A m+ = + =  

 29. Let A be an m × n matrix. The system Ax = b will have a solution for all b in m if and only if A has a 
pivot position in each row, which happens if and only if dimCol A = m. By Exercise 28 b., dimCol A = m 
if and only if dimNul 0TA m m= − = , or Nul { }.TA = 0  Finally, Nul { }TA = 0  if and only if the equation 

TA =x 0  has only the trivial solution. 

 30. The equation Ax = b is consistent if and only if [ ]rank rankA A=b  because the two ranks will be 

equal if and only if b is not a pivot column of [ ].A b  The result then follows from Theorem 2 in 
Section 1.2. 

 31. Compute that [ ]
2 2 2 2
3 3 3 3 .
5 5 5 5

T
a b c

a b c a b c
a b c

   
   = − = − − −   
      

uv  Each column of Tuv  is a multiple of u, so 

dimCol 1T =uv , unless a = b = c = 0, in which case Tuv  is the 3 × 3 zero matrix and dimCol 0.T =uv   
In any case, rank dimCol 1T T= ≤uv uv  

 32. Note that the second row of the matrix is twice the first row. Thus if v = (1, –3, 4), which is the first row 
of the matrix,  

   [ ]1 1 3 4
1 3 4 .

2 2 6 8
T −   

= − =   −   
uv  

 33. Let [ ]1 2 3 ,A = u u u  and assume that rank A = 1. Suppose that 1 ≠u 0 . Then 1{ }u  is basis for Col A, 
since Col A is assumed to be one-dimensional. Thus there are scalars x and y with 2 1x=u u  and 

3 1y=u u , and 1 ,TA = u v  where 
1

.x
y

 
 =  
  

v  

  If 1 =u 0  but 2 ≠u 0 , then similarly 2{ }u  is basis for Col A, since Col A is assumed to be one-

dimensional. Thus there is a scalar x with 3 2x=u u , and 2 ,TA = u v  where 
0
1 .
x

 
 =  
  

v  

  If 1 2= =u u 0  but 3 ,≠u 0  then 3 ,TA = u v  where 
0
0 .
1

 
 =  
  

v  

 34. Let A be an m × n matrix with of rank r > 0, and let U be an echelon form of A. Since A can be reduced to 
U by row operations, there exist invertible elementary matrices 1, , pE E…  with 1( ) .pE E A U⋅ ⋅ ⋅ =  Thus 
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1
1( ) ,pA E E U−= ⋅ ⋅ ⋅  since the product of invertible matrices is invertible. Let 1

1( )pE E E −= ⋅ ⋅ ⋅ ; then  

A = EU. Let the columns of E be denoted by 1, , .m…c c  Since the rank of A is r, U has r nonzero rows, 
which can be denoted 1 , , .T T

r…d d  By the column-row expansion of A (Theorem 10 in Section 2.4):  

   [ ]

1

1 1 1 ,

T

T
T Tr

m r rA EU

 
 
 
 
 = = … = +…+
 
 
 
  

d

dc c c d c d
0

0

 

  which is the sum of r rank 1 matrices. 

 35. [M]  
  a. Begin by reducing A to reduced echelon form:  

   

1 0 13/ 2 0 5 0 3
0 1 11/ 2 0 1/ 2 0 2

.0 0 0 1 11/ 2 0 7
0 0 0 0 0 1 1
0 0 0 0 0 0 0

A

− 
 
 
 ∼ −
 
 
  

 

   A basis for Col A is the pivot columns of A, so matrix C contains these columns:  

   

7 9 5 3
4 6 2 5

.5 7 5 2
3 5 1 4
6 8 4 9

C

− − 
 − − − 
 = −
 − − − 
 − 

 

  A basis for Row A is the pivot rows of the reduced echelon form of A, so matrix R contains these 
rows:  

   

1 0 13/ 2 0 5 0 3
0 1 11/ 2 0 1/ 2 0 2

.
0 0 0 1 11/ 2 0 7
0 0 0 0 0 1 1

R

− 
 
 =
 −
 
  

 

  To find a basis for Nul A row reduce to reduced echelon form, note that the solution to Ax = 0 in 
terms of free variables is 1 3 5 7(13/ 2) 5 3 ,x x x x= − − +  2 3 5 7(11/ 2) (1/ 2) 2 ,x x x x= − − −  

4 5 7(11/ 2) 7 ,x x x= −  6 7 ,x x= −  with 3,x  5 ,x  and 7x  free. Thus matrix N is  

   

13/ 2 5 3
11/ 2 1/ 2 2

1 0 0
.0 11/ 2 7

0 1 0
0 0 1
0 0 1

N

− − 
 − − − 
 
 = − 
 
 

− 
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  b. The reduced echelon form of TA  is  

   

1 0 0 0 2 /11
0 1 0 0 41/11
0 0 1 0 0

,0 0 0 1 28/11
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

TA

− 
 − 
 
 ∼  
 
 
 
  

 

  so the solution to TA =x 0  in terms of free variables is 1 5(2 /11) ,x x=  2 5(41/11) ,x x=  3 0,x =  

4 5(28/11) ,x x= −  with 5x  free. Thus matrix M is  

   

2 /11
41/11

.0
28/11

1

M

 
 
 
 =
 − 
  

 

   The matrix TS R N =    is 7 × 7 because the columns of TR  and N are in 7 and dimRow A + 

dimNul A = 7. The matrix [ ]T C M=  is 5 × 5 because the columns of C and M are in 5 and 

dimCol dimNul 5.TA A+ =  Both S and T are invertible because their columns are linearly 
independent. This fact will be proven in general in Theorem 3 of Section 6.1. 

 36. [M] Answers will vary, but in most cases C will be 6 × 4, and will be constructed from the first  
4 columns of A. In most cases R will be 4 × 7, N will be 7 × 3, and M will be 6 × 2. 

 37. [M] The C and R from Exercise 35 work here, and A = CR. 

 38. [M] If A is nonzero, then A = CR. Note that [ ]1 2 nCR C C C= …r r r , where 1r , …, nr  are the 
columns of R. The columns of R are either pivot columns of R or are not pivot columns of R. 

  Consider first the pivot columns of R. The thi  pivot column of R is ie , the thi  column in the identity 
matrix, so iCe  is the thi  pivot column of A. Since A and R have pivot columns in the same locations, 
when C multiplies a pivot column of R, the result is the corresponding pivot column of A in its proper 
location. 

  Suppose jr  is a nonpivot column of R. Then jr  contains the weights needed to construct the thj  column 
of A from the pivot columns of A, as is discussed in Example 9 of Section 4.3 and in the paragraph 
preceding that example. Thus jr  contains the weights needed to construct the thj  column of A from the 
columns of C, and .j jC =r a  

 



228 CHAPTER 4 • Vector Spaces 

4.7 SOLUTIONS 

Notes: This section depends heavily on the coordinate systems introduced in Section 4.4. The row reduction 

algorithm that produces 
c B
P
←

 can also be deduced from Exercise 12 in Section 2.2, by row reducing .C BP P    

to 1
C BI P P− 

  . The change-of-coordinates matrix here is interpreted in Section 5.4 as the matrix of the 

identity transformation relative to two bases. 

 1. a. Since 1 1 26 2= −b c c  and 2 1 29 4 ,= −b c c  1
6

[ ] ,
2C

 
=  − 

b  2
9

[ ] ,
4C

 
=  − 

b  and 
6 9

.
2 4BC

P
←

 
=  − − 

 

b. Since 1 23 2 ,= − +x b b  
3

[ ]
2B

− 
=  
 

x  and  

  
6 9 3 0

[ ] [ ]
2 4 2 2C BBC

P x
←

−     
= = =     − − −     

x  

 2. a. Since 1 1 24= − +b c c  and 2 1 25 3 ,= −b c c  1
1

[ ] ,
4C

− 
=  
 

b  2
5

[ ] ,
3C

 
=  − 

b  and 
1 5

.
4 3BC

P
←

− 
=  − 

 

b. Since 1 25 3 ,= +x b b  
5

[ ]
3B
 

=  
 

x  and  

   
1 5 5 10

[ ] [ ]
4 3 3 11C BBC

P
←

−     
= = =     −     

x x  

 3. Equation (ii) is satisfied by P for all x in V. 

 4. Equation (i) is satisfied by P for all x in V. 

 5. a. Since 1 1 24 ,= −a b b  2 1 2 3,= − + +a b b b  and 3 2 32 ,= −a b b  1

4
[ ] 1 ,

0
B

 
 = − 
  

a  2

1
[ ] 1 ,

1
B

− 
 =  
  

a  

3

0
[ ] 1 ,

2
B

 
 =  
 − 

a  and 
4 1 0
1 1 1 .
0 1 2

B A
P
←

− 
 = − 
 − 

 

b. Since 1 2 33 4 ,= + +x a a a  
3

[ ] 4
1

A

 
 =  
  

x  and  

   
4 1 0 3 8

[ ] 1 1 1 4 2
0 1 2 1 2

B B A
P
←

−     
     = = − =     
     −     

x  
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 6. a. Since 1 1 2 32 ,= − +f d d d  2 2 33 ,= +f d d and 3 1 33 2= − +f d d , 1

2
[ ] 1 ,

1
D

 
 = − 
  

f  2

0
[ ] 3 ,

1
D

 
 =  
  

f  3

3
[ ] 0 ,

2
D

− 
 =  
  

f  

and 
2 0 3
1 3 0 .
1 1 2

D F
P
←

− 
 = − 
  

 

b. Since 1 2 32 2 ,= − +x f f f  
1

[ ] 2
2

F

 
 = − 
  

x  and  

   
2 0 3 1 4

[ ] [ ] 1 3 0 2 7
1 1 2 2 3

D FD F
P
←

− −     
     = = − − = −     
          

x x  

 7. To find ,
C B

P
←

 row reduce the matrix [ ]1 2 1 2c c b b :  

   [ ]1 2 1 2
1 0 3 1

.
0 1 5 2

− 
∼  − 

c c b b  

  Thus 
3 1

,
5 2C B

P
←

− 
=  − 

 and 1 2 1
.

5 3B C C B
P P −
← ←

− 
= =  − 

 

 8. To find 
C B

P
←

, row reduce the matrix [ ]1 2 1 2c c b b :  

   [ ]1 2 1 2
1 0 3 2

.
0 1 4 3

− 
∼  − 

c c b b  

  Thus 
3 2

,
4 3C B

P
←

− 
=  − 

 and 1 3 2
.

4 3B C C B
P P −
← ←

 
= =  

 
 

 9. To find 
C B

P
←

, row reduce the matrix [ ]1 2 1 2c c b b :  

   [ ]1 2 1 2
1 0 9 2

.
0 1 4 1

− 
∼  − 

c c b b  

  Thus 
9 2

,
4 1C B

P
←

− 
=  − 

 and 1 1 2
.

4 9B C C B
P P −
← ←

 
= =  

 
 

 10. To find 
C B

P
←

, row reduce the matrix [ ]1 2 1 2c c b b :  

   [ ]1 2 1 2
1 0 8 3

.
0 1 5 2
 

∼  − − 
c c b b  

  Thus 
8 3

,
5 2C B

P
←

 
=  − − 

 and 1 2 3
.

5 8B C C B
P P −
← ←

 
= =  − − 

 

 11. a. False. See Theorem 15.  
b. True. See the first paragraph in the subsection “Change of Basis in n.”  
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 12. a. True. The columns of 
C B

P
←

 are coordinate vectors of the linearly independent set B. See the second 

paragraph after Theorem 15.  
b. False. The row reduction is discussed after Example 2. The matrix P obtained there satisfies 

[ ] [ ]C BP=x x   

 13. Let 2 2 2
1 2 3{ , , } {1 2 , 3 5 4 , 2 3 }B t t t t t t= = − + − + +b b b  and let 2

1 2 3{ , , } {1, , }.C t t= =c c c  The  
C-coordinate vectors of 1,b  2 ,b  and 3b  are  

   1 2 3

1 3 0
[ ] 2 , [ ] 5 , [ ] 2

1 4 3
C C C

     
     = − = − =     
          

b b b  

  So  

   
1 3 0
2 5 2
1 4 3

C B
P
←

 
 = − − 
  

 

  Let x = –1 + 2t. Then the coordinate vector [ ]Bx  satisfies  

   
1

[ ] [ ] 2
0

B CC B
P
←

− 
 = =  
  

x x  

  This system may be solved by row reducing its augmented matrix:  

   
1 3 0 1 1 0 0 5 5
2 5 2 2 0 1 0 2 , so [ ] 2
1 4 3 0 0 0 0 1 1

B

−     
     − − ∼ − = −     
          

x  

 14. Let 2 2
1 2 3{ , , } {1 3 , 2 5 ,1 2 }B t t t t= = − + − +b b b  and let 2

1 2 3{ , , } {1, , }.C t t= =c c c  The C-coordinate 
vectors of 1b , 2b , and 3b  are  

   1 2 3

1 2 1
[ ] 0 , [ ] 1 , [ ] 2

3 5 0
C C C

     
     = = =     
     − −     

b b b  

  So  

   
1 2 1
0 1 2
3 5 0

C B
P
←

 
 =  
 − − 

 

  Let 2.t=x  Then the coordinate vector [ ]Bx  satisfies  

   
0

[ ] [ ] 0
1

B CC B
P
←

 
 = =  
  

x x  
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  This system may be solved by row reducing its augmented matrix:  

   
1 2 1 0 1 0 0 3 3
0 1 2 0 0 1 0 2 , so [ ] 2
3 5 0 1 0 0 0 1 1

B

     
     ∼ − = −     
     − −     

x  

  and 2 2 23(1 3 ) 2(2 5 ) (1 2 ).t t t t t= − − + − + +  

 15. (a) B is a basis for V  
(b)  the coordinate mapping is a linear transformation  
(c)  of the product of a matrix and a vector  
(d)  the coordinate vector of v relative to B  

 16. (a) 1 1[ ] [ ]C BQ Q Q 1

1 
 0 = = =
 
 0  

b b e   

(b)  [ ]k Cb   

(c)  [ ] [ ]k C k B kQ Q= =b b e   

 17. [M]  
  a. Since we found P in Exercise 34 of Section 4.5, we can calculate that  

   1

32 0 16 0 12 0 10
0 32 0 24 0 20 0
0 0 16 0 16 0 15

1 .0 0 0 8 0 10 0
32

0 0 0 0 4 0 6
0 0 0 0 0 2 0
0 0 0 0 0 0 1

P−

 
 
 
 
 =  
 
 
 
  

 

b. Since P is the change-of-coordinates matrix from C to B, 1P−  will be the change-of-coordinates 
matrix from B to C. By Theorem 15, the columns of 1P−  will be the C-coordinate vectors of the 
basis vectors in B. Thus  

   2 1cos (1 cos 2 )
2

t t= +  

   3 1cos (3cos cos 3 )
4

t t t= +  

   4 1cos (3 4cos 2 cos 4 )
8

t t t= + +  

   5 1cos (10cos 5cos 3 cos 5 )
16

t t t t= + +  

   6 1cos (10 15cos 2 6cos 4 cos 6 )
32

t t t t= + + +  
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 18. [M] The C-coordinate vector of the integrand is (0, 0, 0, 5, –6, 5, –12). Using 1P−  from the previous 
exercise, the B- coordinate vector of the integrand will be  

   1(0, 0, 0, 5, 6, 5, 12) ( 6, 55 /8, 69 /8, 45/16, 3, 5 /16, 3/8)P− − − = − − − −  

  Thus the integral may be rewritten as  

   55 69 45 5 36 cos cos 2 cos 3 3cos 4 cos 5 cos 6 ,
8 8 16 16 8

t t t t t t dt− + − + − + −∫  

  which equals  

   55 69 15 3 1 16 sin sin 2 sin 3 sin 4 sin 5 sin 6 .
8 16 16 4 16 16

t t t t t t t C− + − + − + − +  

 19. [M]  
a. If C is the basis 1 2 3{ , , },v v v  then the columns of P are 1[ ] ,Cu  2[ ] ,Cu  and 3[ ] .Cu  So 

[ ]1 2 3 1[ ] ,j C=u v v v u  and [ ] [ ]1 2 3 1 2 3 .P=u u u v v v  In the current exercise,  

   [ ]1 2 3

2 8 7 1 2 1 6 6 5
2 5 2 3 5 0 5 9 0 .
3 2 6 4 6 1 21 32 3

− − − − − − −     
     = − − = − −     
          

u u u  

b. Analogously to part a., [ ] [ ]1 2 3 1 2 3 ,P=v v v w w w  so [ ]1 2 3 =w w w  

[ ] 1
1 2 3 .P−v v v  In the current exercise,  

   [ ]
1

1 2 3

2 8 7 1 2 1
2 5 2 3 5 0
3 2 6 4 6 1

−− − − −   
   = − −   
      

w w w  

   
2 8 7 5 8 5 28 38 21
2 5 2 3 5 3 9 13 7 .
3 2 6 2 2 1 3 2 3

− − −     
     = − − − = − − −     
     − − − −     

 

 20. a. 
D B D C C B
P P P
← ← ←

=  

  Let x be any vector in the two-dimensional vector space. Since 
C B

P
←

 is the change-of-coordinates 

matrix from B to C and 
D C

P
←

 is the change-of-coordinates matrix from C to D,  

   [ ] [ ] and [ ] [ ] [ ]C B D C BC B D C D C C B
P P P P
← ← ← ←

= = =x x x x x  

  But since 
D B
P
←

 is the change-of-coordinates matrix from B to D,  

   [ ] [ ]D BD B
P
←

=x x  

  Thus  
   [ ] [ ]B BD B D C C B

P P P
← ← ←

=x x  

  for any vector [ ]Bx  in 2, and  

   
D B D C C B
P P P
← ← ←

=  
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b. [M] For example, let 
7 3

, ,
5 1

B
 −    =     −     

 
1 2

, ,
5 2

C
 −    =     −     

 and 
1 1

, .
8 5

D
 −    =     −     

 Then we 

can calculate the change-of-coordinates matrices:  

   
1 2 7 3 1 0 3 1 3 1
5 2 5 1 0 1 5 2 5 2C B

P
←

− − − −     
∼ ⇒ =     − − − −     

 

   
1 1 1 2 1 0 0 8/ 3 0 8/ 3
8 5 5 2 0 1 1 14 / 3 1 14 / 3D C

P
←

− − − −     
∼ ⇒ =     − − − −     

 

   
1 1 7 3 1 0 40 / 3 16 / 3 40 / 3 16 / 3
8 5 5 1 0 1 61/ 3 25/ 3 61/ 3 25/ 3D B

P
←

− − − −     
∼ ⇒ =     − − − −     

 

  One confirms easily that  

   
40 / 3 16 / 3 0 8/ 3 3 1
61/ 3 25/ 3 1 14 / 3 5 2D B D C C B

P P P
← ← ←

− − −     
= = =     − − −     

 

4.8 SOLUTIONS 

Notes: This is an important section for engineering students and worth extra class time. To spend only one 
lecture on this section, you could cover through Example 5, but assign the somewhat lengthy Example 3 for 
reading. Finding a spanning set for the solution space of a difference equation uses the Basis Theorem 
(Section 4.5) and Theorem 17 in this section, and demonstrates the power of the theory of Chapter 4 in 
helping to solve applied problems. This section anticipates Section 5.7 on differential equations. The 
reduction of an thn  order difference equation to a linear system of first order difference equations was 
introduced in Section 1.10, and is revisited in Sections 4.9 and 5.6. Example 3 is the background for Exercise 
26 in Section 6.5. 

 1. Let 2 .k
ky =  Then  

   2 1
2 12 8 2 2(2 ) 8(2 )k k k

k k ky y y + +
+ ++ − = + −  

   2 22 (2 2 8)k= + −  

   2 (0) 0 for allk k= =  

  Since the difference equation holds for all k, 2k  is a solution. 

  Let ( 4)k
ky = − . Then  

   2 1
2 12 8 ( 4) 2( 4) 8( 4)k k k

k k ky y y + +
+ ++ − = − + − − −  

   2( 4) (( 4) 2( 4) 8)k= − − + − −  

   ( 4) (0) 0 for allk k= − =  

  Since the difference equation holds for all k, ( 4)k−  is a solution. 

 2. Let 3 .k
ky =  Then  

   2
2 9 3 9(3 )k k

k ky y +
+ − = −  

   23 (3 9)k= −  

   3 (0) 0 for allk k= =  
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  Since the difference equation holds for all k, 3k  is a solution. 

  Let ( 3) .k
ky = −  Then  

   2
2 9 ( 3) 9( 3)k k

k ky y +
+ − = − − −  

   2( 3) (( 3) 9)k= − − −  

   ( 3) (0) 0 for allk k= − =  

  Since the difference equation holds for all k, ( 3)k−  is a solution. 

 3. The signals 2k  and ( 4)k−  are linearly independent because neither is a multiple of the other; that is, 
there is no scalar c such that 2 ( 4)k kc= −  for all k. By Theorem 17, the solution set H of the difference 
equation 2 12 8 0k k ky y y+ ++ − =  is two-dimensional. By the Basis Theorem, the two linearly independent 
signals 2k  and ( 4)k−  form a basis for H. 

 4. The signals 3k  and ( 3)k−  are linearly independent because neither is a multiple of the other; that is, there 
is no scalar c such that 3 ( 3)k kc= −  for all k. By Theorem 17, the solution set H of the difference 
equation 2 9 0k ky y+ − =  is two-dimensional. By the Basis Theorem, the two linearly independent signals 
3k  and ( 3)k−  form a basis for H. 

 5. Let ( 3) .k
ky = −  Then  

   2 1
2 16 9 ( 3) 6( 3) 9( 3)k k k

k k ky y y + +
+ ++ + = − + − + −  

   2( 3) (( 3) 6( 3) 9)k= − − + − +  

   ( 3) (0) 0 for allk k= − =  

  Since the difference equation holds for all k, ( 3)k−  is in the solution set H. 

  Let ( 3) .k
ky k= −  Then  

   2 1
2 16 9 ( 2)( 3) 6( 1)( 3) 9 ( 3)k k k

k k ky y y k k k+ +
+ ++ + = + − + + − + −  

   2( 3) (( 2)( 3) 6( 1)( 3) 9 )k k k k= − + − + + − +  

   ( 3) (9 18 18 18 9 )k k k k= − + − − +  

   ( 3) (0) 0 for allk k= − =  

  Since the difference equation holds for all k, ( 3)kk −  is in the solution set H. 

  The signals ( 3)k−  and ( 3)kk −  are linearly independent because neither is a multiple of the other;  
that is, there is no scalar c such that ( 3) ( 3)k kck− = −  for all k and there is no scalar c such that 

( 3) ( 3)k kc k− = −  for all k . By Theorem 17, dim H = 2, so the two linearly independent signals 3k  
and ( 3)k−  form a basis for H by the Basis Theorem. 
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 6. Let 25 cos .k k
ky π=  Then  

   2
2

( 2)25 5 cos 25 5 cos
2 2

k k
k k

k ky y π π+
+

+  + = +  
 

 

   2 ( 2)5 5 cos 25 cos
2 2

k k kπ π+ = + 
 

 

   25 5 cos cos
2 2

k k kπ ππ  = ⋅ + +  
  

 

   25 5 (0) 0 for allk k= ⋅ =  

  since cos(t + π) = –cos t for all t. Since the difference equation holds for all k, 25 cosk kπ  is in the solution 
set H. 

  Let 25 sin .k k
ky π=  Then  

   2
2

( 2)25 5 sin 25 5 sin
2 2

k k
k k

k ky y π π+
+

+  + = +  
 

 

   2 ( 2)5 5 sin 25 sin
2 2

k k kπ π+ = + 
 

 

   25 5 sin sin
2 2

k k kπ ππ  = ⋅ + +  
  

 

   25 5 (0) 0 for allk k= ⋅ =  

  since sin(t + π) = –sin t for all t. Since the difference equation holds for all k, 25 sink kπ  is in the solution 
set H. 

  The signals 25 cosk kπ  and 25 sink kπ  are linearly independent because neither is a multiple of the other. By 

Theorem 17, dim H = 2, so the two linearly independent signals 25 cosk kπ  and 25 sink kπ  form a basis for 
H by the Basis Theorem. 

 7. Compute and row reduce the Casorati matrix for the signals 1 ,k  2 ,k  and ( 2)k− , setting k = 0 for 
convenience: 

   

0 0 0

1 1 1

2 2 2

1 2 ( 2) 1 0 0
1 2 ( 2) 0 1 0

0 0 11 2 ( 2)

 −     − ∼      −    

 

  This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the set 
of signals {1 ,2 ,( 2) }k k k−  is linearly independent in . The exercise states that these signals are in the 
solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so the three linearly 
independent signals 1 ,k  2 ,k  ( 2)k−  form a basis for H by the Basis Theorem. 
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 8. Compute and row reduce the Casorati matrix for the signals 2 ,k  4 ,k  and ( 5) ,k−  setting k = 0 for 
convenience:  

   

0 0 0

1 1 1

2 2 2

2 4 ( 5) 1 0 0
2 4 ( 5) 0 1 0

0 0 12 4 ( 5)

 −     − ∼      −    

 

  This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the set 
of signals {2 ,4 ,( 5) }k k k−  is linearly independent in . The exercise states that these signals are in the 
solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so the three linearly 
independent signals 2 ,k  4 ,k  ( 5)k−  form a basis for H by the Basis Theorem. 

 9. Compute and row reduce the Casorati matrix for the signals 1 ,k  π
23 cos ,k k  and π

23 sin ,k k  setting k = 0 for 
convenience:  

   

0 0 0

1 1 1
2 2

2 2 2

1 3 cos 0 3 sin 0 1 0 0
1 3 cos 3 sin 0 1 0

0 0 11 3 cos 3 sin

π π

π π

      ∼         

 

  This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the set 
of signals 2 2{1 ,3 cos ,3 sin }k k kk kπ π  is linearly independent in . The exercise states that these signals are in 
the solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so the three linearly 
independent signals 1 ,k  23 cos ,k kπ  and 23 sin ,k kπ  form a basis for H by the Basis Theorem. 

 10. Compute and row reduce the Casorati matrix for the signals ( 1) ,k−  ( 1) ,kk −  and 5 ,k  setting k = 0 for 
convenience:  

   

0 0 0

1 1 1

2 2 2

( 1) 0( 1) 5 1 0 0
( 1) 1( 1) 5 0 1 0

0 0 1( 1) 2( 1) 5

 − −     − − ∼      − −    

 

  This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the set 
of signals {( 1) , ( 1) , 5 }k k kk− −  is linearly independent in . The exercise states that these signals are in the 
solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so the three linearly 
independent signals ( 1) ,k−  ( 1) ,kk −  and 5k  form a basis for H by the Basis Theorem. 

 11. The solution set H of this third-order difference equation has dim H = 3 by Theorem 17. The two signals 
( 1)k−  and 3k  cannot possibly span a three-dimensional space, and so cannot be a basis for H. 

 12. The solution set H of this fourth-order difference equation has dim H = 4 by Theorem 17. The two 
signals 1k  and ( 1)k−  cannot possibly span a four-dimensional space, and so cannot be a basis for H. 

 13. The auxiliary equation for this difference equation is 2 2 / 9 0.r r− + =  By the quadratic formula 
(or factoring), r = 2/3 or r = 1/3, so two solutions of the difference equation are (2 / 3)k  and (1/ 3)k . 
The signals (2 / 3)k  and (1/ 3)k  are linearly independent because neither is a multiple of the other. 
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By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals (2 / 3)k  
and (1/ 3)k  form a basis for the solution space by the Basis Theorem. 

 14. The auxiliary equation for this difference equation is 2 7 12 0.r r− + =  By the quadratic formula (or 
factoring), r = 3 or r = 4, so two solutions of the difference equation are 3k  and 4 .k  The signals 3k  and 
4k  are linearly independent because neither is a multiple of the other. By Theorem 17, the solution space 
is two-dimensional, so the two linearly independent signals 3k  and 4k  form a basis for the solution 
space by the Basis Theorem. 

 15. The auxiliary equation for this difference equation is 2 25 0.r − =  By the quadratic formula (or factoring), 
r = 5 or r = –5, so two solutions of the difference equation are 5k  and ( 5) .k−  The signals 5k  and ( 5)k−  
are linearly independent because neither is a multiple of the other. By Theorem 17, the solution space is 
two-dimensional, so the two linearly independent signals 5k  and ( 5)k−  form a basis for the solution 
space by the Basis Theorem. 

 16. The auxiliary equation for this difference equation is 216 8 3 0.r r+ − =  By the quadratic formula (or 
factoring), r = 1/4 or r = –3/4, so two solutions of the difference equation are (1/ 4)k  and ( 3/ 4) .k−  The 
signals (1/ 4)k  and ( 3/ 4)k−  are linearly independent because neither is a multiple of the other. By 
Theorem 17, the solution space is two-dimensional, so the two linearly independent signals (1/ 4)k  and 
( 3/ 4)k−  form a basis for the solution space by the Basis Theorem. 

 17. Letting a = .9 and b = 4/9 gives the difference equation 2 11.3 .4 1.k k kY Y Y+ +− + =  First we find a particular 
solution kY T=  of this equation, where T is a constant. The solution of the equation T – 1.3T + .4T  = 1 is 
T = 10, so 10 is a particular solution to 2 11.3 .4 1k k kY Y Y+ +− + = . Next we solve the homogeneous 
difference equation 2 11.3 .4 0.k k kY Y Y+ +− + =  The auxiliary equation for this difference equation is 

2 1.3 .4 0.r r− + =  By the quadratic formula (or factoring), r = .8 or r = .5, so two solutions of the 
homogeneous difference equation are .8k  and .5 .k  The signals (.8)k  and (.5)k  are linearly independent 
because neither is a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the 
two linearly independent signals (.8)k  and (.5)k  form a basis for the solution space of the homogeneous 
difference equation by the Basis Theorem. Translating the solution space of the homogeneous difference 
equation by the particular solution 10 of the nonhomogeneous difference equation gives us the general 
solution of 2 11.3 .4 1k k kY Y Y+ +− + = : 1 2(.8) (.5) 10.k k

kY c c= + +  As k increases the first two terms in the 
solution approach 0, so kY  approaches 10. 

 18. Letting a = .9 and b = .5 gives the difference equation 2 11.35 .45 1.k k kY Y Y+ +− + =  First we find a 
particular solution kY T=  of this equation, where T is a constant. The solution of the equation  
T – 1.35T + .45T = 1 is T = 10, so 10 is a particular solution to 2 11.3 .4 1k k kY Y Y+ +− + = . Next we solve the 
homogeneous difference equation 2 11.35 .45 0.k k kY Y Y+ +− + =  The auxiliary equation for this difference 
equation is 2 1.35 .45 0.r r− + =  By the quadratic formula (or factoring), r = .6 or r = .75, so two 
solutions of the homogeneous difference equation are .6k  and .75 .k  The signals (.6)k  and (.75)k  are 
linearly independent because neither is a multiple of the other. By Theorem 17, the solution space is two-
dimensional, so the two linearly independent signals (.6)k  and (.75)k  form a basis for the solution space 
of the homogeneous difference equation by the Basis Theorem. Translating the solution space of the 
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homogeneous difference equation by the particular solution 10 of the nonhomogeneous difference 
equation gives us the general solution of 2 11.35 .45 1k k kY Y Y+ +− + = : 1 2(.6) (.75) 10.k k

kY c c= + +   

 19. The auxiliary equation for this difference equation is 2 4 1 0.r r+ + =  By the quadratic formula, 
2 3r = − +  or 2 3,r = − −  so two solutions of the difference equation are ( 2 3)k− +  and ( 2 3) .k− −  

The signals ( 2 3)k− +  and ( 2 3)k− −  are linearly independent because neither is a multiple of the 
other. By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals 
( 2 3)k− +  and ( 2 3)k− −  form a basis for the solution space by the Basis Theorem. Thus a general 
solution to this difference equation is 1 2( 2 3) ( 2 3) .k k

ky c c= − + + − −  

 20. Let 2 3a = − +  and 2 3b = − − . Using the solution from the previous exercise, we find that 

1 1 2 5000y c a c b= + =  and 1 2 0.N N
Ny c a c b= + =  This is a system of linear equations with variables 

1c  and 2c  whose augmented matrix may be row reduced:  

   

50001 05000

0 50000 1

N

N N

N N N

N N

b
a b b a a b

a b a
b a a b

 
   − ∼    
 

− 

 

  so  

   1 2
5000 5000,

N N

N N N N
b ac c

b a a b b a a b
= =

− −
 

  (Alternatively, Cramer’s Rule may be applied to get the same solution). Thus  

   1 2
k k

ky c a c b= +  

   5000( )k N N k

N N
a b a b

b a a b
−=

−
 

 21. The smoothed signal kz  has the following values: 1 (9 5 7) / 3 7,z = + + =  2 (5 7 3) / 3 5,z = + + =  

3 (7 3 2) / 3 4,z = + + =  4 (3 2 4) / 3 3,z = + + =  5 (2 4 6) / 3 4,z = + + =  6 (4 6 5) / 3 5,z = + + =  

7 (6 5 7) / 3 6,z = + + =  8 (5 7 6) / 3 6,z = + + =  9 (7 6 8) / 3 7,z = + + =  10 (6 8 10) / 3 8,z = + + =  

11 (8 10 9) / 3 9,z = + + =  12 (10 9 5) / 3 8,z = + + =  13 (9 5 7) / 3 7.z = + + =  

2 4 6 8 10 12 14

2

4

6

8

10
original data

smoothed data

 

 22. a. The smoothed signal kz  has the following values:  

   0 2 1 0.35 .5 .35 .35(0) .5(.7) .35(3) 1.4,z y y y= + + = + + =  

   1 3 2 1.35 .5 .35 .35( .7) .5(0) .35(.7) 0,z y y y= + + = − + + =  

   2 4 3 2.35 .5 .35 .35( .3) .5( .7) .35(0) 1.4,z y y y= + + = − + − + = −  

   3 5 4 3.35 .5 .35 .35( .7) .5( .3) .35( .7) 2,z y y y= + + = − + − + − = −  
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   4 6 5 4.35 .5 .35 .35(0) .5( .7) .35( .3) 1.4,z y y y= + + = + − + − = −  

   5 7 6 5.35 .5 .35 .35(.7) .5(0) .35( .7) 0,z y y y= + + = + + − =  

   6 8 7 6.35 .5 .35 .35(3) .5(.7) .35(0) 1.4,z y y y= + + = + + =  

   7 9 8 7.35 .5 .35 .35(.7) .5(3) .35(.7) 2,z y y y= + + = + + =  

   8 10 9 8.35 .5 .35 .35(0) .5(.7) .35(3) 1.4,z y y y= + + = + + = …  

b. This signal is two times the signal output by the filter when the input (in Example 3) was 
y = cos(πt/4). This is expected because the filter is linear. The output from the input 2cos(πt/4) + 
cos(3πt/4) should be two times the output from cos(πt/4) plus the output from cos(3πt/4) (which is 
zero).  

 23. a. 1 1.01 450,k ky y+ − = −  0 10,000.y =   

b. [M] MATLAB code to create the table:  
  pay = 450, y = 10000, m = 0, table = [0;y] 
  while y>450 

   y = 1.01*y-pay 
   m = m+1 
   table = [table [m;y]] 
  end 

  m,y 
  Mathematica code to create the table:  
  pay  =  450; y  =  10000; m  =  0; balancetable  =  {{0, y}}; 
  While[y > 450, {y  =  1.01*y - pay; m  =  m + 1, 
   AppendTo[balancetable, {m, y}]}]; 

  m 

  y 
c. [M] At month 26, the last payment is $114.88. The total paid by the borrower is $11,364.88.  

 24.  a. 1 1.005 200,k ky y+ − =  0 1,000.y =   

b. [M] MATLAB code to create the table:  
  pay = 200, y = 1000, m = 0, table = [0;y] 
  for m = 1: 60 
   y = 1.005*y+pay 
   table = [table [m;y]] 
  end 

  interest = y-60*pay-1000 
  Mathematica code to create the table:  
  pay  =  200; y  =  1000; amounttable  =  {{0, y}}; 
  Do[{y  =  1.005*y + pay; 
   AppendTo[amounttable, {m, y}]},{m,1,60}]; 

  interest = y-60*pay-1000 
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c. [M] The total is $6213.55 at k = 24, $12,090.06 at k = 48, and $15,302.86 at k = 60. When k = 60, the 
interest earned is $2302.86.  

 25. To show that 2
ky k=  is a solution of 2 13 4 10 7,k k ky y k+ ++ − = +  substitute 2 ,ky k=  2

1 ( 1) ,ky k+ = +  and 
2

2 ( 2) :ky k+ = +  
   2 2 2

2 13 4 ( 2) 3( 1) 4k k ky y k k k+ ++ − = + + + −  

   2 2 2( 4 4) 3( 2 1) 4k k k k k= + + + + + −  

   2 2 24 4 3 6 3 4k k k k k= + + + + + −  
   10 7 for allk k= +  

  The auxiliary equation for the homogeneous difference equation 2 13 4 0k k ky y y+ ++ − =  is 2 3 4 0.r r+ − =  
By the quadratic formula (or factoring), r = –4 or r = 1, so two solutions of the difference equation are 
( 4)k−  and 1 .k  The signals ( 4)k−  and 1k  are linearly independent because neither is a multiple of the other. 
By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals ( 4)k−  and 
1k  form a basis for the solution space of the homogeneous difference equation by the Basis Theorem. The 
general solution to the homogeneous difference equation is thus 1 2 1 2( 4) 1 ( 4) .k k kc c c c− + ⋅ = − +  Adding the 
particular solution 2k  of the nonhomogeneous difference equation, we find that the general solution of the 
difference equation 2 13 4 10 7k k ky y y k+ ++ − = +  is 2

1 2( 4) .k
ky k c c= + − +  

 26. To show that 1ky k= +  is a solution of 2 18 15 8 2,k k ky y y k+ +− + = +  substitute 1ky k= + , 

1 1 ( 1) 2 ,ky k k+ = + + = +  and 2 1 ( 2) 3ky k k+ = + + = + :  
   2 18 15 (3 ) 8(2 ) 15(1 )k k ky y y k k k+ +− + = + − + + +  
   3 16 8 15 15k k k= + − − + +  
   8 2 for allk k= +  

  The auxiliary equation for the homogeneous difference equation 2 18 15 0k k ky y y+ +− + =  is 
2 8 15 0.r r− + =  By the quadratic formula (or factoring), r = 5 or r = 3, so two solutions of the difference 

equation are 5k  and 3 .k  The signals 5k  and 3k  are linearly independent because neither is a multiple of 
the other. By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals 
5k  and 3k  form a basis for the solution space of the homogeneous difference equation by the Basis 
Theorem. The general solution to the homogeneous difference equation is thus 1 25 3 .k kc c⋅ + ⋅  Adding 
the particular solution 1+ k of the nonhomogeneous difference equation, we find that the general solution 
of the difference equation 2 18 15 8 2k k ky y y k+ +− + = +  is 1 21 5 3 .k k

ky k c c= + + ⋅ + ⋅  

 27. To show that 2 2ky k= −  is a solution of 2 1(9 / 2) 2 3 2k k ky y y k+ +− + = + , substitute 2 2 ,ky k= −  

1 2 2( 1) 2 ,ky k k+ = − + = −  and 2 2 2( 2) 2 2ky k k+ = − + = − − :  

   2 1(9 / 2) 2 ( 2 2 ) (9 / 2)( 2 ) 2(2 2 )k k ky y y k k k+ +− + = − − − − + −  
   2 2 9 4 4k k k= − − + + −  
   3 2 for allk k= +  

  The auxiliary equation for the homogeneous difference equation 2 1(9 / 2) 2 0k k ky y y+ +− + =  is 
2 (9 / 2) 2 0.r r− + =  By the quadratic formula (or factoring), r = 4 or r = 1/2, so two solutions of the 

difference equation are 4k  and (1/ 2) .k  The signals 4k  and (1/ 2)k  are linearly independent because 
neither is a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the two 
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linearly independent signals 4k  and (1/ 2)k  form a basis for the solution space of the homogeneous 
difference equation by the Basis Theorem. The general solution to the homogeneous difference 
equation is thus 1 2 1 24 (1/ 2) 4 2 .k k k kc c c c −⋅ + ⋅ = ⋅ + ⋅  Adding the particular solution 2 – 2k of the 
nonhomogeneous difference equation, we find that the general solution of the difference equation 

2 1(9 / 2) 2 3 2k k ky y y k+ +− + = +  is 1 22 2 4 2 .k k
ky k c c −= − + ⋅ + ⋅  

 28. To show that 2 4ky k= −  is a solution of 2 1(3/ 2) 1 3 ,k k ky y y k+ ++ − = +  substitute 2 4ky k= − , 

1 2( 1) 4 2 2,ky k k+ = + − = −  and 2 2( 2) 4 2ky k k+ = + − = :  

   2 1(3/ 2) 2 (3/ 2)(2 2) (2 4)k k ky y y k k k+ ++ − = + − − −  
   2 3 3 2 4k k k= + − − +  
   1 3 for allk k= +  

  The auxiliary equation for the homogeneous difference equation 2 1(3/ 2) 0k k ky y y+ ++ − =  is 
2 (3/ 2) 1 0.r r+ − =  By the quadratic formula (or factoring), r = –2 or r = 1/2, so two solutions of the 

difference equation are ( 2)k−  and (1/ 2) .k  The signals ( 2)k−  and (1/ 2)k  are linearly independent 
because neither is a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the 
two linearly independent signals ( 2)k−  and (1/ 2)k  form a basis for the solution space of the 
homogeneous difference equation by the Basis Theorem. The general solution to the homogeneous 
difference equation is thus 1 2 1 2( 2) (1/ 2) ( 2) 2 .k k k kc c c c −⋅ − + ⋅ = ⋅ − + ⋅  Adding the particular solution  
2k – 4 of the nonhomogeneous difference equation, we find that the general solution of the difference 
equation 2 1(3/ 2) 1 3k k ky y y k+ ++ − = +  is 1 22 4 ( 2) 2 .k k

ky k c c −= − + ⋅ − + ⋅  

 29. Let 1

2

3

k

k
k

k

k

y
y
y
y

+

+

+

 
 
 =
 
 
  

x . Then 

1

2 1
1

3 2

4 3

0 1 0 0
0 0 1 0

.
0 0 0 1
9 6 8 6

k k

k k
k k

k k

k k

y y
y y

A
y y
y y

+

+ +
+

+ +

+ +

    
    
    = = =
    
    − −        

x x  

 30. Let 1

2

k

k k

k

y
y
y

+

+

 
 =  
  

x . Then 
1

1 2 1

3 2

0 1 0
0 0 1 .

1/16 0 3/ 4

k k

k k k k

k k

y y
y y A
y y

+

+ + +

+ +

     
     = = =     
     −     

x x  

 31. The difference equation is of order 2. Since the equation 3 2 15 6 0k k ky y y+ + ++ + =  holds for all k, 
it holds if k is replaced by k − 1. Performing this replacement transforms the equation into 

2 15 6 0,k k ky y y+ ++ + =  which is also true for all k. The transformed equation has order 2. 

 32. The order of the difference equation depends on the values of 1,a  2 ,a  and 3.a  If 3 0,a ≠  then the  
order is 3. If 3 0a =  and 2 0,a ≠  then the order is 2. If 3 2 0a a= =  and 1 0,a ≠  then the order is 1.  
If 3 2 1 0,a a a= = =  then the order is 0, and the equation has only the zero signal for a solution. 

 33. The Casorati matrix C(k) is  

   
2

2
1 1

2 | |
( )

( 1) 2( 1) | 1|
k k

k k

y z k k k
C k

y z k k k+ +

  
= =   

+ + +    
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  In particular,  

   
0 0 1 2 4 8

(0) , ( 1) , and ( 2)
1 2 0 0 1 2

C C C
− −     

= − = − =     −     
 

  none of which are invertible. In fact, C(k) is not invertible for all k, since  

   ( )2 2det ( ) 2 ( 1) | 1| 2( 1) | | 2 ( 1) | 1| ( 1) | |C k k k k k k k k k k k k k= + + − + = + + − +  

  If k = 0 or k = –1, det C(k) = 0. If k > 0, then k + 1 > 0 and k| k + 1 | – (k + 1)| k | = k(k + 1) – (k + 1)k = 0, 
so det C(k) = 0. If k < –1, then k + 1 < 0 and k| k + 1 | – (k + 1)| k | = –k(k + 1) + (k + 1)k = 0, so  
det C(k) = 0. Thus detC(k)=0 for all k, and C(k) is not invertible for all k. Since C(k) is not invertible  
for all k, it provides no information about whether the signals { }ky  and { }kz  are linearly dependent 
or linearly independent. In fact, neither signal is a multiple of the other, so the signals { }ky  and { }kz  
are linearly independent. 

 34. No, the signals could be linearly dependent, since the vector space V of functions considered on the 
entire real line is not the vector space  of signals. For example, consider the functions f (t) = sinπt, 
g(t) = sin 2πt, and h(t) = sin 3πt. The functions f, g, and h are linearly independent in V since they have 
different periods and thus no function could be a linear combination of the other two. However, sampling 
the functions at any integer n gives f (n) = g(n) = h(n) = 0, so the signals are linearly dependent in . 

 35. Let { }ky  and { }kz  be in , and let r be any scalar. The thk  term of { } { }k ky z+  is ,k ky z+  while the thk  
term of { }kr y  is .kry  Thus  

   ({ } { }) { }k k k kT y z T y z+ = +  

   2 2 1 1( ) ( ) ( )k k k k k ky z a y z b y z+ + + += + + + + +  

   2 1 2 1( ) ( )k k k k k ky ay by z az bz+ + + += + + + + +  

   { } { },andk kT y T z= +  

   ( { }) { }k kT r y T ry=  

   2 1( ) ( )k k kry a r y b r y+ += + +  

   2 1( )k k kr y ay by+ += + +  

   { }krT y=  

  so T has the two properties that define a linear transformation. 

 36. Let z be in V, and suppose that px  in V satisfies ( ) .pT =x z  Let u be in the kernel of T; then T(u) = 0. 
Since T is a linear transformation, ( ) ( ) ( ) ,p pT T T+ = + = + =u x u x 0 z z  so the vector p= +x u x  satisfies 
the nonhomogeneous equation T(x) = z. 

 37. We compute that  
   0 1 2 0 1 2 0 1 2 0 1 2( )( , , , ) ( ( , , , )) (0, , , , ) ( , , , )TD y y y T D y y y T y y y y y y… = … = … = …  

  while  
   0 1 2 0 1 2 1 2 3 1 2 3( )( , , , ) ( ( , , , )) ( , , , ) (0, , , , )DT y y y D T y y y D y y y y y y… = … = … = …  

  Thus TD = I (the identity transformation on 0), while DT ≠ I. 
 



4.9 • Solutions   243 

4.9 SOLUTIONS 

Notes: This section builds on the population movement example in Section 1.10. The migration matrix is 
examined again in Section 5.2, where an eigenvector decomposition shows explicitly why the sequence of 
state vectors kx  tends to a steady state vector. The discussion in Section 5.2 does not depend on prior 
knowledge of this section. 

 1. a. Let N stand for “News” and M stand for “Music.” Then the listeners’ behavior is given by the table 
   From: 
   N M To: 
   .7 .6 N 
   .3 .4 M 

  so the stochastic matrix is 
.7 .6

.
.3 .4

P
 

=  
 

 

b. Since 100% of the listeners are listening to news at 8: 15, the initial state vector is 0
1
0
 

=  
 

x . 

c. There are two breaks between 8: 15 and 9: 25, so we calculate 2x :  

   1 0
.7 .6 1 .7
.3 .4 0 .3

P
     

= = =     
     

x x  

   2 1
.7 .6 .7 .67
.3 .4 .3 .33

P
     

= = =     
     

x x  

  Thus 33% of the listeners are listening to news at 9: 25. 

 2. a. Let the foods be labelled “1,” “2,” and “3.” Then the animals’ behavior is given by the table 
    From: 
   1 2 3 To: 
   .5 .25 .25 1 
   .25 .5 .25 2 
   .25 .25 .5 3 

  so the stochastic matrix is 
.5 .25 .25

.25 .5 .25

.25 .25 .5
P

 
 =  
  

. 

b. There are two trials after the initial trial, so we calculate 2x . The initial state vector is 
1
0 .
0

 
 
 
  

  

   1 0

.5 .25 .25 1 .5
.25 .5 .25 0 .25
.25 .25 .5 0 .25

P
     
     = = =     
          

x x  

   2 1

.5 .25 .25 .5 .375
.25 .5 .25 .25 .3125
.25 .25 .5 .25 .3125

P
     
     = = =     
          

x x  

  Thus the probability that the animal will choose food #2 is .3125.  
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 3. a. Let H stand for “Healthy” and I stand for “Ill.” Then the students’ conditions are given by the table 
   From: 
   H I To: 
   .95 .45 H 
   .05 .55 I 

  so the stochastic matrix is 
.95 .45
.05 .55

P
 

=  
 

. 

b. Since 20% of the students are ill on Monday, the initial state vector is 0
.8
.2
 

=  
 

x . For Tuesday’s 

percentages, we calculate 1x ; for Wednesday’s percentages, we calculate 2x :  

   1 0
.95 .45 .8 .85
.05 .55 .2 .15

P
     

= = =     
     

x x  

   2 1
.95 .45 .85 .875
.05 .55 .15 .125

P
     

= = =     
     

x x  

  Thus 15% of the students are ill on Tuesday, and 12.5% are ill on Wednesday. 

c. Since the student is well today, the initial state vector is 0
1

.
0
 

=  
 

x  We calculate 2x :  

   1 0
.95 .45 1 .95
.05 .55 0 .05

P
     

= = =     
     

x x  

   2 1
.95 .45 .95 .925
.05 .55 .05 .075

P
     

= = =     
     

x x  

  Thus the probability that the student is well two days from now is .925. 

 4. a. Let G stand for good weather, I for indifferent weather, and B for bad weather. Then the change in the 
weather is given by the table 

    From: 
   G I B To: 
   .6 .4 .4 G 
   .3 .3 .5 I 
   .1 .3 .1 B 

  so the stochastic matrix is 
.6 .4 .4
.3 .3 .5 .
.1 .3 .1

P
 
 =  
  

 

b. The initial state vector is 
.5
.5 .
0

 
 
 
  

 We calculate 1x :  

   1 0

.6 .4 .4 .5 .5

.3 .3 .5 .5 .3

.1 .3 .1 0 .2
P

     
     = = =     
          

x x  

  Thus the chance of bad weather tomorrow is 20%. 



4.9 • Solutions   245 

c. The initial state vector is 0

0
.4 .
.6

 
 =  
  

x  We calculate 2x :  

   1 0

.6 .4 .4 0 .4

.3 .3 .5 .4 .42

.1 .3 .1 .6 .18
P

     
     = = =     
          

x x  

   2 1

.6 .4 .4 .4 .48

.3 .3 .5 .42 .336

.1 .3 .1 .18 .184
P

     
     = = =     
          

x x  

  Thus the chance of good weather on Wednesday is 48%. 

 5. We solve Px = x by rewriting the equation as (P – I )x = 0, where 
.9 .6

.
.9 .6

P I
− 

− =  − 
 Row reducing the 

augmented matrix for the homogeneous system (P – I )x = 0 gives  

   
.9 .6 0 1 2 / 3 0
.9 .6 0 0 0 0

− −   
∼   −   

 

  Thus 1
2

2

2 / 3
,

1
x

x
x
   

= =   
  

x  and one solution is 
2

.
3
 
 
 

 Since the entries in 
2
3
 
 
 

 sum to 5, multiply by 1/5 to 

obtain the steady-state vector 
2 /5 .4

.
3/ 5 .6
   

= =   
   

q  

 6. We solve Px = x by rewriting the equation as (P – I )x = 0, where 
.2 .5

.
.2 .5

P I
− 

− =  − 
 Row reducing the 

augmented matrix for the homogeneous system (P – I )x = 0 gives  

   
.2 .5 0 1 5/ 2 0
.2 .5 0 0 0 0

− −   
∼   −   

 

  Thus 1
2

2

5 / 2
,

1
x

x
x
   

= =   
  

x  and one solution is 
5

.
2
 
 
 

 Since the entries in 
5
2
 
 
 

 sum to 7, multiply by 1/7 to 

obtain the steady-state vector 
5 / 7 .714

.
2 / 7 .286
   

= ≈   
   

q  

 7. We solve Px = x by rewriting the equation as (P – I )x = 0, where 
.3 .1 .1
.2 .2 .2 .
.1 .1 .3

P I
− 
 − = − 
 − 

 Row 

reducing the augmented matrix for the homogeneous system (P – I )x = 0 gives  

   
.3 .1 .1 0 1 0 1 0
.2 .2 .2 0 0 1 2 0
.1 .1 .3 0 0 0 0 0

− −   
   − ∼ −   
   −   
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  Thus 
1

2 3

3

1
2 ,
1

x
x x
x

   
   = =   
      

x  and one solution is 
1
2 .
1

 
 
 
  

 Since the entries in 
1
2
1

 
 
 
  

 sum to 4, multiply by 1/4 to 

obtain the steady-state vector 
1/ 4 .25
1/ 2 .5 .
1/ 4 .25

   
   = =   
      

q  

 8. We solve Px = x by rewriting the equation as (P – I )x = 0, where 
.3 .2 .2
0 .8 .4 .
.3 .6 .6

P I
− 
 − = − 
 − 

 Row 

reducing the augmented matrix for the homogeneous system (P – I )x = 0 gives  

   
.3 .2 .2 0 1 0 1 0
0 .8 .4 0 0 1 1/ 2 0
.3 .6 .6 0 0 0 0 0

− −   
   − ∼ −   
   −   

 

  Thus 
1

2 3

3

1
1/ 2 ,

1

x
x x
x

   
   = =   
      

x  and one solution is 
2
1 .
2

 
 
 
  

 Since the entries in 
2
1
2

 
 
 
  

 sum to 5, multiply by 1/5 to 

obtain the steady-state vector 
2 /5 .4
1/ 5 .2 .
2 /5 .4

   
   = =   
      

q  

 9. Since 2 .84 .2
.16 .8

P
 

=  
 

 has all positive entries, P is a regular stochastic matrix. 

 10. Since 
1 1 .8

0 .8

k
k

k
P

 −
=  
  

 will have a zero as its (2,1) entry for all k, so P is not a regular  

stochastic matrix. 

 11. From Exercise 1, 
.7 .6

,
.3 .4

P
 

=  
 

 so 
.3 .6

.
.3 .6

P I
− 

− =  − 
 Solving (P – I )x = 0 by row reducing the 

augmented matrix gives  

   
.3 .6 0 1 2 0
.3 .6 0 0 0 0

− −   
∼   −   

 

  Thus 1
2

2

2
,

1
x

x
x
   

= =   
  

x  and one solution is 
2

.
1
 
 
 

 Since the entries in 
2
1
 
 
 

 sum to 3, multiply by 1/3 to 

obtain the steady-state vector 
2 /3 .667

.
1/ 3 .333
   

= ≈   
   

q  
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 12. From Exercise 2, 
.5 .25 .25

.25 .5 .25 ,

.25 .25 .5
P

 
 =  
  

 so 
.5 .25 .25

.25 .5 .25 .

.25 .25 .5
P I

− 
 − = − 
 − 

 Solving (P – I )x = 0 by row 

reducing the augmented matrix gives  

   
.5 .25 .25 0 1 0 1 0

.25 .5 .25 0 0 1 1 0

.25 .25 .5 0 0 0 0 0

− −   
   − ∼ −   
   −   

 

  Thus 
1

2 3

3

1
1 ,
1

x
x x
x

   
   = =   
      

x  and one solution is 
1
1 .
1

 
 
 
  

 Since the entries in 
1
1
1

 
 
 
  

 sum to 3, multiply by 1/3 to 

obtain the steady-state vector 
1/ 3 .333
1/ 3 .333 .
1/ 3 .333

   
   = ≈   
      

q  Thus in the long run each food will be preferred 

equally. 

 13. a. From Exercise 3, 
.95 .45

,
.05 .55

P
 

=  
 

 so 
.05 .45

.
.05 .45

P I
− 

− =  − 
 Solving (P – I )x = 0 by row reducing 

the augmented matrix gives  

   
.05 .45 0 1 9 0
.05 .45 0 0 0 0

− −   
∼   −   

 

  Thus 1
2

2

9
,

1
x

x
x
   

= =   
  

x  and one solution is 
9

.
1
 
 
 

 Since the entries in 
9
1
 
 
 

 sum to 10, multiply by 1/10 

to obtain the steady-state vector 
9 /10 .9

.
1/10 .1
   

= =   
   

q  

b. After many days, a specific student is ill with probability .1, and it does not matter whether that 
student is ill today or not.  

 14. From Exercise 4, 
.6 .4 .4
.3 .3 .5 ,
.1 .3 .1

P
 
 =  
  

 so 
.4 .4 .4
.3 .7 .5 .
.1 .3 .9

P I
− 
 − = − 
 − 

 Solving (P – I )x = 0 by row reducing 

the augmented matrix gives  

   
.4 .4 .4 0 1 0 3 0
.3 .7 .5 0 0 1 2 0
.1 .3 .9 0 0 0 0 0

− −   
   − ∼ −   
   −   

 

  Thus 
1

2 3

3

3
2 ,
1

x
x x
x

   
   = =   
      

x  and one solution is 
3
2 .
1

 
 
 
  

 Since the entries in 
3
2
1

 
 
 
  

 sum to 6, multiply by 1/6 to 

obtain the steady-state vector 
1/ 2 .5
1/ 3 .333 .
1/ 6 .167

   
   = ≈   
      

q  Thus in the long run the chance that a day has good 

weather is 50%. 
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 15. [M] Let 
.9821 .0029

,
.0179 .9971

P
 

=  
 

 so 
.0179 .0029

.
.0179 .0029

P I
− 

− =  − 
 Solving (P – I )x = 0 by row reducing the 

augmented matrix gives  

   
.0179 .0029 0 1 .162011 0
.0179 .0029 0 0 0 0

− −   
∼   −   

 

  Thus 1
2

2

.162011
,

1
x

x
x
   

= =   
  

x  and one solution is 
.162011

.
1

 
 
 

 Since the entries in 
.162011

1
 
 
 

 sum to 

1.162011, multiply by 1/1.162011 to obtain the steady-state vector 
.139423

.
.860577
 

=  
 

q  Thus about 13.9% of 

the total U.S. population would eventually live in California. 

 16. [M] Let 
.90 .01 .09
.01 .90 .01 ,
.09 .09 .90

P
 
 =  
  

 so 
.10 .01 .09
.01 .10 .01 .
.09 .09 .1

P I
− 
 − = − 
 − 

 Solving (P – I )x = 0 by row reducing the 

augmented matrix gives  

   
.10 .01 .09 0 1 0 .919192 0
.01 .10 .01 0 0 1 .191919 0
.09 .09 .1 0 0 0 0 0

− −   
   − ∼ −   
   −   

 

  Thus 
1

2 3

3

.919192

.191919 ,
1

x
x x
x

   
   = =   
      

x  and one solution is 
.919192
.191919 .

1

 
 
 
  

 Since the entries in 
.919192
.191919

1

 
 
 
  

 sum to 

2.111111, multiply by 1/2.111111 to obtain the steady-state vector 
.435407
.090909 .
.473684

 
 =  
  

q  Thus on a typical day, 

about (.090909)(2000) = 182 cars will be rented or available from the downtown location. 

 17. a. The entries in each column of P sum to 1. Each column in the matrix P – I has the same entries as in 
P except one of the entries is decreased by 1. Thus the entries in each column of P – I sum to 0, and 
adding all of the other rows of P – I to its bottom row produces a row of zeros.  

 b. By part a., the bottom row of P – I is the negative of the sum of the other rows, so the rows of P – I 
are linearly dependent.  

 c. By part b. and the Spanning Set Theorem, the bottom row of P – I can be removed and the remaining 
(n – 1) rows will still span the row space of P – I. Thus the dimension of the row space of P – I is less 
than n. Alternatively, let A be the matrix obtained from P – I by adding to the bottom row all the other 
rows. These row operations did not change the row space, so the row space of P – I is spanned by the 
nonzero rows of A. By part a., the bottom row of A is a zero row, so the row space of P – I is spanned 
by the first (n – 1) rows of A.  

 d. By part c., the rank of P – I is less than n, so the Rank Theorem may be used to show that  
dimNul(P – I ) = n – rank(P – I ) > 0. Alternatively the Invertible Martix Theorem may be used  
since P – I is a square matrix.  
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 18. If α = β = 0 then 
1 0

.
0 1

P
 

=  
 

 Notice that Px = x for any vector x in 2, and that 
1
0
 
 
 

 and 
0
1
 
 
 

 are two 

linearly independent steady-state vectors in this case.  

  If α ≠ 0 or β ≠ 0, we solve (P – I )x = 0 where .P I
α β

α β
− 

− =  − 
 Row reducing the augmented 

matrix gives  

   
0 0
0 0 0 0

α β α β
α β

− −   
∼   −   

 

  So 1 2,x xα β=  and one possible solution is to let 1 ,x β=  2x α= . Thus 1

2
.

x
x

β
α

   
= =   

  
x  Since the entries 

in 
β
α
 
 
 

 sum to α + β, multiply by 1/(α + β ) to obtain the steady-state vector 1 .
β
αα β
 

=  +  
q  

 19. a. The product Sx equals the sum of the entries in x. Thus x is a probability vector if and only if its 
entries are nonnegative and Sx = 1.  

 b. Let [ ]1 2 ,nP = …p p p  where 1p , 2p , …, np  are probability vectors. By part a.,  

   [ ] [ ]1 2 1 1 1nSP S S S S= … = … =p p p  

 c. By part b., S(Px) = (SP)x = Sx = 1. The entries in Px are nonnegative since P and x have only 
nonnegative entries. By part a., the condition S(Px) = 1 shows that Px is a probability vector.  

 20. Let [ ]1 2 ,nP = …p p p  so [ ]2
1 2 .nP PP P P P= = …p p p  By Exercise 19c., the columns of 

2P  are probability vectors, so 2P  is a stochastic matrix. 
  Alternatively, SP = S by Exercise 19b., since P is a stochastic matrix. Right multiplication by P gives 

2 ,SP SP=  so SP = S implies that 2 .SP S=  Since the entries in P are nonnegative, so are the entries in 
2 ,P  and 2P  is stochastic matrix. 

 21. [M]  
a. To four decimal places,  

2 3

.2779 .2780 .2803 .2941 .2817 .2817 .2817 .2814

.3368 .3355 .3357 .3335 .3356 .3356 .3355 .3352
, ,

.1847 .1861 .1833 .1697 .1817 .1817 .1819 .1825

.2005 .2004 .2007 .2027 .2010 .2010 .2010 .2009

P P

   
   
   = =
   
   
      

 

   4 5

.2816 .2816 .2816 .2816

.3355 .3355 .3355 .3355

.1819 .1819 .1819 .1819

.2009 .2009 .2009 .2009

P P

 
 
 = =
 
 
  

 

  The columns of kP  are converging to a common vector as k increases. The steady state vector q 

for P is 

.2816

.3355
,

.1819

.2009

 
 
 =
 
 
  

q  which is the vector to which the columns of kP  are converging.  
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b. To four decimal places,  

   10 20
.8222 .4044 .5385 .7674 .6000 .6690
.0324 .3966 .1666 , .0637 .2036 .1326 ,
.1453 .1990 .2949 .1688 .1964 .1984

Q Q
   
   = =   
      

 

   30 40
.7477 .6815 .7105 .7401 .7140 .7257
.0783 .1329 .1074 , .0843 .1057 .0960 ,
.1740 .1856 .1821 .1756 .1802 .1783

Q Q
   
   = =   
      

 

   50 60
.7372 .7269 .7315 .7360 .7320 .7338
.0867 .0951 .0913 , .0876 .0909 .0894 ,
.1761 .1780 .1772 .1763 .1771 .1767

Q Q
   
   = =   
      

 

   70 80
.7356 .7340 .7347 .7354 .7348 .7351
.0880 .0893 .0887 , .0881 .0887 .0884 ,
.1764 .1767 .1766 .1764 .1766 .1765

Q Q
   
   = =   
      

 

   116 117
.7353 .7353 .7353
.0882 .0882 .0882
.1765 .1765 .1765

Q Q
 
 = =  
  

 

  The steady state vector q for Q is 
.7353
.0882
.1765

 
 =  
  

q  Conjecture: the columns of ,kP  where P is a regular 

stochastic matrix, converge to the steady state vector for P as k increases.  

c. Let P be an n × n regular stochastic matrix, q the steady state vector of P, and je  the thj  column of 

the n × n identity matrix. Consider the Markov chain { }kx  where 1k kP+ =x x  and 0 .je=x  By 

Theorem 18, 0
k

k P=x x  converges to q as k → ∞. But 0
k k

jP P=x e , which is the thj  column of .kP  

Thus the thj  column of kP  converges to q as k → ∞; that is, [ ]kP → …q q q .  

 22. [M] Answers will vary. 
  MATLAB Student Version 4.0 code for Method (1):  

  A=randstoc(32); flops(0); 
  tic, x=nulbasis(A-eye(32)); 
  q=x/sum(x); toc, flops 

  MATLAB Student Version 4.0 code for Method (2):  

  A=randstoc(32); flops(0); 
  tic, B=A^100; q=B(: ,1); toc, flops 
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Chapter 4 SUPPLEMENTARY EXERCISES 

 1. a. True. This set is 1Span{ , . . . }pv v , and every subspace is itself a vector space.  

 b. True. Any linear combination of 1v , …, 1p−v  is also a linear combination of 1v , …, 1p−v , pv  

using the zero weight on .pv  

 c. False. Counterexample: Take 12p =v v . Then 1{ , . . . }pv v  is linearly dependent.  

 d. False. Counterexample: Let 1 2 3{ , , }e e e  be the standard basis for 3. Then 1 2{ , }e e  is a linearly 
independent set but is not a basis for 3.  

 e. True. See the Spanning Set Theorem (Section 4.3).  
 f. True. By the Basis Theorem, S is a basis for V because S spans V and has exactly p elements. So S 

must be linearly independent.  
 g. False. The plane must pass through the origin to be a subspace.  

 h. False. Counterexample: 
2 5 2 0
0 0 7 3
0 0 0 0

− 
 
 
  

.  

 i. True. This statement appears before Theorem 13 in Section 4.6.  
 j. False. Row operations on A do not change the solutions of Ax = 0.  

 k. False. Counterexample: 
1 2
3 6

A
 

=  
 

; A has two nonzero rows but the rank of A is 1.  

 l. False. If U has k nonzero rows, then rank A = k and dimNul A = n – k by the Rank Theorem.  
 m. True. Row equivalent matrices have the same number of pivot columns.  
 n. False. The nonzero rows of A span Row A but they may not be linearly independent.  
 o. True. The nonzero rows of the reduced echelon form E form a basis for the row space of each 

matrix that is row equivalent to E.  
 p. True. If H is the zero subspace, let A be the 3 × 3 zero matrix. If dim H = 1, let {v} be a basis for H 

and set [ ]A = v v v . If dim H = 2, let {u,v} be a basis for H and set [ ]A = u v v , for 
example. If dim H = 3, then H = 3, so A can be any 3 × 3 invertible matrix. Or, let {u, v, w} be a 
basis for H and set [ ]A = u v w .  

 q. False. Counterexample: 
1 0 0
0 1 0

A
 

=  
 

. If rank A = n (the number of columns in A), then the 

transformation x  Ax is one-to-one.  

 r. True. If x  Ax is onto, then Col A = m and rank A = m. See Theorem 12(a) in Section 1.9.  

 s. True. See the second paragraph after Theorem 15 in Section 4.7.  

 t. False. The thj  column of 
C B

P
←

 is .j C
  b  
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 2. The set is SpanS, where 

1 2 5
2 5 8

, , .
1 4 7
3 1 1

S

 −     
      −      =       − −                  

 Note that S is a linearly dependent set, but each pair 

of vectors in S forms a linearly independent set. Thus any two of the three vectors 

1
2

,
1
3

 
 
 
 −
 
  

 

2
5

,
4
1

− 
 
 
 −
 
  

 

5
8
7
1

 
 − 
 
 
  

 

will be a basis for SpanS. 

 3. The vector b will be in 1 2Span{ , }W = u u  if and only if there exist constants 1c  and 2c  with 

1 1 2 2 .c c+ =u u b  Row reducing the augmented matrix gives  

   
1 1

2 1 2

3 1 2 3

2 1 2 1
4 2 0 4 2
6 5 0 0 2

b b
b b b
b b b b

− −   
   ∼ +   
   − − + +   

 

  so 1 2Span{ , }W = u u  is the set of all 1 2 3( , , )b b b  satisfying 1 2 32 0.b b b+ + =  

 4. The vector g is not a scalar multiple of the vector f, and f is not a scalar multiple of g, so the set {f, g} is 
linearly independent. Even though the number g(t) is a scalar multiple of f(t) for each t, the scalar 
depends on t. 

 5. The vector 1p  is not zero, and 2p  is not a multiple of 1.p  However, 3p  is 1 22 2+p p , so 3p  is discarded. 
The vector 4p  cannot be a linear combination of 1p  and 2p  since 4p  involves 2t  but 1p  and 2p  do not 
involve 2.t  The vector 5p  is 1 2 4(3/ 2) (1/ 2)− +p p p  (which may not be so easy to see at first.) Thus 5p  
is a linear combination of 1,p  2 ,p  and 4 ,p  so 5p  is discarded. So the resulting basis is 1 2 4{ , , }.p p p  

 6. Find two polynomials from the set 1 4{ , . . . , }p p  that are not multiples of one another. This is easy, 
because one compares only two polynomials at a time. Since these two polynomials form a linearly 
independent set in a two-dimensional space, they form a basis for H by the Basis Theorem.  

 7. You would have to know that the solution set of the homogeneous system is spanned by two solutions. In 
this case, the null space of the 18 × 20 coefficient matrix A is at most two-dimensional. By the Rank 
Theorem, dimCol A = 20 – dimNul A ≥ 20 – 2 = 18. Since Col A is a subspace of 18, Col A = 18. Thus  
Ax = b has a solution for every b in 18. 

 8. If n = 0, then H and V are both the zero subspace, and H = V. If n > 0, then a basis for H consists of n 
linearly independent vectors 1, . . . , .nu u  These vectors are also linearly independent as elements of V. 
But since dimV = n, any set of n linearly independent vectors in V must be a basis for V by the Basis 
Theorem. So 1, . . . , nu u  span V, and 1Span{ , . . . , } .nH V= =u u  

 9. Let T: n → m be a linear transformation, and let A be the m × n standard matrix of T.  
a. If T is one-to-one, then the columns of A are linearly independent by Theoerm 12 in Section 1.9, 

so dimNul A = 0. By the Rank Theorem, dimCol A = n – 0 = n, which is the number of columns of A. 
As noted in Section 4.2, the range of T is Col A, so the dimension of the range of T is n.  
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b. If T maps n onto m, then the columns of A span m by Theoerm 12 in Section 1.9, so dimCol A = 
m. By the Rank Theorem, dimNul A = n – m. As noted in Section 4.2, the kernel of T is Nul A, so the 
dimension of the kernel of T is n – m. Note that n – m must be nonnegative in this case: since A must 
have a pivot in each row, n ≥ m.  

 10. Let 1{ , . . . , }.pS = v v  If S were linearly independent and not a basis for V, then S would not span V. In 

this case, there would be a vector 1p+v  in V that is not in 1Span{ , . . . , }.pv v  Let 1 1{ , . . . , , }.p pS +′ = v v v  
Then S ′  is linearly independent since none of the vectors in S ′  is a linear combination of vectors that 
precede it. Since S ′  has more elements than S, this would contradict the maximality of S. Hence S must 
be a basis for V. 

 11. If S is a finite spanning set for V, then a subset of S is a basis for V. Denote this subset of S by .S ′  Since 
S ′  is a basis for V, S ′  must span V. Since S is a minimal spanning set, S ′  cannot be a proper subset of S. 
Thus S ′ = S, and S is a basis for V. 

 12. a. Let y be in Col AB. Then y = ABx for some x. But ABx = A(Bx), so y = A(Bx), and y is in Col A.  
Thus Col AB is a subspace of Col A, so rank AB = dimCol AB ≤ dimCol A = rank A by Theorem 11 
in Section 4.5.  

b. By the Rank Theorem and part a.:  

   rank rank( ) rank rank rankT T T TAB AB B A B B= = ≤ =  

 13. By Exercise 12, rank PA ≤ rank A, and 1 1rank rank( ) rank ( ) rankA P P A P PA PA− −= = ≤ , so  
rank PA = rank A. 

 14. Note that ( ) .T T TAQ Q A=  Since TQ  is invertible, we can use Exercise 13 to conclude that 

rank( ) rank rank .T T T TAQ Q A A= =  Since the ranks of a matrix and its transpose are equal (by the Rank 
Theorem), rank AQ = rank A. 

 15. The equation AB = O shows that each column of B is in Nul A. Since Nul A is a subspace of n, all linear 
combinations of the columns of B are in Nul A. That is, Col B is a subspace of Nul A. By Theorem 11 in 
Section 4.5, rank B = dimCol B ≤ dimNul A. By this inequality and the Rank Theorem applied to A,  

   n = rank A + dimNul A ≥ rank A + rank B 

 16. Suppose that 1rank A r=  and 2rank B r= . Then there are rank factorizations 1 1A C R=  and 2 2B C R=  of  
A and B, where 1C  is 1m r×  with rank 1r , 2C  is 2m r×  with rank 2r , 1R  is 1r n×  with rank 1r , and 2R  is 

2r n×  with rank 2.r  Create an 1 2( )m r r× +  matrix [ ]1 2C C C=  and an 1 2( )r r n+ ×  matrix R by 
stacking 1R  over 2.R  Then  

   [ ] 1
1 1 2 2 1 2

2

R
A B C R C R C C CR

R
 

+ = + = = 
 

 

  Since the matrix CR is a product, its rank cannot exceed the rank of either of its factors by Exercise 12. 
Since C has 1 2r r+  columns, the rank of C cannot exceed 1 2.r r+  Likewise R has 1 2r r+  rows, so the  
rank of R cannot exceed 1 2.r r+  Thus the rank of A + B cannot exceed 1 2 rank rank ,r r A B+ = +  or  
rank (A + B) ≤ rank A + rank B. 
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 17. Let A be an m × n matrix with rank r.  
(a) Let 1A  consist of the r pivot columns of A. The columns of 1A  are linearly independent, so 1A  is an 

m × r matrix with rank r.  
(b) By the Rank Theorem applied to 1,A  the dimension of 1RowA  is r, so 1A  has r linearly independent 

rows. Let 2A  consist of the r linearly independent rows of 1.A  Then 2A  is an r × r matrix with 
linearly independent rows. By the Invertible Matrix Theorem, 2A  is invertible.  

 18. Let A be a 4 × 4 matrix and B be a 4 × 2 matrix, and let 0 3, . . . ,u u  be a sequence of input vectors in 2.  

a. Use the equation 1k k kA B+ = +x x u  for 0, . . . , 4,k =  k = 0, . . . ,4, with 0 .=x 0   

   1 0 0 0A B B= + =x x u u  

   2 1 1 0 1A B AB B= + = +x x u u u  

   2
3 2 2 0 1 2 0 1 2( )A B A AB B B A B AB B= + = + + = + +x x u u u u u u u  

   2
4 3 3 0 1 2 3( )A B A A B AB B B= + = + + +x x u u u u u  

   3 2
0 1 2 3A B A B AB B= + + +u u u u  

   

3

22 3

1

0

B AB A B A B M

 
 
  = =   
 
  

u
u

u
u
u

 

  Note that M has 4 rows because B does, and that M has 8 columns because B and each of the matrices 
kA B  have 2 columns. The vector u in the final equation is in 8, because each ku  is in 2. 

b. If (A, B) is controllable, then the controlability matrix has rank 4, with a pivot in each row, and the 
columns of M span 4. Therefore, for any vector v in 4, there is a vector u in 8 such that v = Mu. 
However, from part a. we know that 4 M=x u  when u is partitioned into a control sequence 

0 3, ,…u u . This particular control sequence makes 4 .=x v  

 19. To determine if the matrix pair (A, B) is controllable, we compute the rank of the matrix 
2 .B AB A B    To find the rank, we row reduce:  

   2
0 1 0 1 0 0
1 .9 .81 0 1 0 .
1 .5 .25 0 0 1

B AB A B
   
     = − ∼     
      

 

  The rank of the matrix is 3, and the pair (A, B) is controllable. 

 20. To determine if the matrix pair (A, B) is controllable, we compute the rank of the matrix 
2 .B AB A B    To find the rank, we note that :  

   2
1 .5 .19
1 .7 .45 .
0 0 0

B AB A B
 
   =   
  

 

  The rank of the matrix must be less than 3, and the pair (A, B) is not controllable. 
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 21. [M] To determine if the matrix pair (A, B) is controllable, we compute the rank of the matrix 
2 3 .B AB A B A B    To find the rank, we row reduce:  

   2 3

1 0 0 1 1 0 0 1
0 0 1 1.6 0 1 0 1.6

.
0 1 1.6 .96 0 0 1 1.6
1 1.6 .96 .024 0 0 0 0

B AB A B A B

− −   
   − −     = ∼     − − −
   − − −      

 

  The rank of the matrix is 3, and the pair (A, B) is not controllable. 

 22. [M] To determine if the matrix pair (A, B) is controllable, we compute the rank of the matrix 
2 3 .B AB A B A B    To find the rank, we row reduce:  

   2 3

1 0 0 1 1 0 0 0
0 0 1 .5 0 1 0 0

.
0 1 .5 11.45 0 0 1 0
1 .5 11.45 10.275 0 0 0 1

B AB A B A B

−   
   −     = ∼     −
   − −      

 

  The rank of the matrix is 4, and the pair (A, B) is controllable. 
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5.1 SOLUTIONS 

Notes: Exercises 1–6 reinforce the definitions of eigenvalues and eigenvectors. The subsection on 
eigenvectors and difference equations, along with Exercises 33 and 34, refers to the chapter introductory 
example and anticipates discussions of dynamical systems in Sections 5.2 and 5.6. 

 1. The number 2 is an eigenvalue of A if and only if the equation 2A =x x  has a nontrivial solution. This 
equation is equivalent to ( 2 ) .− =xA I 0  Compute 

   
3 2 2 0 1 2

2
3 8 0 2 3 6

A I
     

− = − =     
     

 

  The columns of A are obviously linearly dependent, so ( 2 )A I− =x 0  has a nontrivial solution, and so  
2 is an eigenvalue of A. 

 2. The number 2−  is an eigenvalue of A if and only if the equation 2A = −x x  has a nontrivial solution. This 
equation is equivalent to ( 2 ) .+ =xA I 0  Compute 

   
7 3 2 0 9 3

2
3 1 0 2 3 1

A I
     

+ = + =     −     
 

  The columns of A are obviously linearly dependent, so ( 2 )A I+ =x 0  has a nontrivial solution, and so 
2−  is an eigenvalue of A. 

 3. Is Ax  a multiple of x? Compute 
3 1 1 1 1

.
3 8 4 29 4

−       
= ≠       −       

λ  So 
1
4
 
 
 

 is not an eigenvector of A. 

 4. Is Ax  a multiple of x? Compute 
2 1 1 2 21 2
1 4 1 3 2

 
 
 
 
  

  − +  − + =  
+   

 The second entries of x and Ax  shows 

that if Ax  is a multiple of x, then that multiple must be 3 2.+  Check 3 2+  times the first entry of x: 

   
2

(3 2)( 1 2) 3 2 2 2 1 2 2 
 
 

+ − + = − + + = − +  

  This matches the first entry of ,xA  so 1 2
1

 − +
 
 

 is an eigenvector of A, and the corresponding 

eigenvalue is 3 2.+  
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 5. Is Ax  a multiple of x? Compute 
3 7 9 4 0
4 5 1 3 0 .
2 4 4 1 0

     
     − − − =     
          

 So 
4
3
1

 
 − 
  

 is an eigenvector of A for the 

eigenvalue 0. 

 6. Is Ax  a multiple of x? Compute 
3 6 7 1 2 1
3 3 7 2 4 ( 2) 2
5 6 5 1 2 1

−       
       − = = − −       
       −       

 So 
1
2
1

 
 − 
  

 is an eigenvector of  

A for the eigenvalue 2.−  

 7. To determine if 4 is an eigenvalue of A, decide if the matrix 4A I−  is invertible. 

   
3 0 1 4 0 0 1 0 1

4 2 3 1 0 4 0 2 1 1
3 4 5 0 0 4 3 4 1

A I
− − −     

     − = − = −     
     − −     

 

  Invertibility can be checked in several ways, but since an eigenvector is needed in the event that one 
exists, the best strategy is to row reduce the augmented matrix for ( 4 )A I− =x 0 : 

   
1 0 1 0 1 0 1 0 1 0 1 0
2 1 1 0 0 1 1 0 0 1 1 0
3 4 1 0 0 4 4 0 0 0 0 0

− − − −     
     − − − − −     
     −     

∼ ∼     

  The equation ( 4 )A I− =x 0  has a nontrivial solution, so 4 is an eigenvalue. Any nonzero solution of 
( 4 )A I− =x 0  is a corresponding eigenvector. The entries in a solution satisfy 1 3 0x x+ =  and 

2 3 0,− − =x x  with 3x  free. The general solution is not requested, so to save time, simply take any 
nonzero value for 3x  to produce an eigenvector. If 3 1,=x  then ( 1 1 1).= − , − ,x  

Note: The answer in the text is (1 1 1),, , −  written in this form to make the students wonder whether the more 
common answer given above is also correct. This may initiate a class discussion of what answers are 
“correct.” 

 8. To determine if 3 is an eigenvalue of A, decide if the matrix 3A I−  is invertible. 

   
1 2 2 3 0 0 2 2 2

3 3 2 1 0 3 0 3 5 1
0 1 1 0 0 3 0 1 2

A I
−     

     − = − − = −     
     −     

 

  Row reducing the augmented matrix [(A 3 )   ]I− 0  yields: 

   
2 2 2 0 1 1 1 0 1 0 3 0
3 5 1 0 0 1 2 0 0 1 2 0
0 1 2 0 0 2 4 0 0 0 0 0

− − − −     
     − − −     
     − −     

∼ ∼     

  The equation ( 3 )A I− =x 0  has a nontrivial solution, so 3 is an eigenvalue. Any nonzero solution  
of ( 3 )A I− =x 0  is a corresponding eigenvector. The entries in a solution satisfy 1 33 0x x− =  and 

2 32 0,− =x x  with 3x  free. The general solution is not requested, so to save time, simply take any 
nonzero value for 3x  to produce an eigenvector. If 3 1,=x  then (3 2 1).= , ,x  
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 9. For 
5 0 1 0 4 0

1 1
2 1 0 1 2 0

A Iλ      
= : − = − =     

     
 

  The augmented matrix for ( )A I− =x 0  is 
4 0 0

.
2 0 0
 
 
 

 Thus 1 0x =  and 2x  is free. The general solution 

of ( )A I− =x 0  is 2 2 ,ex  where 2
0

,
1
 

=  
 

e  and so 2e  is a basis for the eigenspace corresponding to the 

eigenvalue 1. 

  For 
5 0 5 0 0 0

5 5
2 1 0 5 2 4
     

= : − = − =     −     
A Iλ  

  The equation ( 5 )A I− =x 0  leads to 1 22 4 0,− =x x  so that 1 22x x=  and 2x  is free. The general solution 

is 1 2
2

2 2

2 2
.

1

   
   
   
      

 
= =  

 

x x
x

x x
 So 

2
1
 
 
 

 is a basis for the eigenspace. 

 10. For 
10 9 4 0 6 9

4 4 .
4 2 0 4 4 6

− −     
= : − = − =     − −     

A Iλ  

  The augmented matrix for ( 4 )A I− =x 0  is 
6 9 0 1 9 6 0

.
4 6 0 0 0 0

− − /   
   −   

∼   Thus 1 2(3 2)x x= /  and  

2x  is free. The general solution is 1 2
2

2 2

(3 2) 3 2
.

1

   
   
   
      

/ / 
= =  

 

x x
x

x x
 A basis for the eigenspace corresponding 

to 4 is 
3 2

.
1
/ 

 
 

 Another choice is 
3

.
2
 
 
 

 

 11. 
4 2 10 0 6 2

10
3 9 0 10 3 1

A I
− − −     

− = − =     − − −     
 

  The augmented matrix for ( 10 )A I− =x 0  is 
6 2 0 1 1 3 0

 .
3 1 0 0 0 0

− − /   
   − −   

∼  Thus 1 2( 1 3)x x= − /  and  

2x  is free. The general solution is 1 2
2

2 2

(1 3) 1 3
.

1

 
 
 
  

− / − /   
= =   

  

x x
x

x x
 A basis for the eigenspace 

corresponding to 10 is 
1 3

.
1

− / 
 
 

 Another choice is 
1

.
3

− 
 
 

 

 12. For 
7 4 1 0 6 4

1
3 1 0 1 3 2

A Iλ      
= : − = − =     − − − −     

 

  The augmented matrix for ( )A I− =x 0  is 
6 4 0 1 2 3 0

.
3 2 0 0 0 0

/   
   − −   

∼  Thus 1 2( 2 3)x x= − /  and  

2x  is free. A basis for the eigenspace corresponding to 1 is 
2 3

.
1

− / 
 
 

 Another choice is 
2

.
3

− 
 
 

 

  For 
7 4 5 0 2 4

5 5 .
3 1 0 5 3 6

     
= : − = − =     − − − −     

A Iλ  
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  The augmented matrix for ( 5 )A I− =x 0  is 
2 4 0 1 2 0

 .
3 6 0 0 0 0

   
   − −   

∼  Thus 1 22x x=  and 2x  is free. 

The general solution is 1 2
2

2 2

2 2
.

1

   
   
   
      

− − 
= =  

 

x x
x

x x
 A basis for the eigenspace is 

2
.

1
− 
 
 

 

 13. For λ = 1: 

   
4 0 1 1 0 0 3 0 1

1 2 1 0 0 1 0 2 0 0
2 0 1 0 0 1 2 0 0

A I
     
     − = − − = −     
     − −     

 

  The equations for ( )A I− =x 0  are easy to solve: 1 3

1

3 0
2        0

x x
x

+ = 
 − = 

 

  Row operations hardly seem necessary. Obviously 1x  is zero, and hence 3x  is also zero. There are  
three-variables, so 2x  is free. The general solution of ( )A I− =x 0  is 2 2 ,ex  where 2 (0 1 0),= , ,e  and  
so 2e  provides a basis for the eigenspace. 

  For λ = 2: 

   
4 0 1 2 0 0 2 0 1

2 2 1 0 0 2 0 2 1 0
2 0 1 0 0 2 2 0 1

     
     − = − − = − −     
     − −     

A I  

   
2 0 1 0 2 0 1 0 0 1 2 0

[( 2 )  ] 2 1 0 0 0 1 1 0 0 1 0
2 0 1 0 0 0 0 0 0 0 0 0

A I
1 /     

     − = − − − 1 −     
     − −     

∼ ∼0  

  So 1 3 2 3(1 2) ,x x x x= − / , =  with 3x  free. The general solution of ( 2 )A I− =x 0  is 3

1 2
1 .
1

− / 
 
 
  

x  A nice basis 

vector for the eigenspace is 
1
2 .
2

− 
 
 
  

 

  For λ = 3: 

   
4 0 1 3 0 0 1 0 1

3 2 1 0 0 3 0 2 2 0
2 0 1 0 0 3 2 0 2

     
     − = − − = − −     
     − − −     

A I  

   
1 0 1 0 1 0 1 0 0 1 0

[( 3 )  ] 2 2 0 0 0 2 2 0 0 1 0
2 0 2 0 0 0 0 0 0 0 0 0

1     
     − = − − − 1 −     
     − −     

0 ∼ ∼A I  

  So 1 3 2 3,= − , =x x x x  with 3x  free. A basis vector for the eigenspace is 
1
1 .
1

− 
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 14. For 
1 0 1 2 0 0 3 0 1

2 ( 2 ) 2 1 3 0 0 2 0 1 1 0 .
4 13 1 0 0 2 4 13 3

− −     
     = − : − − = + = − + = −     
     − −     

A I A Iλ  

  The augmented matrix for [ ( 2) ] ,− − =x 0A I  or ( 2 ) ,+ =x 0A I  is 

   
3 0 1 0 1 0 1 3 0 1 0 1 3 0

[( 2 ) ] 1 1 0 0   0 1 1 3 0   0 1 1 3 0
4 13 3 0 0 13 13 3 0 0 0 0 0

A I
− − / − /     

     + = − − / − /     
     − − /     

∼ ∼0  

  Thus 1 3 2 3(1 3) (1 3) ,= / , = /x x x x  with 3x  free. The general solution of ( 2 )A I+ =x 0  is 3

1 3
1 3 .
1

/ 
 / 
  

x  

  A basis for the eigenspace corresponding to 2−  is 
1 3
1 3 ;
1

/ 
 / 
  

 another is 
1
1 .
3

 
 
 
  

 

 15. For 
1 2 3 0 1 2 3 0

3 [( 3 )  ] 1 2 3 0   0 0 0 0 .
2 4 6 0 0 0 0 0

A Iλ
   
   = : − = − − −   
      

∼0  Thus 1 2 32 3 0,+ + =x x x with 2x  and 

3x  free. The general solution of ( 3 ) ,− =x 0A I  is 

   
2 3

2 32

3

2 3 2 3 2 3
1 0 Basis for the eigenspace 1 0
0 1 0 1

x x
x x x
x

 
 
 
 
 
 
  

 − − − − − −       
        = = + . : ,        
                

x  

Note: For simplicity, the text answer omits the set brackets. I permit my students to list a basis without the set 
brackets. Some instructors may prefer to include brackets. 

 16. For 

3 0 2 0 4 0 0 0 1 0 2 0
1 3 1 0 0 4 0 0 1 1 1 0

4 4 .
0 1 1 0 0 0 4 0 0 1 3 0
0 0 0 4 0 0 0 4 0 0 0 0

A Iλ

−     
     −     = : − = − =
     −
     
          

 

  

1 0 2 0 0 1 0 2 0 0
1 1 1 0 0 0 1 3 0 0

[( 4 ) ]   .
0 1 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A I

− −   
   − −   − =
   −
   
      

∼0  So 1 3 2 32 3 ,= , =x x x x  with 3x  and 4x   

  free variables. The general solution of ( 4 )A I− =x 0  is 

   

1 3

2 3
3 4

3 3

4 4

2 2 0 2 0
3 3 0 3 0

Basis for the eigenspace
1 0 1 0
0 1 0 1

x x
x x

x x
x x
x x

   
   
   
   
   
   
   
   
         

        
        
        = = = + . : ,                                

x  

Note: I urge my students always to include the extra column of zeros when solving a homogeneous system. 
Exercise 16 provides a situation in which failing to add the column is likely to create problems for a student, 
because the matrix 4A I−  itself has a column of zeros. 
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 17. The eigenvalues of 
0 0 0
0 2 5
0 0 1

 
 
 
 − 

 are 0, 2, and 1,−  on the main diagonal, by Theorem 1. 

 18. The eigenvalues of 
4 0 0
0 0 0
1 0 3

 
 
 
 − 

 are 4, 0, and 3,−  on the main diagonal, by Theorem 1. 

 19. The matrix 
1 2 3
1 2 3
1 2 3

 
 
 
  

 is not invertible because its columns are linearly dependent. So the number 0 is 

an eigenvalue of the matrix. See the discussion following Example 5. 

 20. The matrix 
5 5 5
5 5 5
5 5 5

A
 
 =  
  

 is not invertible because its columns are linearly dependent. So the number 0 

is an eigenvalue of A. Eigenvectors for the eigenvalue 0 are solutions of A =x 0  and therefore have 
entries that produce a linear dependence relation among the columns of A. Any nonzero vector (in 3R ) 
whose entries sum to 0 will work. Find any two such vectors that are not multiples; for instance, 
(1 1 2), , −  and (1 1 0)., − ,  

 21. a. False. The equation A = λx x  must have a nontrivial solution. 
 b. True. See the paragraph after Example 5. 
 c. True. See the discussion of equation (3). 
 d. True. See Example 2 and the paragraph preceding it. Also, see the Numerical Note. 
 e. False. See the warning after Example 3. 

 22. a. False. The vector x in A = λx x  must be nonzero. 
 b. False. See Example 4 for a two-dimensional eigenspace, which contains two linearly independent 

eigenvectors corresponding to the same eigenvalue. The statement given is not at all the same as 
Theorem 2. In fact, it is the converse of Theorem 2 (for the case 2r = ). 

 c. True. See the paragraph after Example 1. 
 d. False. Theorem 1 concerns a triangular matrix. See Examples 3 and 4 for counterexamples. 
 e. True. See the paragraph following Example 3. The eigenspace of A corresponding to λ  is the null 

space of the matrix .− λA I  

 23. If a 2 2×  matrix A were to have three distinct eigenvalues, then by Theorem 2 there would correspond 
three linearly independent eigenvectors (one for each eigenvalue). This is impossible because the vectors 
all belong to a two-dimensional vector space, in which any set of three vectors is linearly dependent. See 
Theorem 8 in Section 1.7. In general, if an n n×  matrix has p distinct eigenvalues, then by Theorem 2 
there would be a linearly independent set of p eigenvectors (one for each eigenvalue). Since these vectors 
belong to an n-dimensional vector space, p cannot exceed n. 

 24. A simple example of a 2 2×  matrix with only one distinct eigenvalue is a triangular matrix with the 
same number on the diagonal. By experimentation, one finds that if such a matrix is actually a diagonal 
matrix then the eigenspace is two dimensional, and otherwise the eigenspace is only one dimensional. 

  Examples: 
4 1
0 4
 
 
 

 and 
4 5

.
0 4
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 25. If λ  is an eigenvalue of A, then there is a nonzero vector x  such that λ .=x xA  Since A is invertible, 
1 1(λ ),− −=x xA A A  and so 1λ( ).−=x xA  Since ≠x 0  (and since A is invertible), λ  cannot be zero. Then 
1 1λ ,A− −=x x  which shows that 1λ−  is an eigenvalue of 1.−A  

Note: The Study Guide points out here that the relation between the eigenvalues of A and 1A−  is important in 
the so-called inverse power method for estimating an eigenvalue of a matrix. See Section 5.8. 

 26. Suppose that 2A  is the zero matrix. If λA =x x  for some ,≠x 0  then 2 2( ) (λ ) λ λ .A A A A A= = = =x x x x x  
Since x is nonzero, λ  must be nonzero. Thus each eigenvalue of A is zero. 

 27. Use the Hint in the text to write, for any λ ( λ ) (λ ) λ .T T T TA I A I A I, − = − = −  Since ( λ )TA I−  is invertible 
if and only if λA I−  is invertible (by Theorem 6(c) in Section 2.2), it follows that λTA I−  is not 
invertible if and only if λA I−  is not invertible. That is, λ  is an eigenvalue of TA  if and only if λ  is an 
eigenvalue of A. 

Note: If you discuss Exercise 27, you might ask students on a test to show that A and TA  have the same 
characteristic polynomial (discussed in Section 5.2). Since det det ,= TA A  for any square matrix A, 

  det( λ ) det( λ ) det( (λ ) ) det( λ )T T TA I A I A I A I− = − = − = − .  

 28. If A is lower triangular, then TA  is upper triangular and has the same diagonal entries as A. Hence, by the 
part of Theorem 1 already proved in the text, these diagonal entries are eigenvalues of .TA  By Exercise 
27, they are also eigenvalues of A. 

 29. Let v be the vector in nR  whose entries are all ones. Then .A s=v v  

 30. Suppose the column sums of an n n×  matrix A all equal the same number s. By Exercise 29 applied to 
TA  in place of A, the number s is an eigenvalue of .TA  By Exercise 27, s is an eigenvalue of A. 

 31. Suppose T reflects points across (or through) a line that passes through the origin. That line consists of all 
multiples of some nonzero vector v. The points on this line do not move under the action of A. So 

( ) .=v vT  If A is the standard matrix of T, then .=v vA  Thus v is an eigenvector of A corresponding to 
the eigenvalue 1. The eigenspace is Span { }.v  Another eigenspace is generated by any nonzero vector u 
that is perpendicular to the given line. (Perpendicularity in 2R  should be a familiar concept even though 
orthogonality in nR  has not been discussed yet.) Each vector x on the line through u is transformed into 
the vector .−x  The eigenvalue is 1.−  

 33. (The solution is given in the text.) 

a. Replace k by 1k +  in the definition of ,xk  and obtain 1 1
1 1 2 .k k

k c cλ µ+ +
+ = +x u v  

b. 1 2

1 2

1 2

1

( )

by linearity

since  and  are eigenvectors

+

= +

= +

= +
=

x u v

u v

u v u v
x

k k
k

k k

k k

k

A A c c

c A c A

c c

λ µ
λ µ
λ λ µ µ
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 34. You could try to write 0x  as linear combination of eigenvectors, 1 ., ,v v p…  If 1λ , ,λ p…  are 
corresponding eigenvalues, and if 0 1 1 ,p pc c= + +x v v  then you could define 

   1 1 1
k k

k p p pc cλ λ= + +x v v  

  In this case, for 0 1 2 ,= , , ,k …  

   

1 1 1

1 1 1

1 1
1 1 1

1

( )

 Linearity

 The  are eigenvectors

 

k k
k p p p

k k
p p p

k k
p p p i

k

A A c c

c A c A

c c

λ λ

λ λ

λ λ+ +

+

= + +

= + +

= + + .

=

x v v

v v

v v v
x

 

 35. Using the figure in the exercise, plot ( )T u  as 2 ,u  because u is an eigenvector for the eigenvalue 2 of the 
standard matrix A. Likewise, plot ( )T v  as 3 ,v  because v is an eigenvector for the eigenvalue 3. Since T 
is linear, the image of w is ( ) ( ) ( ) ( ).= + = +w u v u vT T T T  

 36. As in Exercise 35, ( )T = −u u  and ( ) 3T =v v  because u and v are eigenvectors for the eigenvalues  
1−  and 3, respectively, of the standard matrix A. Since T is linear, the image of w is 
( ) ( ) ( ) ( ).T T T T= + = +w u v u v  

Note: The matrix programs supported by this text all have an eigenvalue command. In some cases, such as 
MATLAB, the command can be structured so it provides eigenvectors as well as a list of the eigenvalues. At 
this point in the course, students should not use the extra power that produces eigenvectors. Students need to 
be reminded frequently that eigenvectors of A are null vectors of a translate of A. That is why the instructions 
for Exercises 35–38 tell students to use the method of Example 4. 

It is my experience that nearly all students need manual practice finding eigenvectors by the method of 
Example 4, at least in this section if not also in Sections 5.2 and 5.3. However, [M] exercises do create a 
burden if eigenvectors must be found manually. For this reason, the data files for the text include a special 
command, nulbasis for each matrix program (MATLAB, Maple, etc.). The output of nulbasis (A) is 
a matrix whose columns provide a basis for the null space of A, and these columns are identical to the ones a 
student would find by row reducing the augmented matrix [  ].0A  With nulbasis, student answers will be the 
same (up to multiples) as those in the text. I encourage my students to use technology to speed up all 
numerical homework here, not just the [ ]M  exercises, 

 37. [M] Let A be the given matrix. Use the MATLAB commands eig and nulbasis (or equivalent 
commands). The command ev =eig(A) computes the three eigenvalues of A and stores them in a 
vector ev. In this exercise, (3 13 13).= , ,ev  The eigenspace for the eigenvalue 3 is the null space of 

3 .A I−  Use nulbasis to produce a basis for each null space. If the format is set for rational display, 
the result is 

   
5 9
2 9 .
1

/ 
 − / 
  

nulbasis(A-ev(1)*eye(3))=  

  For simplicity, scale the entries by 9. A basis for the eigenspace for 
5

3 2
9

λ
 
 = : − 
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  For the next eigenvalue, 13, compute nulbasis
2 1
1 0 .
0 1

− − 
 
 
  

(A-ev(2)*eye(3))=  

  Basis for eigenspace for 
2 1

13 1 0
0 1

λ
 − −   
    = : ,    
        

 

  There is no need to use ev(3) because it is the same as ev(2). 

 38. [M] (13 12 12 13).= , − , − ,ev =eig(A)  For 13λ = : 

   

1 2 1 3 1 1
0 4 3 0 4

Basis for eigenspace
1 0 2 0
0 1 0 3

 − / / −     
      − / −      . : ,                        

nulbasis (A-ev(1)*eye(4))=  

  For 12λ = − :  nulbasis

2 7 0
1 1

.
1 0
0 1

/ 
 − 
 
 
  

(A-ev(2)*eye(4))=  Basis: 

2 0
7 1
7 0
0 1

    
    −    ,                

 

 39. [M] For 5,=λ  basis: 

2 1 2
1 1 0

.1 0 0
0 1 0
0 0 1

 −     
      −            , , 
      
      
            

 For 2,λ = −  basis: 

2 3
7 7
5 5
5 0
0 5

 −   
    
        ,− − 
    
    
        

 

 40. [M] (21 68984106239549 16 68984106239549 3 2 2).. ,− . , , ,ev =eig(A)=  The first two eigenvalues are 
the roots of 2λ 5λ 362 0.− − =  

 Basis for 

0 33333333333333
2 39082008853296

λ ev(1) ,0 33333333333333
0 58333333333333

1 000000000000000

− . 
 . 
 = : .
 . 
 . 

 for 

0 33333333333333
0 80748675519962

λ ev(2) . 0 33333333333333
0 58333333333333
1 00000000000000

− . 
 − . 
 = : .
 . 
 . 

 

  For the eigenvalues 3 and 2, the eigenbases are 

0
2

,0
1
0

 
 − 
 
 
 
  

 and 

2 5
1 5

,0 0
1 0
0 1

 − −.   
    .        , 
    
    
        

 respectively. 

Note: Since so many eigenvalues in text problems are small integers, it is easy for students to form a habit of 
entering a value for λ  in nulbasis λ(A- I) based on a visual examination of the eigenvalues produced by  
eig(A)when only a few decimal places for λ  are displayed. Exercise 40 may help your students discover 
the dangers of this approach. 
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5.2 SOLUTIONS 

Notes: Exercises 9–14 can be omitted, unless you want your students to have some facility with determinants 
of 3 3×  matrices. In later sections, the text will provide eigenvalues when they are needed for matrices larger 
than 2 2.×  If you discussed partitioned matrices in Section 2.4, you might wish to bring in Supplementary 
Exercises 12–14 in Chapter 5. (Also, see Exercise 14 of Section 2.4.) 

Exercises 25 and 27 support the subsection on dynamical systems. The calculations in these exercises and 
Example 5 prepare for the discussion in Section 5.6 about eigenvector decompositions. 

 1. 
2 7 2 7 0 2 7

.
7 2 7 2 0 7 2

−       
= , − = − =       −       

A A I
λ λ

λ
λ λ

 The characteristic polynomial is 

   2 2 2 2det( ) (2 ) 7 4 4 49 4 45A I− λ = − λ − = − λ + λ − = λ − λ −  

  In factored form, the characteristic equation is ( 9)( 5) 0,λ − λ + =  so the eigenvalues of A are 9 and 5.−  

 2. 
5 3 5 3

.
3 5 3 5

−   
= , − =   −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (5 )(5 ) 3 3 10 16A Iλ λ λ λ λ− = − − − ⋅ = − +  

  Since 2 10 16 ( 8)( 2),− + = − −λ λ λ λ  the eigenvalues of A are 8 and 2. 

 3. 
3 2 3 2

.
1 1 1 1

− − −   
= , − =   − − −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (3 )( 1 ) ( 2)(1) 2 1A I− λ = − λ − − λ − − = λ − λ −  

  Use the quadratic formula to solve the characteristic equation and find the eigenvalues: 

   
2 4 2 4 4 1 2

2 2
b b ac

a
λ − ± − ± += = = ±  

 4. 
5 3 5 3

   .
4 3 4 3

− − −   
= , − =   − − −   

A A I
λ

λ
λ

 The characteristic polynomial of A is 

   2det( ) (5 )(3 ) ( 3)( 4) 8 3A Iλ λ λ λ λ− = − − − − − = − +  

  Use the quadratic formula to solve the characteristic equation and find the eigenvalues: 

   
8 64 4(3) 8 2 13 4 13

2 2
λ ± − ±= = = ±  

 5. 
2 1 2 1

.
1 4 1 4

− λ   
= , − λ =   − − − λ   

A A I  The characteristic polynomial of A is 

   2 2det( ) (2 )(4 ) (1)( 1) 6 9 ( 3)A I− λ = − λ − λ − − = λ − λ + = λ −  

  Thus, A has only one eigenvalue 3, with multiplicity 2. 

 6. 
3 4 3 4

.
4 8 4 8

− − −   
= , − =   −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (3 )(8 ) ( 4)(4) 11 40A Iλ λ λ λ λ− = − − − − = − +  
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  Use the quadratic formula to solve det ( ) 0 :− =A Iλ  

   
11 121 4(40) 11 39

2 2
λ − ± − − ± −= =  

  These values are complex numbers, not real numbers, so A has no real eigenvalues. There is no nonzero 
vector x in 2R  such that ,A λ=x x  because a real vector Ax  cannot equal a complex multiple of .x  

 7. 
5 3 5 3

.
4 4 4 4

−   
= , − =   − − −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (5 )(4 ) (3)( 4) 9 32A Iλ λ λ λ λ− = − − − − = − +  

  Use the quadratic formula to solve det ( ) 0A Iλ− = : 

   
9 81 4(32) 9 47

2 2
λ ± − ± −= =  

  These values are complex numbers, not real numbers, so A has no real eigenvalues. There is no nonzero 
vector x in 2R  such that ,=x xA λ  because a real vector Ax  cannot equal a complex multiple of x. 

 8. 
7 2 7 2

.
2 3 2 3

− − −   
= , − =   −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (7 )(3 ) ( 2)(2) 10 25A Iλ λ λ λ λ− = − − − − = − +  

  Since 2 210 25 ( 5) ,− + = −λ λ λ  the only eigenvalue is 5, with multiplicity 2. 

 9. 
1 0 1

det( ) det 2 3 1 .
0 6 0

− − 
 − = − − 
 − 

A I
λ

λ λ
λ

 From the special formula for 3 3×  determinants, the 

characteristic polynomial is 

   
2

3 2

3 2

det( ) (1 )(3 )( ) 0 ( 1)(2)(6) 0 (6)( 1)(1 ) 0

( 4 3)( ) 12 6(1 )

4 3 12 6 6

4 9 6

A Iλ λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ

− = − − − + + − − − − − −

= − + − − + −

= − + − − + −

= − + − −

 

  (This polynomial has one irrational zero and two imaginary zeros.) Another way to evaluate the 
determinant is to interchange rows 1 and 2 (which reverses the sign of the determinant) and then make 
one row replacement: 

   
1 0 1 2 3 1

det 2 3 1 det 1 0 1
0 6 0 0 6 0

− − − −   
   − − = − − −   
   − −   

λ λ
λ λ

λ λ
 

   
2 3 1

det 0 0 ( 5 5)(3 ) 1 ( 5 5)( 1)
0 6 0

− − 
 = − + . − . − − + . − . − 
 − 

λ
λ λ λ

λ
 

  Next, expand by cofactors down the first column. The quantity above equals 

   
2 3 2

( 5 5)(3 ) 5 5
2det 2[( 5 5)(3 )( ) ( 5 5 )(6)]

6

(1 )(3 )( ) (1 )(6) ( 4 3)( ) 6 6 4 9 6

λ λ λ
λ λ λ λ

λ

λ λ λ λ λ λ λ λ λ λ λ

. − . − −. − . 
− = − . − . − − − −. − . − 
= − − − − + = − + − − − = − + − −
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 10. 
0 3 1

det( ) det 3 0 2 .
1 2 0

− 
 − = − 
 − 

A I
λ

λ λ
λ

 From the special formula for 3 3×  determinants, the 

characteristic polynomial is 

   
3 3

det( ) ( )( )( ) 3 2 1 1 3 2 1 ( ) 1 2 2 ( ) ( ) 3 3

6 6 4 9 14 12

− = − − − + ⋅ ⋅ + ⋅ ⋅ − ⋅ − ⋅ − ⋅ ⋅ − − − ⋅ ⋅

= − + + + + + = − + +

A Iλ λ λ λ λ λ λ
λ λ λ λ λ λ

 

 11. The special arrangements of zeros in A makes a cofactor expansion along the first row highly effective. 

   

2 3 2

4 0 0
3 2

det( ) det 5 3 2 (4 )det
0 2

2 0 2

(4 )(3 )(2 ) (4 )( 5 6) 9 26 24

A I
λ

λ
λ λ λ

λ
λ

λ λ λ λ λ λ λ λ

− 
−  − = − = −    −  − − 

= − − λ − = − − + = − + − +

 

  If only the eigenvalues were required, there would be no need here to write the characteristic polynomial 
in expanded form. 

 12. Make a cofactor expansion along the third row: 

   

3 2

1 0 1
1 0

det( ) det 3 4 1 (2 ) det
3 4

0 0 2

(2 )( 1 )(4 ) 5 2 8

A I
λ

λ
λ λ λ

λ
λ

λ λ λ λ λ λ

− − 
− −  − = − − = − ⋅    − −  − 

= − − − − = − + − −

 

 13. Make a cofactor expansion down the third column: 

   2

3 2

6 2 0
6 2

det( ) det 2 9 0 (3 ) det
2 9

5 8 3

(3 )[(6 )(9 ) ( 2)( 2)] (3 )( 15 50)

18 95 150 or (3 )( 5)( 10)

A I
λ

λ
λ λ λ

λ
λ

λ λ λ λ λ λ
λ λ λ λ λ λ

− − 
− −  − = − − = − ⋅    − −  − 

= − − − − − − = − − +

= − + − + − − −

 

 14. Make a cofactor expansion along the second row: 

   2

3 2

5 2 3
5 3

det( ) det 0 1 0 (1 ) det
6 2

6 7 2

(1 ) [(5 )( 2 ) 3 6] (1 )( 3 28)

4 25 28  or  (1 )( 7)( 4)

A I
λ

λ
λ λ λ

λ
λ

λ λ λ λ λ λ
λ λ λ λ λ λ

− − 
−  − = − = − ⋅    − −  − − 

= − ⋅ − − − − ⋅ = − − −

= − + + − − − +

 

 15. Use the fact that the determinant of a triangular matrix is the product of the diagonal entries: 

   2

4 7 0 2
0 3 4 6

det( ) det (4 )(3 ) (1 )
0 0 3 8
0 0 0 1

A I

λ
λ

λ λ λ λ
λ

λ

− − 
 − − − = = − − −
 − −
 −  

 

  The eigenvalues are 4, 3, 3, and 1. 
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 16. The determinant of a triangular matrix is the product of its diagonal entries: 

   2

5 0 0 0
8 4 0 0

det( ) det (5 )( 4 )(1 )
0 7 1 0
1 5 2 1

A I

λ
λ

λ λ λ λ
λ

λ

− 
 − − − = = − − − −
 −
 − −  

 

  The eigenvalues are 5, 1, 1, and 4.−  

 17. The determinant of a triangular matrix is the product of its diagonal entries: 

   2 2

3 0 0 0 0
5 1 0 0 0

(3 ) (1 ) ( )3 8 0 0 0
0 7 2 1 0
4 1 9 2 3

λ
λ

λ λ λλ
λ

λ

− 
 − − 
  = − − −−
 − − 
 − − − 

 

  The eigenvalues are 3, 3, 1, 1, and 0. 

 18. Row reduce the augmented matrix for the equation ( 5 )A I− =x 0 : 

   

0 2 6 1 0 0 2 6 1 0 0 1 3 0 0
0 2 0 0 0 0 6 1 0 0 0 6 0 0

    
0 0 0 4 0 0 0 0 4 0 0 0 0 1 0
0 0 0 4 0 0 0 0 4 0 0 0 0 0 0

h h h
− − − − −     

     − − −     
     
     −          

∼ ∼  

  For a two-dimensional eigenspace, the system above needs two free variables. This happens if and only  
if 6.=h  

 19. Since the equation 1 2det( ) ( )( ) ( )− λ = λ − λ λ − λ λ − λnA I  holds for all λ , set 0λ =  and conclude that 

1 2det .= λ λ λnA  

 20. det( ) det( )T T TA I A I− λ = − λ  

   det( ) Transpose property= − λ TA I  
   det( ) Theorem 3(c)= −A Iλ  

 21. a. False. See Example 1. 
 b. False. See Theorem 3. 
 c. True. See Theorem 3. 
 d. False. See the solution of Example 4. 

 22. a. False. See the paragraph before Theorem 3. 
 b. False. See Theorem 3. 
 c. True. See the paragraph before Example 4. 
 d. False. See the warning after Theorem 4. 

 23. If ,=A QR  with Q invertible, and if 1 ,=A RQ  then write 1 1
1 ,− −= =A Q QRQ Q AQ  which shows that  

1A  is similar to A. 
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 24. First, observe that if P is invertible, then Theorem 3(b) shows that 

   1 11 det det( ) (det )(det )I PP P P− −= = =  

  Use Theorem 3(b) again when 1,−=A PBP  

   1 1 1det det( ) (det )(det )(det ) (det )(det )(det ) detA PBP P B P B P P B− − −= = = =  

 25. Example 5 of Section 4.9 showed that 1 1,=v vA  which means that 1v  is an eigenvector of A 
corresponding to the eigenvalue 1. 
a. Since A  is a 2 2×  matrix, the eigenvalues are easy to find, and factoring the characteristic 

polynomial is easy when one of the two factors is known. 

   26 3
det ( 6 )( 7 ) ( 3)( 4) 1 3 3 ( 1)( 3)

4 7
λ

λ λ λ λ λ λ
λ

. − . 
= . − . − − . . = − . + . = − − . . . − 

 

  The eigenvalues are 1 and .3. For the eigenvalue .3, solve ( 3 )A I− . =x 0 : 

   
6 3 3 0 3 3 0 1 1 0

  
4 7 3 0 4 4 0 0 0 0

. − . . . .     
=     . . − . . .     

∼  

  Here 1 2 0,− =x x  with 2x  free. The general solution is not needed. Set 2 1x =  to find an eigenvector 

2
1

.
1
− 

=  
 

v  A suitable basis for 2R  is 1 2{ }.,v v  

b. Write 0 1 2c= +x v v : 
1 2 3 7 1

.
1 2 4 7 1
/ / −     

= +     / /     
c  By inspection, c is 1 14.− /  (The value of c depends on 

how 2v  is scaled.) 

c. For 1 2 ,= , ,k …  define 0.=x xk
k A  Then 1 1 2 1 2 1 2( ) ( 3) ,A c A cA c= + = + = + .x v v v v v v  because 1v  

and 2v  are eigenvectors. Again 

   2 1 1 2 1 2 1 2( ( 3) ) ( 3) ( 3)( 3)A A c A c A c= = + . = + . = + . . .x x v v v v v v  

  Continuing, the general pattern is 1 2( 3) .k
k c= + .x v v  As k increases, the second term tends to 0 and 

so kx  tends to 1.v  

 26. If 0,≠a  then 1 ,
0 −

  
= =   −   

∼
a ba b

A U
c d d ca b

 and 1det ( )( ) .−= − = −A a d ca b ad bc  If 0,=a  then 

0
0

b c d
A U

c d b
   

= =   
   

∼  (with one interchange), so 1det ( 1) ( ) 0 .= − = − = −A cb bc ad bc  

 27. a. 1 1,A =v v  2 25 ,A = .v v  3 32 .A = .v v  

 b. The set 1 2 3{ }, ,v v v  is linearly independent because the eigenvectors correspond to different 
eigenvalues (Theorem 2). Since there are three vectors in the set, the set is a basis for 3. So there 
exist unique constants such that 0 1 1 2 2 3 3,c c c= + +x v v v  and 0 1 1 2 2 3 3.T T T Tc c c= + +w x w v w v w v  
Since 0x  and 1v  are probability vectors and since the entries in 2v  and 3v  sum to 0, the above 
equation shows that 1 1.c =  

c. By (b), 0 1 1 2 2 3 3.= + +x v v vc c c  Using (a), 

  0 1 1 2 2 3 3 1 2 2 3 3 1( 5) ( 2) as= = + + = + . + . → → ∞x x v v v v v v vk k k k k k
k A c A c A c A c c k  
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 28. [M] 
  Answers will vary, but should show that the eigenvectors of A are not the same as the eigenvectors  

of ,TA  unless, of course, .=TA A  

 29. [M] Answers will vary. The product of the eigenvalues of A should equal det A. 

 30. [M] The characteristic polynomials and the eigenvalues for the various values of a are given in the 
following table: 

a Characteristic Polynomial Eigenvalues 
31.8 2 34 2 6 4t t t−. − . + −  3 1279 1 1279. , , − .  

31.9 2 38 3 8 4t t t. − . + −  2.7042, 1, .2958 

32.0 2 32 5 4t t t− + −  2, 1, 1 

32.1 2 33 2 6 2 4t t t. − . + −  1 5 9747 1i. ± . ,  

32.2 2 34 4 7 4 4t t t. − . + −  1 5 1 4663 1i. ± . ,  

   The graphs of the characteristic polynomials are: 

 

Notes: An appendix in Section 5.3 of the Study Guide gives an example of factoring a cubic polynomial with 
integer coefficients, in case you want your students to find integer eigenvalues of simple 3 3×  or perhaps 
4 4×  matrices. 

The MATLAB box for Section 5.3 introduces the command poly (A), which lists the coefficients of 
the characteristic polynomial of the matrix A, and it gives MATLAB code that will produce a graph of the 
characteristic polynomial. (This is needed for Exercise 30.) The Maple and Mathematica appendices have 
corresponding information. The appendices for the TI and HP calculators contain only the commands that list 
the coefficients of the characteristic polynomial. 



272 CHAPTER 5 • Eigenvalues and Eigenvectors 

5.3 SOLUTIONS 

 1. 15 7 2 0
,

2 3 0 1
−   

= , = , =   
   

P D A PDP  and 4 4 1.−=A PD P  We compute 1 43 7 16 0
, ,

2 5 0 1
− −   

= =   −   
P D  

and 4 5 7 16 0 3 7 226 525
2 3 0 1 2 5 90 209

A
− −       

= =       − −       
 

 2. 12 3 1 0
,

3 5 0 1 2
−−   

= , = , =   − /   
P D A PDP  and 4 4 1.−=A PD P  We compute 

1 45 3 1 0
,

3 2 0 1 16
−    

= , =   /   
P D  and 4 2 3 1 0 5 3 151 901

3 5 0 1 16 3 2 225 13416
A

−       
= =       − / − −       

 

 3. 1 1 0 0 1 0 0
.

3 1 3 10 3 3

   
   −
   
   
      

   
= = =   − −   

k k
k k

k k k k

a a
A PD P

b a b b
 

 4. 1 3 4 2 0 1 4 4 3 2 12 2 12
.

1 1 1 30 1 1 2 4 2 3

 
 −
 
 
  

 − − ⋅ ⋅ −   
= = =     − − ⋅ −      

k k k
k k

k k k
A PD P  

 5. By the Diagonalization Theorem, eigenvectors form the columns of the left factor, and they correspond 
respectively to the eigenvalues on the diagonal of the middle factor. 

   
1 1 2

λ 5 1 λ 1 0 1
1 1 0

     
     = : ; = : , −     
     −     

 

 6. As in Exercise 5, inspection of the factorization gives: 

   
1 2 0

λ 4 2 λ 5 0 1
0 1 0

− −     
     = : ; = : ,     
          

 

 7. Since A is triangular, its eigenvalues are obviously 1.±  

  For λ = 1: 
0 0

1 .
6 2
 

− =  − 
A I  The equation ( 1 )A I− =x 0  amounts to 1 26 2 0,x x− =  so 1 2(1 3)x x= /  with 

2x  free. The general solution is 2
1 3

,
1

/ 
 
 

x  and a nice basis vector for the eigenspace is 1
1

.
3
 

=  
 

v  

  For λ = −1: 
2 0

1 .
6 0
 

+ =  
 

A I  The equation ( 1 )A I+ =x 0  amounts to 12 0,=x  so 1 0x =  with 2x  free. 

The general solution is 2
0

,
1
 
 
 

x  and a basis vector for the eigenspace is 2
0

.
1
 

=  
 

v  

  From 1v  and 2v  construct 1 2
1 0

.
3 1

 
  

 
= =  

 
v vP  Then set 

1 0
,

0 1
 

=  − 
D  where the eigenvalues in D 

correspond to 1v  and 2v  respectively. 
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 8. Since A is triangular, its only eigenvalue is obviously 5. 

  For λ = 5: 
0 1

5 .
0 0
 

− =  
 

A I  The equation ( 5 )A I− =x 0  amounts to 2 0,=x  so 2 0x =  with 1x  free. The 

general solution is 1
1

.
0
 
 
 

x  Since we cannot generate an eigenvector basis for 2, A is not diagonalizable. 

 9. To find the eigenvalues of A, compute its characteristic polynomial: 

  2 23 λ 1
det( λ ) det (3 λ)(5 λ) ( 1)(1) λ 8λ 16 (λ 4)

1 5 λ
A I

− − 
− = = − − − − = − + = − − 

 

  Thus the only eigenvalue of A is 4. 

  For λ = 4: 
1 1

4 .
1 1

− − 
− =  

 
A I  The equation ( 4 )A I− =x 0  amounts to 1 2 0,+ =x x  so 1 2x x= −  with 2x  

free. The general solution is 2
1

.
1

− 
 
 

x  Since we cannot generate an eigenvector basis for 2, A is not 

diagonalizable. 

 10. To find the eigenvalues of A, compute its characteristic polynomial: 

  22 λ 3
det( λ ) det (2 λ)(1 λ) (3)(4) λ 3λ 10 (λ 5)(λ 2)

4 1 λ
A I

− 
− = = − − − = − − = − + − 

 

  Thus the eigenvalues of A are 5 and 2− . 

  For λ = 5: 
3 3

5 .
4 4

− 
− =  − 

A I  The equation ( 5 )A I− =x 0  amounts to 1 2 0,− =x x  so 1 2x x=  with 2x  

free. The general solution is 2
1

,
1
 
 
 

x  and a basis vector for the eigenspace is 1
1

.
1
 

=  
 

v  

  For λ = −2: 
4 3

2 .
4 3
 

+ =  
 

A I  The equation ( 1 )A I+ =x 0  amounts to 1 24 3 0,+ =x x  so 1 2( 3 4)x x= − /  

with 2x  free. The general solution is 2
3 4

,
1

x
− / 
 
 

 and a nice basis vector for the eigenspace is 2
3

.
4

− 
=  
 

v  

  From 1v  and 2v  construct 1 2
1 3

.
1 4

 
  

− 
= =  

 
v vP  Then set 

5 0
,

0 2
 

=  − 
D  where the eigenvalues in 

D correspond to 1v  and 2v  respectively. 

 11. The eigenvalues of A are given to be 1, 2, and 3. 

  For λ = 3: 
4 4 2

3 3 1 0 ,
3 1 0

− − 
 − = − 
 − 

A I  and row reducing [ ]3A I− 0  yields 
1 0 1 4 0
0 1 3 4 0 .
0 0 0 0

− / 
 − / 
  

 The 

general solution is 3

1 4
3 4 ,

1

/ 
 / 
  

x  and a nice basis vector for the eigenspace is 1

1
3 .
4

 
 =  
  

v  
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  For λ = 2: 
3 4 2

2 3 2 0 ,
3 1 1

− − 
 − = − 
 − 

A I  and row reducing [ ]2A I− 0  yields 
1 0 2 3 0
0 1 1 0 .
0 0 0 0

− / 
 − 
  

 The 

general solution is 3

2 3
1 ,
1

/ 
 
 
  

x  and a nice basis vector for the eigenspace is 2

2
3 .
3

 
 =  
  

v  

  For λ = 1: 
2 4 2
3 3 0 ,
3 1 2

− − 
 − = − 
 − 

A I  and row reducing [ ]1A I− 0  yields 
1 0 1 0
0 1 1 0 .
0 0 0 0

− 
 − 
  

 The general 

solution is 3

1
1 ,
1

 
 
 
  

x  and a basis vector for the eigenspace is 3

1
1 .
1

 
 =  
  

v  

  From 1 2,v v  and 3v  construct 1 2 3

1 2 1
3 3 1 .
4 3 1

 
  

 
 = =  
  

v v vP  Then set D =
3 0 0
0 2 0 ,
0 0 1

 
 
 
  

 where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

 12. The eigenvalues of A are given to be 2 and 8. 

  For λ = 8: 
4 2 2

8 2 4 2 ,
2 2 4

− 
 − = − 
 − 

A I  and row reducing [ ]8A I− 0  yields 
1 0 1 0
0 1 1 0 .
0 0 0 0

− 
 − 
  

 The 

general solution is 3

1
1 ,
1

 
 
 
  

x  and a basis vector for the eigenspace is 1

1
1 .
1

 
 =  
  

v  

  For λ = 2: 
2 2 2

2 2 2 2 ,
2 2 2

 
 − =  
  

A I  and row reducing [ ]2A I− 0  yields 
1 1 1 0
0 0 0 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2 3

1 1
1 0 ,
0 1

− −   
   +   
      

x x  and a basis for the eigenspace is 2 3

1 1
{ } 1 0 .

0 1

 − −   
    , = ,    
        

v v  

  From 1 2,v v  and 3v  construct 1 2 3

1 1 1
1 1 0 .
1 0 1

 
  

− − 
 = =  
  

v v vP  Then set 
8 0 0
0 2 0 ,
0 0 2

 
 =  
  

D  where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 
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 13. The eigenvalues of A are given to be 5 and 1. 

  For λ = 5: 
3 2 1

5 1 2 1 ,
1 2 3

A I
− − 
 − = − − 
 − − − 

 and row reducing [ ]5A I− 0  yields 
1 0 1 0
0 1 1 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 3

1
1 ,
1

− 
 − 
  

x  and a basis for the eigenspace is 1

1
1 .
1

− 
 = − 
  

v  

  For λ = 1: 
1 2 1

1 1 2 1 ,
1 2 1

− 
 − = − 
 − − 

A I  and row reducing [ ]A I− 0  yields 
1 2 1 0
0 0 0 0 .
0 0 0 0

− 
 
 
  

 The general 

solution is 2 3

2 1
1 0 ,
0 1

−   
   +   
      

x x  and a basis for the eigenspace is 2 3

2 1
{ } 1 0 .

0 1

 −   
    , = ,    
        

v v  

  From 1 2,v v  and 3v  construct 1 2 3

1 2 1
1 1 0 .
1 0 1

 
  

− − 
 = = − 
  

v v vP  Then set 
5 0 0
0 1 0 ,
0 0 1

 
 =  
  

D  where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

 14. The eigenvalues of A are given to be 5 and 4. 

  For λ = 5: 
1 0 2

5 2 0 4 ,
0 0 0

− − 
 − =  
  

A I  and row reducing [ ]5A I− 0  yields 
1 0 2 0
0 0 0 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2 3

0 2
1 0 ,
0 1

−   
   +   
      

x x  and a basis for the eigenspace is 1 2

2 0
{ } 0 1 .

1 0

 −   
    , = ,    
        

v v  

  For λ = 4: 
0 0 2

4 2 1 4 ,
0 0 1

− 
 − =  
  

A I  and row reducing [ ]4A I− 0  yields 
1 1 2 0 0
0 0 1 0 .
0 0 0 0

/ 
 
 
  

 The general 

solution is 3

1 2
1 ,
0

− / 
 
 
  

x  and a nice basis vector for the eigenspace is 3

1
2 .
0

− 
 =  
  

v  

  From 1 2,v v  and 3v  construct 1 2 3

2 0 1
0 1 2 .
1 0 0

 
  

− − 
 = =  
  

v v vP  Then set 
5 0 0
0 5 0 ,
0 0 4

 
 =  
  

D  where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 
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 15. The eigenvalues of A are given to be 3 and 1. 

  For λ = 3: 
4 4 16

3 2 2 8 ,
2 2 8

 
 − =  
 − − − 

A I  and row reducing [ ]3A I− 0  yields 
1 1 4 0
0 0 0 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2 3

1 4
1 0 ,
0 1

− −   
   +   
      

x x  and a basis for the eigenspace is 1 2

1 4
{ } 1 0

0 1

 − −   
    , = ,    
        

v v  

  For λ = 1: 
6 4 16
2 4 8 ,
2 2 6

 
 − =  
 − − − 

A I  and row reducing [ ]A I− 0  yields 
1 0 2 0
0 1 1 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 3

2
1 ,
1

− 
 − 
  

x  and a basis for the eigenspace is 3

2
1 .
1

− 
 = − 
  

v  

  From 1 2,v v  and 3v  construct 1 2 3

1 4 2
1 0 1 .
0 1 1

 
  

− − − 
 = = − 
  

v v vP  Then set 
3 0 0
0 3 0 ,
0 0 1

 
 =  
  

D  where 

the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

 16. The eigenvalues of A are given to be 2 and 1. 

  For λ = 2: 
2 4 6

2 1 2 3 ,
1 2 3

− − − 
 − = − − − 
  

A I  and row reducing [ ]2A I− 0  yields 
1 2 3 0
0 0 0 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2 3

2 3
1 0 ,
0 1

− −   
   +   
      

x x  and a basis for the eigenspace is 1 2

2 3
{ } 1 0 .

0 1

 − −   
    , = ,    
        

v v  

  For λ = 1: 
1 4 6
1 1 3 ,
1 2 4

A I
− − − 
 − = − − − 
  

 and row reducing [ ]A I− 0  yields 
1 0 2 0
0 1 1 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 3

2
1 ,
1

− 
 − 
  

x  and a basis for the eigenspace is 3

2
1 .
1

− 
 = − 
  

v  

  From 1 2,v v  and 3v  construct 1 2 3

2 3 2
1 0 1 .
0 1 1

 
  

− − − 
 = = − 
  

v v vP  Then set 
2 0 0
0 2 0 ,
0 0 1

 
 =  
  

D  where 

the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 
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 17. Since A is triangular, its eigenvalues are obviously 4 and 5. 

  For λ = 4: 
0 0 0

4 1 0 0 ,
0 0 1

 
 − =  
  

A I  and row reducing [ ]4A I− 0  yields 
1 0 0 0
0 0 1 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2

0
1 ,
0

 
 
 
  

x  and a basis for the eigenspace is 1

0
1 .
0

 
 =  
  

v  

  Since λ 5=  must have only a one-dimensional eigenspace, we can find at most 2 linearly independent 
eigenvectors for A, so A is not diagonalizable. 

 18. An eigenvalue of A is given to be 5; an eigenvector 1

2
1
2

− 
 =  
  

v  is also given. To find the eigenvalue 

corresponding to 1,v  compute 1 1

7 16 4 2 6
6 13 2 1 3 3 .

12 16 1 2 6

− − −     
     = − = − = −     
          

v vA  Thus the eigenvalue in 

question is 3.−  

  For λ = 5:   
12 16 4

5 6 8 2 ,
12 16 4

− − 
 − = − 
 − 

A I  and row reducing [ ]5A I− 0  yields 
1 4 3 1 3 0
0 0 0 0 .
0 0 0 0

/ − / 
 
 
  

 

The general solution is 2 3

4 3 1 3
1 0 ,
0 1

− / /   
   +   
      

x x  and a nice basis for the eigenspace is 

{ }2 3

4 1
3 0 .
0 3

 −   
    , = ,    
        

v v  

  From 1 2,v v  and 3v  construct 1 2 3

2 4 1
1 3 0 .
2 0 3

 
 

− − 
 = =  
  

v v vP  Then set 
3 0 0
0 5 0 ,
0 0 5

− 
 =  
  

D  where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. Note that this answer differs from the text. 
There, 2 3 1P  

 = v v v  and the entries in D are rearranged to match the new order of the eigenvectors. 
According to the Diagonalization Theorem, both answers are correct. 

 19. Since A is triangular, its eigenvalues are obviously 2, 3, and 5. 

  For λ = 2:   

3 3 0 9
0 1 1 2

2 ,
0 0 0 0
0 0 0 0

− 
 − − =
 
 
  

A I  and row reducing [ ]2   A I− 0  yields 

1 0 1 1 0
0 1 1 2 0

.
0 0 0 0 0
0 0 0 0 0

 
 − 
 
 
  

 The 

general solution is 3 4

1 1
1 2

,
1 0
0 1

− −   
   −   +
   
   
      

x x  and a nice basis for the eigenspace is 1 2

1 1
1 2

{ } .
1 0
0 1

 − −   
    −    , = ,                

v v  
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  For λ = 3:   

2 3 0 9
0 0 1 2

3 ,
0 0 1 0
0 0 0 1

− 
 − − =
 −
 −  

A I  and row reducing [ ]3   A I− 0  yields 

1 3 2 0 0 0
0 0 1 0 0

.
0 0 0 1 0
0 0 0 0 0

− / 
 
 
 
 
  

 

The general solution is 2

3 2
1

,
0
0

/ 
 
 
 
 
  

x  and a nice basis for the eigenspace is 3

3
2

.
0
0

 
 
 =
 
 
  

v  

  For λ = 5:   

0 3 0 9
0 2 1 2

5 ,
0 0 3 0
0 0 0 3

− 
 − − − =
 −
 −  

A I  and row reducing [ ]5   A I− 0  yields 

0 1 0 0 0
0 0 1 0 0

.
0 0 0 1 0
0 0 0 0 0

 
 
 
 
 
  

 The 

general solution is 1

1
0

,
0
0

 
 
 
 
 
  

x  and a basis for the eigenspace is 4

1
0

.
0
0

 
 
 =
 
 
  

v  

  From 1 2 3, ,v v v  and 4v  construct 1 2 3 4

1 1 3 1
1 2 2 0

.
1 0 0 0
0 1 0 0

 
 

− − 
 − = =
 
 
  

v v v vP  Then set 

2 0 0 0
0 2 0 0

,
0 0 3 0
0 0 0 5

 
 
 =
 
 
  

D  

where the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. Note that this answer differs from 
the text. There, [ ]4 3 1 2   P = v v v v  and the entries in D are rearranged to match the new order of the 
eigenvectors. According to the Diagonalization Theorem, both answers are correct. 

 20. Since A is triangular, its eigenvalues are obviously 4 and 2. 

  For λ = 4: 

0 0 0 0
0 0 0 0

4 ,
0 0 2 0
1 0 0 2

 
 
 − =
 −
 −  

A I  and row reducing [ ]4   A I− 0  yields 

1 0 0 2 0
0 0 1 0 0

.
0 0 0 0 0
0 0 0 0 0

− 
 
 
 
 
  

 The 

general solution is 2 4

0 2
1 0

,
0 0
0 1

   
   
   +
   
   
      

x x  and a basis for the eigenspace is { }1 2

0 2
1 0

.
0 0
0 1

    
    
    , = ,                

v v  

  For λ = 2: 

2 0 0 0
0 2 0 0

2 ,
0 0 0 0
1 0 0 0

 
 
 − =
 
 
  

A I  and row reducing [ ]2   A I− 0  yields 

1 0 0 0 0
0 1 0 0 0

.
0 0 0 0 0
0 0 0 0 0

 
 
 
 
 
  

 The 

general solution is 3 4

0 0
0 0

,
1 0
0 1

   
   
   +
   
   
      

x x  and a basis for the eigenspace is 3 4

0 0
0 0

{ } .
1 0
0 1

    
    
    , = ,                

v v  
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  From 1 2 3, ,v v v  and 4v  construct 1 2 3 4

0 2 0 0
1 0 0 0

  .
0 0 1 0
0 1 0 1

 
 

 
 
 = =
 
 
  

v v v vP  Then set 

4 0 0 0
0 4 0 0

,
0 0 2 0
0 0 0 2

 
 
 =
 
 
  

D  

where the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

 21. a. False. The symbol D does not automatically denote a diagonal matrix. 
 b. True. See the remark after the statement of the Diagonalization Theorem. 
 c. False. The 3 3×  matrix in Example 4 has 3 eigenvalues, counting multiplicities, but it is not 

diagonalizable. 
 d. False. Invertibility depends on 0 not being an eigenvalue. (See the Invertible Matrix Theorem.)  

A diagonalizable matrix may or may not have 0 as an eigenvalue. See Examples 3 and 5 for both 
possibilities. 

 22. a. False. The n eigenvectors must be linearly independent. See the Diagonalization Theorem. 
b. False. The matrix in Example 3 is diagonalizable, but it has only 2 distinct eigenvalues. (The 

statement given is the converse of Theorem 6.) 
 c. True. This follows from AP PD=  and formulas (1) and (2) in the proof of the Diagonalization 

Theorem. 
 d. False. See Example 4. The matrix there is invertible because 0 is not an eigenvalue, but the matrix is 

not diagonalizable. 

 23. A is diagonalizable because you know that five linearly independent eigenvectors exist: three in the 
three-dimensional eigenspace and two in the two-dimensional eigenspace. Theorem 7 guarantees that the 
set of all five eigenvectors is linearly independent. 

 24. No, by Theorem 7(b). Here is an explanation that does not appeal to Theorem 7: Let 1v  and 2v  be 
eigenvectors that span the two one-dimensional eigenspaces. If v is any other eigenvector, then it belongs 
to one of the eigenspaces and hence is a multiple of either 1v  or 2.v  So there cannot exist three linearly 
independent eigenvectors. By the Diagonalization Theorem, A cannot be diagonalizable. 

 25. Let 1{ }v  be a basis for the one-dimensional eigenspace, let 2v  and 3v  form a basis for the two-
dimensional eigenspace, and let 4v  be any eigenvector in the remaining eigenspace. By Theorem 7, 

1 2 3 4{    }, , ,v v v v  is linearly independent. Since A is 4 4,×  the Diagonalization Theorem shows that  
A is diagonalizable. 

 26. Yes, if the third eigenspace is only one-dimensional. In this case, the sum of the dimensions of the 
eigenspaces will be six, whereas the matrix is 7 7.×  See Theorem 7(b). An argument similar to that for 
Exercise 24 can also be given. 

 27. If A is diagonalizable, then 1A PDP−=  for some invertible P and diagonal D. Since A is invertible, 0 is 
not an eigenvalue of A. So the diagonal entries in D (which are eigenvalues of A) are not zero, and D is 
invertible. By the theorem on the inverse of a product, 

   1 1 1 1 1 1 1 1 1( ) ( )A PDP P D P PD P− − − − − − − − −= = =  

  Since 1D−  is obviously diagonal, 1A−  is diagonalizable. 
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 28. If A has n linearly independent eigenvectors, then by the Diagonalization Theorem, 1A PDP−=  for some 
invertible P and diagonal D. Using properties of transposes, 

   
1 1

1 1

( ) ( )
( )

− −

− −

= =
= =

T T T T T

T T

A PDP P D P
P DP QDQ

 

  where 1( ) .−= TQ P  Thus TA  is diagonalizable. By the Diagonalization Theorem, the columns of Q are n 
linearly independent eigenvectors of .TA  

 29. The diagonal entries in 1D  are reversed from those in D. So interchange the (eigenvector) columns of  
P to make them correspond properly to the eigenvalues in 1.D  In this case,  

   1 1
1 1 3 0

and
2 1 0 5

P D
   

= =   − −   
 

  Although the first column of P must be an eigenvector corresponding to the eigenvalue 3, there is 

nothing to prevent us from selecting some multiple of 
1

,
2

 
 − 

 say 
3

,
6

− 
 
 

 and letting 2
3 1

.
6 1

− 
=  − 

P  We 

now have three different factorizations or “diagonalizations” of A:  

   1 1 1
1 1 1 2 1 2A PDP P D P P D P− − −= = =  

30. A nonzero multiple of an eigenvector is another eigenvector. To produce 2 ,P  simply multiply one or 
both columns of P by a nonzero scalar unequal to 1. 

31. For a 2 2×  matrix A to be invertible, its eigenvalues must be nonzero. A first attempt at a construction 

might be something such as 
2 3

,
0 4
 
 
 

 whose eigenvalues are 2 and 4. Unfortunately, a 2 2×  matrix with 

two distinct eigenvalues is diagonalizable (Theorem 6). So, adjust the construction to 
2 3

,
0 2
 
 
 

 which 

works. In fact, any matrix of the form 
0
a b

a
 
 
 

 has the desired properties when a and b are nonzero. The 

eigenspace for the eigenvalue a is one-dimensional, as a simple calculation shows, and there is no other 
eigenvalue to produce a second eigenvector.  

32. Any 2 2×  matrix with two distinct eigenvalues is diagonalizable, by Theorem 6. If one of those 

eigenvalues is zero, then the matrix will not be invertible. Any matrix of the form 
0 0
a b 
 
 

 has the 

desired properties when a and b are nonzero. The number a must be nonzero to make the matrix 

diagonalizable; b must be nonzero to make the matrix not diagonal. Other solutions are 
0 0
a b
 
 
 

  

and 
0

.
0
 
 
 

a
b
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 33. 

6 4 0 9
3 0 1 6

,
1 2 1 0
4 4 0 7

− 
 − =
 − −
 −  

A   

  ev =eig(A)=(5,1,-2,-2) 

  nulbasis(A-ev(1)*eye(4))

1 0000
0 5000
0 5000
1 0000

. 
 . =
 − .
 .  

 

  A basis for the eigenspace of 

2
1

5 is .
1
2

 
 
 λ =
 −
 
  

 

  nulbasis(A-ev(2)*eye(4))

1 0000
0 5000
3 5000
1 0000

. 
 − . =
 − .
 .  

 

  A basis for the eigenspace of 

2
1

1is .
7
2

 
 − λ =
 −
 
  

 

  nulbasis(A-ev(3)*eye(4))

1 0000 1 5000
1 0000 0 7500
1 0000 0

0 1 0000

. .   
   . − .   = ,
   .
   .      

 

  A basis for the eigenspace of 

1 6
1 3

2 is .
1 0
0 4

   
   −   λ = − ,
   
   
      

 

  Thus we construct 

2 2 1 6
1 1 1 3
1 7 1 0
2 2 0 4

P

 
 − − =
 − −
 
  

 and 

5 0 0 0
0 1 0 0

.
0 0 2 0
0 0 0 2

 
 
 =
 −
 −  

D  

 34. 

0 13 8 4
4 9 8 4

,
8 6 12 8
0 5 0 4

 
 
 =
 
 −  

A  

  ev = eig(A)=(-4,24,1,-4) 
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  nulbasis(A-ev(1)*eye(4))

2 1
0 0
1 0
0 1

− −   
   
   = ,
   
   
      

 

  A basis for the eigenspace of 

2 1
0 0

4 is .
1 0
0 1

− −   
   
   λ = − ,
   
   
      

 

  nulbasis(A-ev(2)*eye(4))

5 6000
5 6000
7 2000
1 0000

. 
 . =
 .
 .  

 

  A basis for the eigenspace of 

28
28

24 is .
36

5

 
 
 λ =
 
 
  

 

  nulbasis(A-ev(3)*eye(4))

1 0000
1 0000
2 0000
1 0000

. 
 . =
 − .
 .  

 

  A basis for the eigenspace of 

1
1

1 is .
2
1

 
 
 λ =
 −
 
  

 

  Thus we construct 

2 1 28 1
0 0 28 1
1 0 36 2
0 1 5 1

P

− − 
 
 =
 −
 
  

 and 

4 0 0 0
0 4 0 0

.
0 0 24 0
0 0 0 1

− 
 − =
 
 
  

D  

 35. 

11 6 4 10 4
3 5 2 4 1

,8 12 3 12 4
1 6 2 3 1
8 18 8 14 1

− − − 
 − − 
 = − −
 − − 
 − − − 

A  

  ev = eig(A)=(5,1,3,5,1) 

  nulbasis(A-ev(1)*eye(5))

2 0000 1 0000
0 3333 0 3333
1 0000 1 0000
1 0000 0

0 1 0000

. .   
   − . − .   
   = ,− . − .
   .   
   .   
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  A basis for the eigenspace of 

6 3
1 1

5 is .3 3
3 0
0 3

   
   − −   
   λ = ,− −
   
   
      

 

  nulbasis(A-ev(2)*eye(5))

0 8000 0 6000
0 6000 0 2000
0 4000 0 8000
1 0000 0

0 1 0000

. .   
   − . − .   
   = ,− . − .
   .   
   .   

 

  A basis for the eigenspace of 

4 3
3 1

1 is .2 4
5 0
0 5

   
   − −   
   λ = ,− −
   
   
      

 

  nulbasis(A-ev(3)*eye(5))

0 5000
0 2500
1 0000
0 2500
1 0000

. 
 − . 
 = − .
 − . 
 . 

 

  A basis for the eigenspace of 

2
1

3 is .4
1
4

 
 − 
 λ = −
 − 
  

 

  Thus we construct 

6 3 4 3 2
1 1 3 1 1
3 3 2 4 4
3 0 5 0 1
0 3 0 5 4

P

 
 − − − − − 
 = − − − − −
 − 
  

 and 

5 0 0 0 0
0 5 0 0 0

.0 0 1 0 0
0 0 0 1 0
0 0 0 0 3

 
 
 
 =
 
 
  

D  

 36. 

4 4 2 3 2
0 1 2 2 2

,6 12 11 2 4
9 20 10 10 6

15 28 14 5 3

− 
 − − 
 = −
 − 
 − 

A  

  ev = eig(A)=(3,5,7,5,3) 
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  nulbasis(A-ev(1)*eye(5))

2 0000 1 0000
1 5000 0 5000
0 5000 0 5000
1 0000 0

0 1 0000

. − .   
   − . .   
   = ,. .
   .   
   .   

 

  A basis for the eigenspace of 

4 2
3 1

3 is .1 1
2 0
0 2

−   
   −   
   λ = ,
   
   
      

 

  nulbasis(A-ev(2)*eye(5))

0 1 0000
0 5000 1 0000
1 0000 0

0 1 0000
0 1 0000

− .   
   − . .   
   = ,.
   − .   
   .   

 

  A basis for the eigenspace of 

0 1
1 1

5 is .2 0
0 1
0 1

−   
   −   
   λ = ,
   −   
      

 

  nulbasis(A-ev(3)*eye(5))

0 3333
0 0000
0 0000
1 0000
1 0000

. 
 . 
 = .
 . 
 . 

 

  A basis for the eigenspace of 

1
0

7 is .0
3
3

 
 
 
 λ =
 
 
  

 

  Thus we construct 

4 2 0 1 1
3 1 1 1 0
1 1 2 0 0
2 0 0 1 3
0 2 0 1 3

P

− − 
 − − 
 =
 − 
  

 and 

.

3 0 0 0 0
0 3 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 7

 
 
 
 =
 
 
  

D  

Notes: For your use, here is another matrix with five distinct real eigenvalues. To four decimal places, they 
are 11.0654, 9.8785, 3.8238, 3 7332,− .  and 6 0345.− .  
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6 8 5 3 0
7 3 5 3 0
3 7 5 3 5
0 4 1 7 5
5 3 2 0 8

− − 
 − − 
 − − −
 − − 
 − − − 

 

The MATLAB box in the Study Guide encourages students to use eig (A) and nulbasis to practice 
the diagonalization procedure in this section. It also remarks that in later work, a student may automate the 
process, using the command [ ] =P D  eig (A). You may wish to permit students to use the full power of 
eig in some problems in Sections 5.5 and 5.7. 

5.4 SOLUTIONS 

 1. Since 1 1 2 1
3

( ) 3 5 [ ( )] .
5

 
= − , =  − 

b d d b DT T  Likewise 2 1 2( ) 6T = − +b d d  implies that 2
1

[ ( )]
6DT

− 
=  
 

b  and 

3 2( ) 4T =b d  implies that 3
0

[ ( )] .
4
 

=  
 

b DT  Thus the matrix for T relative to B  and 

1 2 3
3 1 0

 is [ ( )] [ ( )] [ ( )] .
5 6 4

 
 

− 
=  − 

b b bD D DD T T T  

 2. Since 1 1 2 1
2

( ) 2 3 [ ( )] .
3

 
= − , =  − 

d b b d BT T  Likewise 2 1 2( ) 4 5T = − +d b b  implies that 2
4

[ ( )] .
5

− 
=  
 

d BT  

Thus the matrix for T relative to D  and 1 2
2 4

is [ ( )] [ ( )] .
3 5

 
 

− 
=  − 

d dB BB T T  

 3. a. 1 1 2 3 2 1 2 3 3 1 2 3( ) 0 1 ( ) 1 0 1 ( ) 1 1 0= − + , = − − − , = − +e b b b e b b b e b b bT T T  

 b. 1 2 3

0 1 1
[ ( )] 1 [ ( )] 0 [ ( )] 1

1 1 0
B B BT T T

−     
     = − , = , = −     
     −     

e e e  

 c. The matrix for T relative to E  and 1 2 3

0 1 1
is [ [ ( )] [ ( )] [ ( )] ] 1 0 1 .

1 1 0

− 
 = − − 
 − 

e e eB B BB T T T  

 4. Let 1 2{ }= ,e eE  be the standard basis for . Since 1 1 2 2
2 4

[ ( )] ( ) [ ( )] ( ) ,
0 1

−   
= = , = =   −   

b b b bT T T TE E   

and 3 3
5

[ ( )] ( ) ,
3
 

= =  
 

b bT TE  the matrix for T relative to B  and 1 2 3is [[ ( )] [ ( )] [ ( )] ] =b b bT T TE E EE  

2 4 5
.

0 1 3
− 

 − 
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 5. a. 2 2 3( ) ( 5)(2 ) 10 3 4T t t t t t t= + − + = − + +p  

 b. Let p  and q  be polynomials in 2, and let c  be any scalar. Then 

   
( ( ) ( )) ( 5)[ ( ) ( )] ( 5) ( ) ( 5) ( )

( ( )) ( ( ))
T t t t t t t t t t

T t T t
+ = + + = + + +

= +
p q p q p q

p q
  

   
( ( )) ( 5)[ ( )] ( 5) ( )

[ ( )]
T c t t c t c t t

c T t
⋅ = + ⋅ = ⋅ +

= ⋅
p p p

p
 

  and T is a linear transformation. 

c. Let 2{1 }B t t= , ,  and 2 3{1 } .= , , ,C t t t  Since 1 1

5
1

( ) (1) ( 5)(1) 5  [ ( )] .
0
0

 
 
 = = + = + , =
 
 
  

b b CT T t t T  Likewise 

since 2
2 2

0
5

( ) ( ) ( 5)( ) 5  [ ( )] ,
1
0

 
 
 = = + = + , =
 
 
  

b b CT T t t t t t T  and since 

2 2 3 2
3 3

0
0

( ) ( ) ( 5)( ) 5  [ ( )] .
5
1

 
 
 = = + = + , =
 
 
  

b b CT T t t t t t T  Thus the matrix for T  relative to B  and 

1 2 3

5 0 0
1 5 0

 is [ [ ( )] [ ( )] [ ( )] ] .
0 1 5
0 0 1

 
 
 =
 
 
  

b b bC C CC T T T  

 6. a. 2 2 2 2 3 4( ) (2 ) (2 ) 2 3T t t t t t t t t t= − + + − + = − + − +p  

b. Let p  and q  be polynomials in 2, and let c  be any scalar. Then 

   

2

2 2

2

2

( ( ) ( )) [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]
( ( )) ( ( ))

( ( )) [ ( )] [ ( )]

[ ( ) ( )]
[ ( )]

T t t t t t t t

t t t t t t
T t T t

T c t c t t c t

c t t t
c T t

+ = + + +

= + + +
= +

⋅ = ⋅ + ⋅

= ⋅ +
= ⋅

p q p q p q

p p q q
p q

p p p

p p
p

 

   and T is a linear transformation. 



5.4 • Solutions   287 

c. Let 2{1 }B t t= , ,  and 2 3 4{1 } .= , , , ,C t t t t  Since 2 2
1 1

1
0

( ) (1) 1 (1) 1 [ ( )] .1
0
0

 
 
 
 = = + = + , =
 
 
  

b b CT T t t T  

Likewise since 2 3
2 2

0
1

( ) ( ) ( )( ) [ ( )] ,0
1
0

 
 
 
 = = + = + , =
 
 
  

b b CT T t t t t t t T  and  

since 2 2 2 2 4 2
3 3

0
0

( ) ( ) ( )( ) [ ( )] .1
0
1

 
 
 
 = = + = + , =
 
 
  

b b CT T t t t t t t T  Thus the matrix for T relative to  

B  and 1 2 3

1 0 0
0 1 0

 is [ [ ( )] [ ( )] [ ( )] ] .1 0 1
0 1 0
0 0 1

 
 
 
 =
 
 
  

b b bC C CC T T T  

 7. Since 1 1

3
( ) (1) 3 5 [ ( )] 5 .

0

 
 = = + , =  
  

b b BT T t T  Likewise since 2
2 2

0
( ) ( ) 2 4 [ ( )] 2 ,

4

 
 = = − + , = − 
  

b b BT T t t t T  

and since 2 2
3 3

0
( ) ( ) [ ( )] 0 .

1

 
 = = , =  
  

b b BT T t t T  Thus the matrix representation of T relative to the basis  

B  is 1 2 3

3 0 0
[ ( )] [ ( )] [ ( )] 5 2 0 .

0 4 1

 
 

 
 = − 
  

b b bB B BT T T  Perhaps a faster way is to realize that the 

information given provides the general form of ( )T p  as shown in the figure below: 

  

2 2
0 1 2 0 0 1 1 2

coordinate coordinate
mapping mapping

0 0multiplication

1 0 1
by[ ]

2 1 2

3 (5 2 ) (4 )

3
5 2
4

   
   
   
   
   
   
      

+ + → + − + +

→ −
+BT

T
a a t a t a a a t a a t

a a
a a a
a a a
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  The matrix that implements the multiplication along the bottom of the figure is easily filled in by 
inspection: 

   
0 0

1 0 1

2 1 2

3 3 0 0
5 2  implies that [ ] 5 2 0
4 0 4 1

B

a a
a a a T
a a a

   
   
   
   
   
   
      

? ? ?   
   ? ? ? = − = −   
   ? ? ? +   

 

 8. Since 1 2

3
[3 4 ] 4 ,

0

 
 − = − 
  

b b B  1 2 1 2

0 6 1 3 24
[ (3 4 )] [ ] [3 4 ] 0 5 1 4 20

1 2 7 0 11
B B BT T

−     
     − = − = − − = −     
     −     

b b b b  

  and 1 2 1 2 3(3 4 ) 24 20 11 .− = − +b b b b bT  

 9. a. 
5 3( 1) 2

( ) 5 3(0) 5
5 3(1) 8

T
+ −   

   = + =   
   +   

p  

 b. Let p and q be polynomials in 2, and let c be any scalar. Then 

   
( )( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( )(0) (0) (0) (0) (0) ( ) ( )
( )(1) (1) (1) (1) (1)

+ − − + − − −       
       + = + = + = + = +       
       + +       

p q p q p q
p q p q p q p q p q

p q p q p q
T T T  

   
( ( 1)) ( 1)( )( 1)

( ) ( (0)) (0) ( ) ( )(0)
( (1)) (1)( )(1)

cc
T c c c c Tc

cc

⋅ − −⋅ −     
    ⋅ = = ⋅ = ⋅ = ⋅⋅     
     ⋅⋅     

p pp
p p p pp

p pp
 

  and T is a linear transformation. 

c. Let 2{1 }= , ,B t t  and 1 2 3{ }= , ,e e eE  be the standard basis for 3. Since 

1 1 2 2

1 1
[ ( )] ( ) (1) 1  [ ( )] ( ) ( ) 0 ,

1 1

−   
   = = = , = = =   
      

b b b bT T T T T T tE E  and 2
3 3

1
[ ( )] ( ) ( ) 0 ,

1

 
 = = =  
  

b bT T T tE  

the matrix for T relative to B  and E  is 1 2 3

1 1 1
[ ( )] [ ( )] [ ( )] 1 0 0 .

1 1 1

 
 

− 
 =  
  

b b bT T TE E E  

 10. a. Let p and q be polynomials in 3, and let c be any scalar. Then 

   

( )( 3) ( 3) ( 3)
( )( 1) ( 1) ( 1)

( )
( )(1)  (1) (1)
( )(3) (3) (3)

T

+ − − + −  
  + − − + −  + = =
  + +
  + +      

p q p q
p q p q

p q
p q p q
p q p q

( 3) ( 3)
( 1) ( 1)

( ) ( )
(1) (1)
(3) (3)

T T

− −   
   − −   = + = +
   
   
      

p q
p q

p q
p q
p q

 

    

( )( 3) ( ( 3)) ( 3)
( )( 1) ( ( 1)) ( 1)

( ) ( )
( )(1) ( (1)) (1)
( )(3) ( (3)) (3)

c c
c c

T c c c T
c c
c c

⋅ − ⋅ − −     
     ⋅ − ⋅ − −     ⋅ = = = ⋅ = ⋅
     ⋅ ⋅
     ⋅ ⋅          

p p p
p p p

p p
p p p
p p p

 

   and T is a linear transformation. 
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b. Let 2 3{1 }= , , ,B t t t  and 1 2 3 4{ }= , , ,e e e eE  be the standard basis for 3. Since 

2
1 1 2 2 3 3

1 3 9
1 1 1

[ ( )] ( ) (1)  [ ( )] ( ) ( )  [ ( )] ( ) ( ) ,
1 1 1
1 3 9

−     
     −     = = = , = = = , = = =
     
     
          

b b b b b bT T T T T T t T T T tE E E  and 

3
4 4

27
1

[ ( )] ( ) ( ) ,
1

27

− 
 − = = =
 
 
  

b bT T T tE  the matrix for T relative to B  and E  is 

1 2 3 4

1 3 9 27
1 1 1 1

[ ( )] [ ( )] [ ( )] [ ( )] .
1 1 1 1
1 3 9 27

 
 

− − 
 − − =
 
 
  

b b b bT T T TE E E E  

 11. Following Example 4, if 1 2
2 1

,
1 2

 
  

 
= =  − 

b bP  then the B-matrix is 

   1 2 1 3 4 2 1 1 51
1 2 1 1 1 2 0 15

P AP− −       
= =       − − −       

 

 12. Following Example 4, if 1 2
3 1

,
2 1

 
  

− 
= =  

 
b bP  then the B-matrix is 

   1 1 1 1 4 3 1 1 21
2 3 2 3 2 1 2 15

P AP− − −       
= =       − − −       

 

 13. Start by diagonalizing A. The characteristic polynomial is 2λ 4λ 3 (λ 1)(λ 3),− + = − −  so the eigenvalues 
of A are 1 and 3. 

  For λ = 1: 
1 1

.
3 3

− 
− =  − 

A I  The equation ( )A I− =x 0  amounts to 1 2 0,x x− + =  so 1 2x x=  with 2x  

free. A basis vector for the eigenspace is thus 1
1

.
1
 

=  
 

v  

  For λ = 3: 
3 1

3 .
3 1

− 
− =  − 

A I  The equation ( 3 )A I− =x 0  amounts to 1 23 0,x x− + =  so 1 2(1 3)x x= /  with 

2x  free. A nice basis vector for the eigenspace is thus 2
1

.
3
 

=  
 

v  

  From 1v  and 2v  we may construct 1 2
1 1
1 3

P  
  

 
= =  

 
v v  which diagonalizes A. By Theorem 8, the 

basis 1 2{ }B = ,v v  has the property that the B-matrix of the transformation Ax x  is a diagonal matrix. 
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 14. Start by diagonalizing A. The characteristic polynomial is 2λ 6λ 16 (λ 8)(λ 2),− − = − +  so the 
eigenvalues of A are 8 and 2.−  

  For λ = 8: 
3 3

8 .
7 7

A I
− − 

− =  − − 
 The equation ( 8 )A I− =x 0  amounts to 1 2 0,x x+ =  so 1 2x x= −  with 2x  

free. A basis vector for the eigenspace is thus 1
1

.
 1

− 
=  
 

v  

  For λ = 2:
7 3

2 .
7 3

A I
− 

+ =  − 
 The equation ( 2 )A I− =x 0  amounts to 1 27 3 0,x x− =  so 1 2(3 7)x x= /  

with 2x  free. A nice basis vector for the eigenspace is thus 2
3

.
7
 

=  
 

v  

  From 1v  and 2v  we may construct 1 2
1 3
1 7

P  
  

− 
= =  

 
v v  which diagonalizes A. By Theorem 8, the 

basis 1 2{ }B = ,v v  has the property that the B-matrix of the transformation Ax x  is a diagonal matrix. 

 15. Start by diagonalizing A. The characteristic polynomial is 2λ 7λ 10 (λ 5)(λ 2),− + = − −  so the 
eigenvalues of A are 5 and 2. 

  For λ = 5: 
1 2

5 .
1 2

− − 
− =  − − 

A I  The equation ( 5 )A I− =x 0  amounts to 1 22 0,x x+ =  so 1 22x x= −  with 

2x  free. A basis vector for the eigenspace is thus 1
2

.
1

− 
=  
 

v  

  For λ = 2: 
2 2

2 .
1 1

A I
− 

− =  − 
 The equation ( 2 )A I− =x 0  amounts to 1 2 0,− =x x  so 1 2x x=  with 2x  

free. A basis vector for the eigenspace is thus 2
1

.
1
 

=  
 

v  

  From 1v  and 2v  we may construct 1 2
2 1
1 1

P  
  

− 
= =  

 
v v  which diagonalizes A. By Theorem 8, the 

basis 1 2{ }B = ,v v  has the property that the B-matrix of the transformation Ax x  is a diagonal matrix. 

 16. Start by diagonalizing A. The characteristic polynomial is 2λ 5λ λ(λ 5),− = −  so the eigenvalues of A are 
5 and 0. 

  For λ = 5: 
3 6

5 .
1 2

− − 
− =  − − 

A I  The equation ( 5 )A I− =x 0  amounts to 1 22 0,x x+ =  so 1 22x x= −  with 

2x  free. A basis vector for the eigenspace is thus 1
2

.
1

− 
=  
 

v  

  For λ = 0: 
2 6

0 .
1 3

− 
− =  − 

A I  The equation ( 0 )A I− =x 0  amounts to 1 23 0,x x− =  so 1 23x x=  with  

2x  free. A basis vector for the eigenspace is thus 2
3

.
1
 

=  
 

v  
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  From 1v  and 2v  we may construct 1 2
2 3
1 1

P  
  

− 
= =  

 
v v  which diagonalizes A. By Theorem 8, the 

basis 1 2{ }B = ,v v  has the property that the B-matrix of the transformation Ax x  is a diagonal matrix. 

 17. a. We compute that 

   1 1
1 1 1 2

2
1 3 1 2

A
     

= = =     −     
b b  

  so 1b  is an eigenvector of A corresponding to the eigenvalue 2. The characteristic polynomial of A is 

2 2λ 4λ 4 (λ 2) ,− + = −  so 2 is the only eigenvalue for A. Now 
1 1

2 ,
1 1

− 
− =  − 

A I  which implies that 

the eigenspace corresponding to the eigenvalue 2 is one-dimensional. Thus the matrix A is not 
diagonalizable. 

 b. Following Example 4, if 1 2 , 
  = b bP  then the B-matrix for T is 

   1 4 5 1 1 1 1 1 5 2 1
1 1 1 3 1 3 1 4 0 2

P AP− − −         
= = =         − − −         

 

 18. If there is a basis B  such that [ ]BT  is diagonal, then A is similar to a diagonal matrix, by the second 
paragraph following Example 3. In this case, A would have three linearly independent eigenvectors. 
However, this is not necessarily the case, because A has only two distinct eigenvalues. 

 19. If A is similar to B, then there exists an invertible matrix P such that 1 .− =P AP B  Thus B is invertible 
because it is the product of invertible matrices. By a theorem about inverses of products, 

1 1 1 1 1 1 1( ) ,− − − − − − −= =B P A P P A P  which shows that 1A−  is similar to 1.−B  

 20. If 1,−=A PBP  then 2 1 1 1 1 1 2 1( )( ) ( ) .− − − − − −= = = ⋅ ⋅ =A PBP PBP PB P P BP PB I BP PB P  So 2A  is  

similar to 2.B  

 21. By hypothesis, there exist invertible P and Q such that 1P BP A− =  and 1 .− =Q CQ A  Then 
1 1 .− −=P BP Q CQ  Left-multiply by Q and right-multiply by 1Q−  to obtain 1 1 1 1.− − − −=QP BPQ QQ CQQ   

So 1 1 1 1 1( ) ( ),− − − − −= =C QP BPQ PQ B PQ  which shows that B is similar to C. 

 22. If A is diagonalizable, then 1A PDP−=  for some P. Also, if B is similar to A, then 1B QAQ−=   
for some Q. Then 1 1 1 1 1( ) ( ) ( ) ( ) ( )B Q PDP Q QP D P Q QP D QP− − − − −= = =  

  So B is diagonalizable. 

 23. If λ 0,= , ≠x x xA  then 1 1λ .P A P− −=x x  If 1 ,−=B P AP  then 

   1 1 1 1 1( ) ( ) λB P P AP P P A P− − − − −= = =x x x x  (*) 

  by the first calculation. Note that 1 0,− ≠xP  because 0≠x  and 1P−  is invertible. Hence (*) shows that 
1P− x  is an eigenvector of B corresponding to λ . (Of course, λ  is an eigenvalue of both A and B because 

the matrices are similar, by Theorem 4 in Section 5.2.) 

 24. If 1,−=A PBP  then 1 1rank rank ( ) rank ,− −= =A P BP BP  by Supplementary Exercise 13 in Chapter 4. 
Also, 1rank rank ,− =BP B  by Supplementary Exercise 14 in Chapter 4, since 1P−  is invertible. Thus 
rank rank .=A B  
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 25. If 1,−=A PBP  then 

   
1 1

1

tr( ) tr(( ) ) tr( ( )) By the trace property

tr( ) tr( ) tr( )

A PB P P PB

P PB IB B

− −

−

= =

= = =
 

  If B is diagonal, then the diagonal entries of B must be the eigenvalues of A, by the Diagonalization 
Theorem (Theorem 5 in Section 5.3). So tr tr {sum of the eigenvalues of }.= =A B A  

 26. If 1A PDP−=  for some P, then the general trace property from Exercise 25 shows that 
1tr tr [( ) ]A PD P−= = 1tr [ ] tr .− =P PD D  (Or, one can use the result of Exercise 25 that since A is similar  

to D, tr tr .=A D ) Since the eigenvalues of A are on the main diagonal of D, tr D is the sum of the 
eigenvalues of A. 

 27. For each ( ) ., =b bj jj I  Since the standard coordinate vector of any vector in n is just the vector itself, 

[ ( )] .=b bj jI ε  Thus the matrix for I relative to B  and the standard basis E  is simply 1 2 . 
  b b bn…  

This matrix is precisely the change-of-coordinates matrix BP  defined in Section 4.4. 

 28. For each ( ) ,, =b bj jj I  and [ ( )] [ ] .=b bj C j CI  By formula (4), the matrix for I relative to the bases B  
and C is 

  1 2[ ] [ ] [ ]C n CCM … 
  = b b b  

  In Theorem 15 of Section 4.7, this matrix was denoted by 
C B

P
←

 and was called the change-of-coordinates 

matrix from B  to .C  

 29. If 1{ },= , ,b bnB …  then the B-coordinate vector of jb  is ,e j  the standard basis vector for n. For 
instance, 

   1 1 21 0 0= ⋅ + ⋅ + + ⋅b b b bn
…  

  Thus j j j[ ( )] [ ] ,= =b b eB BI  and 

   1 1[ ] [ ( )] [ ( )] [ ]B B n B nI I I I 
 = = =b b e e  

 30. [M] If P is the matrix whose columns come from ,B  then the B-matrix of the transformation Ax x  is 
1 .−=D P AP  From the data in the text, 

   1 2 3

14 4 14 1 1 1
33 9 31 2 1 2
11 4 11 1 1 0

A P  
  

− − − − −   
   = − − , = = − − − ,   
   −   

b b b  

   
2 1 1 14 4 14 1 1 1 8 3 6
2 1 0 33 9 31 2 1 2 0 1 3
1 0 1 11 4 11 1 1 0 0 0 3

D
− − − − − − −       

       = − − − − − − =       
       − − − −       
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 31. [M] If P is the matrix whose columns come from ,B  then the B-matrix of the transformation Ax x   
is 1 .−=D P AP  From the data in the text, 

  

1 2 3

7 48 16 3 2 3
1 14 6 1 1 1
3 45 19 3 3 0

1 3 1 3 7 48 16 3 2 3 7 2 6
1 3 0 1 14 6 1 1 1 0 4 6
0 1 1 3 3 45 19 3 3 0 0 0 1

 
  

− − − − −   
   = , = = − ,   
   − − − − −   

− − − / − − − − − − − −       
       = − = − −       
       − − / − − − − − −       

b b bA P

D

 

 32. [M] 

15 66 44 33
0 13 21 15

,
1 15 21 12
2 18 22 8

− − − 
 − =
 − −
 − −  

A  

  ev = eig(A) = (2, 4, 4, 5) 

  nulbasis(A-ev(1)*eye(4))

0 0000
1 5000
1 5000
1 0000

. 
 − . =
 .
 .  

 

  A basis for the eigenspace of λ 2=  is 1

0
3

.
3
2

 
 − =
 
 
  

b  

  nulbasis(A-ev(2)*eye(4))

10 0000 13 0000
2 3333 1 6667
1 0000 0

0 1 0000

− . .   
   − . .   = ,
   .
   .      

 

  A basis for the eigenspace of λ 4=  is 2 3

30 39
7 5

{ } .
3 0
0 3

 −   
    −    , = ,                

b b  

  nulbasis(A-ev(4)*eye(4))

2 7500
0 7500
1 0000
1 0000

. 
 − . =
 .
 .  

 

  A basis for the eigenspace of λ 5=  is 4

11
3

.
4
4

 
 − =
 
 
  

b  

  The basis 1 2 3 4{ }B = , , ,b b b b  is a basis for 4 with the property that [ ]BT  is diagonal. 
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Note: The Study Guide comments on Exercise 25 and tells students that the trace of any square matrix A 
equals the sum of the eigenvalues of A, counted according to multiplicities. This provides a quick check on 
the accuracy of an eigenvalue calculation. You could also refer students to the property of the determinant 
described in Exercise 19 of Section 5.2. 

5.5 SOLUTIONS 

 1. 
1 2 1 2
1 3 1 3

A A I
λ

λ
λ

− − −   
= , − =   −   

 

   2det( λ ) (1 λ)(3 λ) ( 2) λ 4λ 5A I− = − − − − = − +  

  Use the quadratic formula to find the eigenvalues: 4 16 20 2 .2
± −= = ± iλ  Example 2 gives a shortcut 

for finding one eigenvector, and Example 5 shows how to write the other eigenvector with no effort. 

  For λ = 2 + i:   
1 2

(2 ) .
1 1

− − − 
− + =  − 

i
A i I

i
 The equation ( λ )A I− =x 0  gives 

   1 2

1 2

( 1 ) 2 0
(1 ) 0

i x x
x i x

− − − =
+ − =

 

  As in Example 2, the two equations are equivalent—each determines the same relation between 1x  and 

2.x  So use the second equation to obtain 1 2(1 ) ,= − −x i x  with 2x  free. The general solution is 

2
1

,
1

− + 
 
 

i
x  and the vector 1

1
1

i− + 
=  
 

v  provides a basis for the eigenspace. 

  For ∼λ = 2 – i:   Let 12
1

.
1

− − 
= =  

 
v v

i
 The remark prior to Example 5 shows that 2v  is automatically an 

eigenvector for 2 .+ i  In fact, calculations similar to those above would show that 2{ }v  is a basis for the 
eigenspace. (In general, for a real matrix A, it can be shown that the set of complex conjugates of the 
vectors in a basis of the eigenspace for λ  is a basis of the eigenspace for λ .) 

 2. 
5 5

.
1 1

− 
=  
 

A  The characteristic polynomial is 2λ 6λ 10,− +  so the eigenvalues of A are 

6 36 40λ 3 .2 i± −= = ±  

  For λ = 3 + i:   
2 5

(3 ) .
1 2

i
A i I

i
− − 

− + =  − − 
 The equation ( (3 ) )A i I− + =x 0  amounts to 

1 2( 2 ) 0,x i x+ − − =  so 1 2(2 )x i x= +  with 2x  free. A basis vector for the eigenspace is thus 1
2

.
1
+ 

=  
 

v
i

 

  For λ = 3 – i:   A basis vector for the eigenspace is 12
2

.
1
− 

= =  
 

v v
i
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 3. 
1 5

.
2 3

 
=  − 

A  The characteristic polynomial is 2λ 4λ 13,− +  so the eigenvalues of A are 

4 36λ 2 3 .2
± −= = ± i  

  For λ = 2 + 3i:   
1 3 5

(2 3 ) .
2 1 3

− − 
− + =  − − 

i
A i I

i
 The equation ( (2 3 ) )A i I− + =x 0  amounts to 

1 22 (1 3 ) 0,− + − =x i x  so 1 2
1 3

2
−= ix x  with 2x  free. A nice basis vector for the eigenspace is thus 

1
1 3

.
2
− 

=  
 

v
i

 

  For λ = 2 – 3i:   A basis vector for the eigenspace is 12
1 3

.
2
+ 

= =  
 

v v
i

 

 4. 
5 2

.
1 3

− 
=  
 

A  The characteristic polynomial is 2λ 8λ 17,− +  so the eigenvalues of A are 

8 4λ 4 .2
± −= = ± i  

  For λ = 4 + i:   
1 2

(4 ) .
1 1
− − 

− + =  − − 

i
A i I

i
 The equation ( (4 ) )A i I− + =x 0  amounts to 

1 2( 1 ) 0,+ − − =x i x  so 1 2(1 )x i x= +  with 2x  free. A basis vector for the eigenspace is thus 1
1

.
1
+ 

=  
 

v
i

 

  For λ = 4 – i:   A basis vector for the eigenspace is 12
1

.
1
− 

= =  
 

v v
i

 

 5. 
0 1

.
8 4

 
=  − 

A  The characteristic polynomial is 2λ 4λ 8,− +  so the eigenvalues of A are 

4 16λ 2 2 .2
± −= = ± i  

  For λ = 2 + 2i:   
2 2 1

(2 2 ) .
8 2 2

− − 
− + =  − − 

i
A i I

i
 The equation ( (2 2 ) )A i I− + =x 0  amounts to 

1 2( 2 2 ) 0,− − + =i x x  so 2 1(2 2 )x i x= +  with 1x  free. A basis vector for the eigenspace is thus 

1
1

.
2 2
 

=  + 
v

i
 

  For λ = 2 – 2i:   A basis vector for the eigenspace is 12
1

.
2 2
 

= =  − 
v v

i
 

 6. 
4 3

.
3 4

 
=  − 

A  The characteristic polynomial is 2λ 8λ 25,− +  so the eigenvalues of A are 

8 36λ 4 3 .2
± −= = ± i  
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  For λ = 4 + 3i: 
3 3

(4 3 ) .
3 3

− 
− + =  − − 

i
A i I

i
 The equation ( (4 3 ) )− + =x 0A i I amounts to 1 2 0,+ =x ix  so 

1 2x ix= −  with 2x  free. A basis vector for the eigenspace is thus 1 .
1
− 

=  
 

v
i

 

  For λ = 4 – 3i:   A basis vector for the eigenspace is 12 .
1
 

= =  
 

v v
i

 

 7. 
3 1

.
1 3

 
 
 
 
  

−
=A  From Example 6, the eigenvalues are 3 .± i  The scale factor for the transformation 

Ax x  is 2 2λ ( 3) 1 2.r =| |= + =  For the angle of rotation, plot the point ( ) ( 3 1)a b, = ,  in the  
xy-plane and use trigonometry: 

   ϕ = arctan ( )b a/ =  arctan (1 3) 6/ = π/  radians. 

 

Note: Your students will want to know whether you permit them on an exam to omit calculations for a matrix 

of the form 
a b
b a

− 
 
 

 and simply write the eigenvalues .±a bi  A similar question may arise about the 

corresponding eigenvectors, 
1
i

 
 − 

 and 
1

,
 
 
 i

 which are announced in the Practice Problem. Students may have 

trouble keeping track of the correspondence between eigenvalues and eigenvectors. 

 8. 
3 3

.
3 3

 
 
 
 
  

=
−

A  From Example 6, the eigenvalues are 3 3 .± i  The scale factor for the transformation 

Ax x  is 2 2λ ( 3) 3 2 3.= | | = + =r  From trigonometry, the angle of rotation ϕ  is arctan ( )b a/ =  

arctan ( 3 3) 3− / = −π/  radians. 

 9. 
3 2 1 2

.
1 2 3 2

 − / /
=  

− / − /  
A  From Example 6, the eigenvalues are 3 2 (1 2) .− / ± / i  The scale factor for the 

transformation Ax x  is 2 2λ ( 3 2) (1 2) 1.= | | = − / + / =r  From trigonometry, the angle of rotation ϕ  

is arctan ( )b a/ =  arctan (( 1 2) ( 3 2)) 5 6− / / − / = − π/  radians. 
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 10. 
5 5

.
5 5

− − 
=  − 

A  From Example 6, the eigenvalues are 5 5 .− ± i  The scale factor for the transformation 

Ax x  is 2 2λ ( 5) 5 5 2.= | | = − + =r  From trigonometry, the angle of rotation ϕ  is 
arctan( ) arctan(5 ( 5)) 3 4b a/ = / − = π/  radians. 

 11. 
1 1

.
1 1

. . 
=  −. . 

A  From Example 6, the eigenvalues are 1 1 .. ± . i  The scale factor for the transformation 

Ax x  is 2 2λ ( 1) ( 1) 2 10.= | | = . + . = /r  From trigonometry, the angle of rotation ϕ  is arctan ( )b a/ =  
arctan ( 1 1) 4−. /. = −π/  radians. 

 12. 
0 3

.
3 0

. 
=  −. 

A  From Example 6, the eigenvalues are 0 3 .± . i  The scale factor for the transformation 

Ax x  is 2 2λ 0 ( 3) 3.r =| |= + . = .  From trigonometry, the angle of rotation ϕ  is arctan ( )b a/ =  arctan 
( ) 2−∞ = −π/  radians. 

 13. From Exercise 1, λ 2 ,= ± i  and the eigenvector 
1
1

i− − 
=  
 

v  corresponds to λ 2 .= − i  Since Re 
1
1

− 
=  
 

v  

and Im 
1

,
  0
− 

=  
 

v  take 
1 1

.
1 0

− − 
=  
 

P  Then compute 

   1 0 1 1 2 1 1 0 1 3 1 2 1
1 1 1 3 1 0 1 1 2 1 1 2

C P AP− − − − − − −           
= = = =           − − − − −           

 

  Actually, Theorem 9 gives the formula for C. Note that the eigenvector v corresponds to a bi−  instead 

of .+a bi  If, for instance, you use the eigenvector for 2 ,+ i  your C will be 
2 1

.
1 2

 
 − 

 

Notes: The Study Guide points out that the matrix C is described in Theorem 9 and the first column of C is 
the real part of the eigenvector corresponding to ,−a bi  not ,+a bi  as one might expect. Since students may 
forget this, they are encouraged to compute C from the formula 1 ,−=C P AP  as in the solution above. 

The Study Guide also comments that because there are two possibilities for C in the factorization of a 
2 2×  matrix as in Exercise 13, the measure of rotation of the angle associated with the transformation 

Ax x  is determined only up to a change of sign. The “orientation” of the angle is determined by the change 
of variable .=x uP  See Figure 4 in the text. 

 14. 
5 5

.
1 1

− 
=  
 

A  From Exercise 2, the eigenvalues of A are λ 3 ,= ± i  and the eigenvector  

2
1

i− 
=  
 

v  corresponds to λ 3 .= − i  By Theorem 9, 
2 1

[Re   Im ]
1 0

P
− 

= =  
 

v v  and 

  1 0 1 5 5 2 1 3 1
1 2 1 1 1 0 1 3

C P AP− − − −       
= = =       −       
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 15. 
1 5

.
2 3

 
=  − 

A  From Exercise 3, the eigenvalues of A are λ 2 3 ,= ± i  and the eigenvector  

1 3
2

i+ 
=  
 

v  corresponds to λ 2 3 .i= −  By Theorem 9, [Re   Im ]P = =v v
1 3
2 0
 
 
 

 and 

  1 0 3 1 5 1 3 2 31
2 1 2 3 2 0 3 26

C P AP− − −       
= = =       − −       

 

 16. 
5 2

.
1 3

− 
=  
 

A  From Exercise 4, the eigenvalues of A are λ 4 ,= ± i  and the eigenvector  

1
1

i− 
=  
 

v  corresponds to λ 4 .= − i  By Theorem 9, [ ] 1 1
Re Im 

1 0
P

− 
= =  

 
v v  and 

  1 0 1 5 2 1 1 4 1
1 1 1 3 1 0 1 4

C P AP− − − −       
= = =       −       

 

 17. 
1 8

.
4 2 2

−. 
=  − . 

A  The characteristic polynomial is 2λ 1 2λ 1,+ . +  so the eigenvalues of A are λ 6 8 .= −. ± . i  

To find an eigenvector corresponding to 6 8 ,−. − . i  we compute 

   
1 6 8 8

( 6 8 )
4 1 6 8

i
A i I

i
. + . −. 

− −. − . =  − . + . 
 

  The equation ( ( 6 8 ) )A i I− −. − . =x 0  amounts to 1 24 ( 1 6 8 ) 0,+ − . + . =x i x  so 1 2((2 ) 5)x i x= − /   

with 2x  free. A nice eigenvector corresponding to 6 8i−. − .  is thus 
2

.
5
− 

=  
 

v
i

 By Theorem 9, 

[ ] 2 1
Re Im 

5 0
P

− 
= =  

 
v v  and 1 0 1 1 8 2 1 6 81

5 1 4 2 2 5 0 8 65
C P AP− −. − −. −.       

= = =       − − . . −.       
 

 18. 
1 1

.
4 6

− 
=  . . 

A  The characteristic polynomial is 2λ 1 6λ 1,− . +  so the eigenvalues of A are λ 8 6 .= . ± . i  To 

find an eigenvector corresponding to 8 6 ,. − . i  we compute 

   
2 6 1

( 8 6 )
4 2 6

i
A i I

i
. + . − 

− . − . =  . −. + . 
 

  The equation ( ( 8 6 ) )A i I− . − . =x 0  amounts to 1 24 ( 2 6 ) 0,. + −. + . =x i x  so 1 2((1 3 ) 2)x i x= − /  with 2x  free. 

A nice eigenvector corresponding to 8 6i. − .  is thus 
1 3

.
2
− 

=  
 

v
i

 By Theorem 9, 

[ ] 1 3
Re Im 

2 0
P

− 
= =  

 
v v  and 1 0 3 1 1 1 3 8 61

2 1 4 6 2 0 6 86
C P AP− − − . −.       

= = =       − . . . .       
 



5.5 • Solutions   299 

 19. 
1 52 7

.
56 4

. −. 
=  . . 

A  The characteristic polynomial is 2λ 1 92λ 1,− . +  so the eigenvalues of A are 

λ 96 28 .= . ± . i  To find an eigenvector corresponding to 96 28 ,. − . i  we compute 

   
56 28 7

( 96 28 )
56 56 28

i
A i I

i
. + . −. 

− . − . =  . −. + . 
 

  The equation ( ( 96 28 ) )A i I− . − . =x 0  amounts to 1 256 ( 56 28 ) 0,. + −. + . =x i x  so 1 2((2 ) 2)x i x= − /  with 

2x  free. A nice eigenvector corresponding to 96 28i. − .  is thus 
2

.
2
− 

=  
 

v
i

 By Theorem 9, 

[ ] 2 1
Re Im 

2 0
P

− 
= =  

 
v v  and 1 0 1 1 52 7 2 1 96 281

2 2 56 4 2 0 28 962
C P AP− . −. − . −.       

= = =       − . . . .       
 

 20. 
1 64 2 4

.
1 92 2 2

− . − . 
=  . . 

A  The characteristic polynomial is 2λ 56λ 1,− . +  so the eigenvalues of A are 

λ 28 96 .= . ± . i  To find an eigenvector corresponding to 28 96 ,. − . i  we compute 

   
1 92 96 2 4

( 28 96 )
1 92 1 92 96

i
A i I

i
− . + . − . 

− . − . =  . . + . 
 

  The equation ( ( 28 96 ) )A i I− . − . =x 0  amounts to 1 21 92 (1 92 96 ) 0,. + . + . =x i x  so 1 2(( 2 ) 2)x i x= − − /  with 

2x  free. A nice eigenvector corresponding to 28 96i. − .  is thus 
2

.
2

− − 
=  
 

v
i

 By Theorem 9, 

[ ] 2 1
Re Im 

2 0
P

− − 
= =  

 
v v  and 1 0 1 1 64 2 4 2 1 28 961

2 2 1 92 2 2 2 0 96 282
C P AP− − . − . − − . −.       

= = =       − − . . . .       
 

 21. The first equation in (2) is 1 2( 3 6 ) 6 0.−. + . − . =i x x  We solve this for 2x  to find that 

2 1 1(( 3 6 ) 6) (( 1 2 ) 2) .= −. + . /. = − + /x i x i x  Letting 1 2,=x  we find that 
2

1 2i
 

=  − + 
y  is an eigenvector for 

the matrix A. Since 1
2 2 41 2 1 2

1 2 55 5
ii i

i
− −   − + − += = =   − +   

y v  the vector y is a complex multiple of the 

vector 1v  used in Example 2. 

 22. Since ( ) ( ) (λ ) λ( )= = = ,x x x x xA Aµ µ µ µ µ  is an eigenvector of A. 

 23.  (a) properties of conjugates and the fact that T T=x x  
(b) =x xA A  and A is real 
(c) T Ax x  is a scalar and hence may be viewed as a 1 1×  matrix 
(d) properties of transposes 
(e) TA A=  and the definition of q 

 24. ( )T T TA = λ = λ ⋅x x x x x x  because x is an eigenvector. It is easy to see that Tx x  is real (and positive) 
because zz  is nonnegative for every complex number z. Since T Ax x  is real, by Exercise 23, so is λ.  
Next, write ,= +x u vi  where u and v are real vectors. Then 

  ( ) and λ λ λA A i A iA i= + = + = +x u v u v x u v  
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  The real part of Ax is Au because the entries in A, u, and v are all real. The real part of λx  is λu  because 
λ  and the entries in u and v are real. Since Ax and λx  are equal, their real parts are equal, too. (Apply 
the corresponding statement about complex numbers to each entry of Ax.) Thus λ ,=u uA  which shows 
that the real part of x is an eigenvector of A. 

 25. Write Re (Im ),= +x x xi  so that (Re ) (Im ).= +x x xA A iA  Since A is real, so are (Re )A x  and (Im ).xA  
Thus (Re )A x  is the real part of Ax and (Im )A x  is the imaginary part of Ax. 

 26. a. If λ ,= −a bi  then 

  
Re Im 

λ ( )(Re  Im )
(  Re  Im ) (  Im  Re )

Av Av

A a bi i
a b i a b

= = − +
= + + −

v v v v
v v v v  

  By Exercise 25, 

  
(Re ) Re  Re  Im 
(Im ) Im  Re  Im 

A A a b
A A b a

= = +
= = − +

v v v v
v v v v

 

b. Let [ ]Re Im .= v vP  By (a), 

  (Re ) (Im )
a b

A P A P
b a

−   
= , =   

   
v v  

  So 

  
[ ](Re ) (Im )=

 − −     
= = =      

      

v vAP A A

a b a b
P P P PC

b a b a
 

 27. 

7 1 1 2 0 1 7
2 0 4 0 8 6 7 4

[ ]
0 5 1 0 1 0

1 0 2 8 6 0 5 3

. . . . 
 − . − . − . − . =
 −. − . − .
 . . . .  

M A  

  ev = eig(A)=(.2+.5i,.2-.5i,.3+.1i,.3-.1i) 

  For λ 2 5 ,= . − . i  an eigenvector is 
  nulbasis(A-ev(2)*eye(4)) =  
   0.5000 - 0.5000i 

  -2.0000 + 0.0000i 

   0.0000 - 0.0000i 

   1.0000 

  so that 1

5 5
2

0
1

i. − . 
 − =
 
 
  

v  

  For 3 1 ,λ = . − . i  an eigenvector is 
  nulbasis(A-ev(4)*eye(4))= 
  -0.5000 - 0.0000i 

   0.0000 + 0.5000i 
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  -0.7500 - 0.2500i 
   1.0000 

  so that v 2

5
5

75 25
1

i
i

−. 
 . =
 −. − .
 
  

 

  Hence by Theorem 9, 1 1 2 2

5 5 5 0
2 0 0 5

Re Im Re Im 
0 0 75 25
1 0 1 0

P  
  

. −. −. 
 − . = =
 −. −.
 
  

v v v v  and 

2 5 0 0
5 2 0 0

.
0 0 3 1
0 0 1 3

. −. 
 . . =
 . −.
 . .  

C  Other choices are possible, but C must equal 1 .−P AP  

 28. 

1 4 2 0 2 0 2 0
1 3 8 1 6

[ ]
3 1 9 1 6 1 4

2 0 3 3 2 3 2 6

A

− . − . − . − . 
 − . −. −. −. =
 . − . − . − .
 . . . .  

M  

  ev = eig(A)=(-.4+i,-.4-i,-.2+.5i,-.2-.5i) 

  For λ 4 ,= −. − i  an eigenvector is 
 nulbasis(A-ev(2)*eye(4)) =  
 -1.0000 - 1.0000i 

 -1.0000 + 1.0000i 

  1.0000 - 1.0000i 

  1.0000 

  so that 1

1
1

1
1

i
i

i

− − 
 − + =
 −
 
  

v  

  For λ 2 5 ,= −. − . i  an eigenvector is 
   nulbasis(A-ev(4)*eye(4)) =  
    0.0000 - 0.0000i 

   -0.5000 - 0.5000i 

   -0.5000 + 0.5000i 

    1.0000 

  so that 2

0
1
1

2

i
i

 
 − − =
 − +
 
  

v  
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  Hence by Theorem 9, 1 1 2 2

1 1 0 0
1 1 1 1

Re Im Re Im 
1 1 1 1
1 0 2 0

P  
  

− − 
 − − − = =
 − −
 
  

v v v v  and 

4 1 0 0
1 4 0 0

.
0 0 2 5
0 0 5 2

−. − 
 −. =
 −. −.
 . −.  

C  Other choices are possible, but C must equal 1 .−P AP  

5.6 SOLUTIONS 

 1. The exercise does not specify the matrix A, but only lists the eigenvalues 3 and 1/3, and the 

corresponding eigenvectors 1
1
1
 

=  
 

v  and 2
1

.
1

− 
=  
 

v  Also, 0
9

.
1
 

=  
 

x  

a. To find the action of A on 0 ,x  express 0x  in terms of 1v  and 2.v  That is, find 1c  and 2c  such that 

0 1 1 2 2.= +x v vc c  This is certainly possible because the eigenvectors 1v  and 2v  are linearly 
independent (by inspection and also because they correspond to distinct eigenvalues) and hence form 
a basis for 2.R  (Two linearly independent vectors in 2R  automatically span 2.R ) The row reduction 

1 2 0
1 1 9 1 0 5
1 1 1 0 1 4

 
  

−   
=    −   

v v x ∼  shows that 0 1 25 4 .= −x v v  Since 1v  and 2v  are 

eigenvectors (for the eigenvalues 3 and 1/3): 

   1 0 1 2 1 2
15 4 3 49 3

5 4 5 3 4 (1 3)
15 4 3 41 3

A A A
− / /     

= = − = ⋅ − ⋅ / = − =     / /     
x x v v v v  

b. Each time A acts on a linear combination of 1v  and 2 ,v  the 1v  term is multiplied by the eigenvalue  
3 and the 2v  term is multiplied by the eigenvalue 1/3: 

   2 2
2 1 1 2 1 2[5 3 4(1 3) ] 5(3) 4(1 3)A A= = ⋅ − / = − /x x v v v v  

  In general, 1 25(3) 4(1 3) ,= − /x v vk k
k  for 0.≥k  

 2. The vectors 1 2 3

1 2 3
0 1 3
3 5 7

−     
     = , = , = −     
     − −     

v v v  are eigenvectors of a 3 3×  matrix A, corresponding to 

eigenvalues 3, 4/5, and 3/5, respectively. Also, 0

2
5 .
3

− 
 = − 
  

x  To describe the solution of the equation 

1 ( 1 2 ),+ = = , ,x xk kA k …  first write 0x  in terms of the eigenvectors. 

   1 0 1 2 32 3 0

1 2 3 2 1 0 0 2
0 1 3 5 0 1 0 1 2 2
3 5 7 3 0 0 0 2

 
  

− −   
   = − − ⇒ = + +   
   − −   

∼v v v x x v v v  
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  Then, 1 1 2 3 1 2 3 1 2 3(2 2 ) 2 2 2 3 (4 5) 2 (3 5) .A A A A= + + = + + = ⋅ + / + ⋅ /x v v v v v v v v v  In general, 

1 2 32 3 (4 5) 2 (3 5) .k k k
k = ⋅ + / + ⋅ /x v v v  For all k sufficiently large, 

   1

1
2 3 2 3 0

3

k k
k

 
 ≈ ⋅ = ⋅  
 − 

x v  

 3. 25 4
det( ) ( 5 )(1 1 ) 08 1 6 63.

2 1 1
. . 

= , − = . − . − + . = − . + . −. . 
A A Iλ λ λ λ λ  This characteristic polynomial 

factors as ( 9)( 7),− . − .λ λ  so the eigenvalues are .9 and .7. If 1v  and 2v  denote corresponding 
eigenvectors, and if 0 1 1 2 2 ,= +x v vc c  then 

   1 1 1 2 2 1 1 2 2 1 1 2 2( ) ( 9) ( 7)A c c c A c A c c= + = + = . + .x v v v v v v   
  and for 1,≥k  

   1 1 2 2( 9) ( 7)k k
k c c= . + .x v v  

  For any choices of 1c  and 2 ,c  both the owl and wood rat populations decline over time. 

 4. 25 4
det( ) ( 5 )(1 1 ) ( 4)( 125) 1 6 6.

125 1 1
. . 

= , − = . − . − − . . = − . + . −. . 
A A Iλ λ λ λ λ  This characteristic 

polynomial factors as ( 1)( 6),− − .λ λ  so the eigenvalues are 1 and .6. For the eigenvalue 1, solve 
5 4 0 5 4 0

( ) 0 .
125 1 0 0 0 0
−. . −   

− = :    −. .   
x ∼A I  A basis for the eigenspace is 1

4
.

5
 

=  
 

v  Let 2v  be an 

eigenvector for the eigenvalue .6. (The entries in 2v  are not important for the long-term behavior of the 
system.) If 0 1 1 2 2 ,= +x v vc c  then 1 1 1 2 2 1 1 2 2( 6) ,= + = + .x v v v vc A c A c c  and for k sufficiently large, 

   1 2 2 1
4 4

( 6)
5 5

k
k c c c

   
= + . ≈   

   
x v  

  Provided that 1 0,≠c  the owl and wood rat populations each stabilize in size, and eventually the 
populations are in the ratio of 4 owls for each 5 thousand rats. If some aspect of the model were to 
change slightly, the characteristic equation would change slightly and the perturbed matrix A might not 
have 1 as an eigenvalue. If the eigenvalue becomes slightly large than 1, the two populations will grow; 
if the eigenvalue becomes slightly less than 1, both populations will decline. 

 5. 24 3
det( ) 1 6 5775.

325 1 2
. . 

= , − = − . + . −. . 
A A Iλ λ λ  The quadratic formula provides the roots of the 

characteristic equation: 

   
21 6 1 6 4( 5775) 1 6 25 1 05 and 55
2 2

λ . ± . − . . ± .= = = . .  

  Because one eigenvalue is larger than one, both populations grow in size. Their relative sizes are 
determined eventually by the entries in the eigenvector corresponding to 1.05. Solve ( 1 05 ) :− . =x 0A I  

   1
65 3 0 13 6 0 6

An eigenvector is 
325 15 0 0 0 0 13

−. . −     
. = .     −. .     

v∼  

  Eventually, there will be about 6 spotted owls for every 13 (thousand) flying squirrels. 
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 6. When 
4 3

5 ,
5 1 2

. . 
= . , =  −. . 

p A  and 2det( ) 1 6 63 ( 9)( 7).− = − . + . = − . − .A Iλ λ λ λ λ  

  The eigenvalues of A are .9 and .7, both less than 1 in magnitude. The origin is an attractor for the 
dynamical system and each trajectory tends toward 0. So both populations of owls and squirrels 
eventually perish. 

  The calculations in Exercise 4 (as well as those in Exercises 35 and 27 in Section 5.1) show that if the 
largest eigenvalue of A is 1, then in most cases the population vector kx  will tend toward a multiple  
of the eigenvector corresponding to the eigenvalue 1. [If 1v  and 2v  are eigenvectors, with 1v  
corresponding to 1,=λ  and if 0 1 1 2 2 ,= +x v vc c  then kx  tends toward 1 1,vc  provided 1c  is not zero.] So 
the problem here is to determine the value of the predation parameter p such that the largest eigenvalue 
of A is 1. Compute the characteristic polynomial: 

   24 3
det ( 4 )(1 2 ) 3 1 6 ( 48 3 )

1 2
p p

p
λ

λ λ λ λ
λ

. − . 
= . − . − + . = − . + . + . − . − 

 

  By the quadratic formula, 

   
21 6 1 6 4( 48 3 )

2
pλ . ± . − . + .

=  

  The larger eigenvalue is 1 when 

   21 6 1 6 4( 48 3 ) 2 and 2 56 1 92 1 2 4p p. + . − . + . = . − . − . = .  

  In this case, 64 1 2 16,. − . = .p  and 4.p = .  

 7. a. The matrix A in Exercise 1 has eigenvalues 3 and 1/3. Since 3 1| | >  and 1 3 1,| / | <  the origin is a 
saddle point. 

 b. The direction of greatest attraction is determined by 2
1

,
1

− 
=  
 

v  the eigenvector corresponding to the 

eigenvalue with absolute value less than 1. The direction of greatest repulsion is determined by 

1
1

,
1
 

=  
 

v  the eigenvector corresponding to the eigenvalue greater than 1. 

 c. The drawing below shows: (1) lines through the eigenvectors and the origin, (2) arrows toward the 
origin (showing attraction) on the line through 2v  and arrows away from the origin (showing 
repulsion) on the line through 1,v  (3) several typical trajectories (with arrows) that show the general 
flow of points. No specific points other than 1v  and 2v  were computed. This type of drawing is 
about all that one can make without using a computer to plot points. 
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Note: If you wish your class to sketch trajectories for anything except saddle points, you will need to go 
beyond the discussion in the text. The following remarks from the Study Guide are relevant. 

Sketching trajectories for a dynamical system in which the origin is an attractor or a repellor is more 
difficult than the sketch in Exercise 7. There has been no discussion of the direction in which the trajectories 
“bend” as they move toward or away from the origin. For instance, if you rotate Figure 1 of Section 5.6 
through a quarter-turn and relabel the axes so that 1x  is on the horizontal axis, then the new figure 
corresponds to the matrix A with the diagonal entries .8 and .64 interchanged. In general, if A is a diagonal 
matrix, with positive diagonal entries a and d, unequal to 1, then the trajectories lie on the axes or on curves 
whose equations have the form 2 1( ) ,= sx r x  where (ln ) (ln )s d a= /  and r depends on the initial point 0.x  
(See Encounters with Chaos, by Denny Gulick, New York: McGraw-Hill, 1992, pp. 147–150.) 

 8. The matrix from Exercise 2 has eigenvalues 3, 4/5, and 3/5. Since one eigenvalue is greater than 1 and 
the others are less than one in magnitude, the origin is a saddle point. The direction of greatest repulsion 
is the line through the origin and the eigenvector (1 0 3), ,−  for the eigenvalue 3. The direction of greatest 
attraction is the line through the origin and the eigenvector ( 3 3 7)− ,− ,  for the smallest eigenvalue 3/5. 

 9. 21 7 3
det( ) λ 2 5λ 1 0

1 2 8
A A I

. −. 
= , − λ = − . + = − . . 

 

   
22 5 2 5 4(1) 2 5 2 25 2 5 1 5λ 2 and 5

2 2 2
. ± . − . ± . . ± .= = = = .  

  The origin is a saddle point because one eigenvalue is greater than 1 and the other eigenvalue is less than 
1 in magnitude. The direction of greatest repulsion is through the origin and the eigenvector 1v  found 

below. Solve 
3 3 0 1 1 0

( 2 ) ,
1 2 1 2 0 0 0 0

A I
−. −.   

− = :    − . − .   
∼x 0  so x1 = –x2, and x2 is free. Take 1

1
.

1
− 

=  
 

v  

The direction of greatest attraction is through the origin and the eigenvector 2v  found below. Solve 
1 2 3 0 1 25 0

( 5 ) ,
1 2 3 0 0 0 0
. −. −.   

− . = :    − . .   
x 0 ∼A I  so 1 225 ,= −.x x  and 2x  is free. Take 2

1
.

4
 

=  
 

v  

 10. 23 4
det( λ ) λ 1 4λ 45 0

3 1 1
A A I

. . 
= , − = − . + . = −. . 

 

   
21 4 1 4 4( 45) 1 4 16 1 4 4λ 5 and 9

2 2 2
. ± . − . . ± . . ± .= = = = . .  

  The origin is an attractor because both eigenvalues are less than 1 in magnitude. The direction of greatest 
attraction is through the origin and the eigenvector 1v  found below. Solve 

2 4 0 1 2 0
( 5 ) ,

3 6 0 0 0 0
−. . −   

− . = :    −. .   
x 0 ∼A I  so 1 22 ,=x x  and 2x  is free. Take 1

2
.

1
 

=  
 

v  

 11. 24 5
det( λ ) λ 1 7λ 72 0

4 1 3
A A I

. . 
= , − = − . + . = −. . 

 

   
21 7 1 7 4( 72) 1 7 01 1 7 1λ 8 and 9

2 2 2
. ± . − . . ± . . ± .= = = = . .  

  The origin is an attractor because both eigenvalues are less than 1 in magnitude. The direction of greatest 
attraction is through the origin and the eigenvector 1v  found below. Solve 

4 5 0 1 1 25 0
( 8 ) ,

4 5 0 0 0 0
−. . − .   

− . = :    −. .   
x 0 ∼A I  so 1 21 25 ,= .x x  and 2x  is free. Take 1

5
.

4
 

=  
 

v  
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 12. 25 6
det( λ ) λ 1 9λ 88 0

3 1 4
A A I

. . 
= , − = − . + . = −. . 

 

   
21 9 1 9 4( 88) 1 9 09 1 9 3λ 8 and 1 1

2 2 2
. ± . − . . ± . . ± .= = = = . .  

  The origin is a saddle point because one eigenvalue is greater than 1 and the other eigenvalue is less than 
1 in magnitude. The direction of greatest repulsion is through the origin and the eigenvector 1v  found 

below. Solve 
6 6 0 1 1 0

( 1 1 ) ,
3 3 0 0 0 0

−. . −   
− . = :    −. .   

x 0 ∼A I  so 1 2 ,=x x  and 2x  is free. Take 1
1

.
1
 

=  
 

v  

The direction of greatest attraction is through the origin and the eigenvector 2v  found below. Solve 
3 6 0 1 2 0

( 8 ) ,
3 6 0 0 0 0

−. . −   
− . = :    −. .   

x 0 ∼A I  so 1 22 ,=x x  and 2x  is free. Take 2
2

.
1
 

=  
 

v  

 13. 28 3
det( λ ) λ 2 3λ 1 32 0

4 1 5
A A I

. . 
= , − = − . + . = −. . 

 

   
22 3 2 3 4(1 32) 2 3 01 2 3 1λ 1 1 and 1 2
2 2 2

. ± . − . . ± . . ± .= = = = . .  

  The origin is a repellor because both eigenvalues are greater than 1 in magnitude. The direction of 
greatest repulsion is through the origin and the eigenvector 1v  found below. Solve 

4 3 0 1 75 0
( 1 2 ) ,

4 3 0 0 0 0
−. . −.   

− . = :    −. .   
x 0 ∼A I  so 1 275 ,= .x x  and 2x  is free. Take 1

3
.

4
 

=  
 

v  

 14. 21 7 6
det( λ ) λ 2 4λ 1 43 0

4 7
A A I

. . 
= , − = − . + . = −. . 

 

   
22 4 2 4 4(1 43) 2 4 04 2 4 2λ 1 1 and 1 3
2 2 2

. ± . − . . ± . . ± .= = = = . .  

  The origin is a repellor because both eigenvalues are greater than 1 in magnitude. The direction of 
greatest repulsion is through the origin and the eigenvector 1v  found below. Solve 

4 6 0 1 1 5 0
( 1 3 ) ,

4 6 0 0 0 0
. . .   

− . = :    −. −.   
x 0 ∼A I  so 1 21 5 ,= − .x x  and 2x  is free. Take 1

3
.

2
− 

=  
 

v  

 15. 
4 0 2
3 8 3 .
3 2 5

. . 
 = . . . 
 . . . 

A  Given eigenvector 1

1
6
3

. 
 = . 
 . 

v  and eigenvalues .5 and .2. To find the eigenvalue for 1,v  

compute 

   1 1 1

4 0 2 1 1
3 8 3 6 6 1 Thus is an eigenvector for 1
3 2 5 3 3

A λ
. . . .     
     = . . . . = . = ⋅ = .     
     . . . . .     

v v v  

  
1 3

2 3 2

3

1 0 2 0 1 0 2 0 2 2
For 5 3 3 3 0 0 1 3 0 3 .  Set 3

3 2 0 0 0 0 0 0 is free 1

−. . − =     
     = . : . . . , = − = − .     
     . .     

v∼
x x
x x
x

λ  
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1 3

2 3

3

2 0 2 0 1 0 1 0 1
For 2 3 6 3 0 0 1 0 0 , 0 . Set 0

3 2 3 0 0 0 0 0  is free 1

. . = − −     
     = . : . . . = =     
     . . .     

v∼
x x
x
x

λ  

  Given 0 (0 3 7),= , . , .x  find weights such that 0 1 1 2 3 3.= + +x v v vc c c  

   1 2 3 0

1 2 1 0 1 0 0 1
6 3 0 3 0 1 0 1 .
3 1 1 7 0 0 0 3

 
  

. −   
   = . − . .   
   . . .   

v v v x ∼  

   
0 1 2 3

1 1 2 3 1 2 3

1 2 3 1

1 3
1 3 1( 5) 3( 2)  and

1( 5) 3( 2) As  increases   approaches k k
k k

A A A
k

= + . + .
= + . + . = + . . + . . ,
= +. . +. . . , .

x v v v
x v v v v v v
x v v v x v

 

 16. [M] 

   

90 01 09 1 0000
01 90 01 0 8900 To four decimal places
09 09 90 8100

0 9192 91 99
0 1919  Exact  19 99
1 0000 1

. . . .   
   = . . . ⋅ = . . ,   
   . . . .   

. /   
   . . : /   
   .   

1

2

ev =eig(A)

v =nulbasis(A-eye(3))=

v =nulbasis(A-ev(2)

A

1
1
0

1
0
1

− 
 
 
  
− 
 
 
  

3

*eye(3))=

v =nulbasis(A-ev(3)*eye(3))=

 

  The general solution of the dynamical system is 1 1 2 2 3 3( 89) ( 81) .= + . + .x v v vk k
k c c c  

Note: When working with stochastic matrices and starting with a probability vector (having nonnegative 
entries whose sum is 1), it helps to scale 1v  to make its entries sum to 1. If 1 (91 209 19 209 99 209),= / , / , /v  or 
( 435 091 474). , . , .  to three decimal places, then the weight 1c  above turns out to be 1. See the text’s discussion 
of Exercise 27 in Section 5.2. 

 17. a. 
0 1 6
3 8

A
. 

=  . . 
 

 b. 21 6
det 8 48 0.

3 8
− . 

= − . − . = . . − 

λ
λ λ

λ
 The eigenvalues of A are given by 

   
28 ( 8) 4( 48) 8 2 56 8 1 6 1 2 and 4
2 2 2

λ . ± −. − −. . ± . . ± .= = = = . − .  

  The numbers of juveniles and adults are increasing because the largest eigenvalue is greater than 1. 
The eventual growth rate of each age class is 1.2, which is 20% per year. 
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  To find the eventual relative population sizes, solve ( 1 2 ) :− . =x 0A I  

   1 2
1

          2

(4 3)1 2 1 6 0 1 4 3 0 4
  Set 

is free3 4 0 0 0 0 3
x x
x

= /− . . − /     
. . = .     . −.     

v∼  

  Eventually, there will be about 4 juveniles for every 3 adults. 
c. [M] Suppose that the initial populations are given by 0 (15 10).= ,x  The Study Guide describes how to 

generate the trajectory for as many years as desired and then to plot the values for each population. 
Let ( j a ).= ,xk k k  Then we need to plot the sequences {j } {a } {j a },, , +k k k k  and {j a }./k k  Adjacent 
points in a sequence can be connected with a line segment. When a sequence is plotted, the resulting 
graph can be captured on the screen and printed (if done on a computer) or copied by hand onto paper 
(if working with a graphics calculator). 

 18. a. 
0 0 42
6 0 0
0 75 95

A
. 

 = . 
 . . 

 

 b. 
0 0774 0 4063
0 0774 0 4063
1 1048

i
i

. + . 
 . − . 
 . 

ev =eig(A)=  

  The long-term growth rate is 1.105, about 10.5 % per year. 

  
0 3801
0 2064
1 0000

. 
 = . 
 . 

v =nulbasis(A-ev(3)*eye(3))  

  For each 100 adults, there will be approximately 38 calves and 21 yearlings. 

Note: The MATLAB box in the Study Guide and the various technology appendices all give directions for 
generating the sequence of points in a trajectory of a dynamical system. Details for producing a graphical 
representation of a trajectory are also given, with several options available in MATLAB, Maple, and 
Mathematica. 

5.7 SOLUTIONS 

 1. From the “eigendata” (eigenvalues and corresponding eigenvectors) given, the eigenfunctions for the 
differential equation A′ =x x  are 4

1
tev  and 2

2 .v te  The general solution of A′ =x x  has the form 

   4 2
1 2

3 1
1 1

t tc e c e
− −   

+   
   

 

  The initial condition 
6

(0)
1

− 
=  
 

x  determines 1c  and 2 :c  

   

4(0) 2(0)
1 2

3 1 6
1 1 1

3 1 6 1 0 5 2
1 1 1 0 1 3 2

− − −     
+ =     

     
− − − /   
   − /   

∼

c e c e
 

  Thus 1 25 2 3 2,= / , = − /c c  and 4 23 15 3( ) .
1 12 2

− −   
= −   

   
x t tt e e  
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 2. From the eigendata given, the eigenfunctions for the differential equation A′ =x x  are 3
1

te−v  and 1
2 .−v te  

The general solution of A′ =x x  has the form 

   3 1
1 2

1 1
1 1

t tc e c e− −−   
+   

   
 

  The initial condition 
2

(0)
3
 

=  
 

x  determines 1c  and 2c : 

   

3(0) 1(0)
1 2

1 1 2
1 1 3

1 1 2 1 0 1 2
1 1 3 0 1 5 2

c e c e− −−     
+ =     

     
− /   
   /   

∼
 

  Thus 1 21 2 5 2,= / , = /c c  and 31 11 5( ) .
1 12 2

− −−   
= +   

   
x t tt e e  

 3. 22 3
det( λ ) λ 1 (λ 1)(λ 1) 0.

1 2
 

= , − = − = − + = − − 
A A I  Eigenvalues: 1 and 1.−  

  For λ = 1: 
1 3 0 1 3 0

,
1 3 0 0 0 0

   
   − −   

∼  so 1 23x x= −  with 2x  free. Take 2 1x =  and 1
3

.
1

− 
=  
 

v  

  For λ = –1: 
3 3 0 1 1 0

,
1 1 0 0 0 0

   
   − −   

∼  so 1 2x x= −  with 2x  free. Take 2 1x =  and 2
1

.
1

− 
=  
 

v  

  For the initial condition 
3

(0) ,
2
 

=  
 

x  find 1c  and 2c  such that 1 1 2 2 (0) :+ =v v xc c  

   1 2
3 1 3 1 0 5 2

(0)
1 1 2 0 1 9 2

− − − /   
=       /   

v v x ∼  

  Thus 1 25 2 9 2,= − / , = /c c  and 
3 15 9( ) .2 21 1

−− −   
= − +   

   
x t tt e e  

  Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical 
system described by .′ =x xA  The direction of greatest attraction is the line through 2v  and the origin. 
The direction of greatest repulsion is the line through 1v  and the origin. 

 4. 22 5
det( λ ) λ 2λ 3 (λ 1)(λ 3) 0.

1 4
A A I

− − 
= , − = − − = + − = 
 

 Eigenvalues: 1−  and 3. 

  For λ = 3:  
5 5 0 1 1 0

,
1 1 0 0 0 0

− −   
   
   

∼  so 1 2x x= −  with 2x  free. Take 2 1x =  and 1
1

.
1

− 
=  
 

v  

  For λ = –1:  
1 5 0 1 5 0

,
1 5 0 0 0 0

− −   
   
   

∼  so 1 25x x= −  with 2x  free. Take 2 1x =  and 2
5

.
1

− 
=  
 

v  
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  For the initial condition 
3

(0) ,
2
 

=  
 

x  find 1c  and 2c  such that 1 1 2 2 (0)c c+ =v v x : 

   1 2
1 5 3 1 0 13 4

(0)
1 1 2 0 1 5 4

− − /   
=       − /   

v v x ∼  

  Thus 1 213 4 5 4,= / , = − /c c  and 31 513 5( ) .
1 14 4

−− −   
= −   

   
x t tt e e  

  Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical 
system described by .′ =x xA  The direction of greatest attraction is the line through 2v  and the origin. 
The direction of greatest repulsion is the line through 1v  and the origin. 

 5. 
7 1

,
3 3

− 
=  
 

A  det 2( λ ) λ 10λ 24 (λ 4)(λ 6) 0.− = − + = − − =A I  Eigenvalues: 4 and 6. 

  For λ = 4: 
3 1 0 1 1 3 0

,
3 1 0 0 0 0

− − /   
   −   

∼  so 1 2(1 3)x x= /  with 2x  free. Take 2 3x =  and 1
1

.
3
 

=  
 

v  

  For λ = 6: 
1 1 0 1 1 0

,
3 3 0 0 0 0

− −   
   −   

∼  so 1 2x x=  with 2x  free. Take 2 1x =  and 2
1

.
1
 

=  
 

v  

  For the initial condition 
3

(0) ,
2
 

=  
 

x  find 1c  and 2c  such that 1 1 2 2 (0) :+ =v v xc c  

   1 2
1 1 3 1 0 1 2

(0)
3 1 2 0 1 7 2

− /   
=       /   

v v x ∼  

  Thus 1 21 2 7 2,= − / , = /c c  and 4 61 11 7( ) .
3 12 2
   

= − +   
   

x t tt e e  

  Since both eigenvalues are positive, the origin is a repellor of the dynamical system described by 
.′ =x xA  The direction of greatest repulsion is the line through 2v  and the origin. 

 6. 
1 2

,
3 4

− 
=  − 

A  det 2( λ ) λ 3λ 2 (λ 1)(λ 2) 0.− = + + = + + =A I  Eigenvalues: 1−  and 2.−  

  For λ = –2: 
3 2 0 1 2 3 0

,
3 2 0 0 0 0

− − /   
   −   

∼  so 1 2(2 3)x x= /  with 2x  free. Take 2 3x =  and 1
2

.
3
 

=  
 

v  

  For λ = –1: 
2 2 0 1 1 0

,
3 3 0 0 0 0

− −   
   −   

∼  so 1 2x x=  with 2x  free. Take 2 1x =  and 2
1

.
1
 

=  
 

v  

  For the initial condition 
3

(0) ,
2
 

=  
 

x  find 1c  and 2c  such that 1 1 2 2 (0)c c+ =v v x : 

   1 2
2 1 3 1 0 1

[ (0)]
3 1 2 0 1 5

−   
=    
   

v v x ∼  

  Thus 1 21 5,= − , =c c  and 22 1
( ) 5 .

3 1
− −   

= − +   
   

x t tt e e  

  Since both eigenvalues are negative, the origin is an attractor of the dynamical system described by 
.′ =x xA  The direction of greatest attraction is the line through 1v  and the origin. 
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 7. From Exercise 5, 
7 1

,
3 3

− 
=  
 

A  with eigenvectors 1
1
3
 

=  
 

v  and 2
1
1
 

=  
 

v  corresponding to eigenvalues  

4 and 6 respectively. To decouple the equation ,′ =x xA  set 1 2
1 1

[ ]
3 1
 

= =  
 

v vP  and let 
4 0

,
0 6
 

=  
 

D  

so that 1A PDP−=  and 1 .−=D P AP  Substituting ( ) ( )t P t=x y  into A′ =x x  we have 

   1( ) ( ) ( )−= = =y y y yd P A P PDP P PD
dt

 

  Since P has constant entries, ( ) ( ( )),=y yd d
dt dtP P  so that left-multiplying the equality ( ( )) =y yd

dtP PD  by 
1P−  yields ,′ =y yD  or 

   1 1

2 2

( ) ( )4 0
( ) ( )0 6

′    
=    ′     

y t y t
y t y t

 

 8. From Exercise 6, 
1 2

,
3 4

− 
=  − 

A  with eigenvectors 1
2
3
 

=  
 

v  and 2
1
1
 

=  
 

v  corresponding to eigenvalues 

2−  and 1−  respectively. To decouple the equation ,′ =x xA  set 1 2
2 1
3 1

P  
  

 
= =  

 
v v  and let 

2 0
,

0 1
− 

=  − 
D  so that 1A PDP−=  and 1 .−=D P AP  Substituting ( ) ( )t P t=x y  into A′ =x x  we have 

   1( ) ( ) ( )d P A P PDP P PD
dt

−= = =y y y y  

  Since P has constant entries, ( )( ) ( ) ,=y yd d
dt dtP P  so that left-multiplying the equality ( )( )d

dtP PD=y y  

by 1P−  yields ,′ =y yD  or 

   1 1

2 2

( ) ( )2 0
( ) ( )0 1

′ −    
=    ′ −    

y t y t
y t y t

 

 9. 
3 2

.
1 1

− 
=  − − 

A  An eigenvalue of A is 2 i− +  with corresponding eigenvector 
1

.
1
− 

=  
 

v
i

 The complex 

eigenfunctions teλv  and λv te  form a basis for the set of all complex solutions to .′ =x xA  The general 
complex solution is 

   ( 2 ) ( 2 )
1 2

1 1
1 1

i t i ti i
c e c e− + − −− +   

+   
   

 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite ( 2 )i te − +v  as: 

   

( 2 ) 2 2

2
2

2 2

1 1
(cos sin )

1 1

cos cos sin sin
cos sin

cos sin sin cos
cos sin

− + − −

−

− −

− −   
= = +   
   
 − + −=  + 

+ −   
= +   
   

v i t t it t

t

t t

i i
e e e e t i t

t i t i t i t e
t i t

t t t t
e i e

t t
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  The general real solution has the form 

   2 2
1 2

cos sin sin cos
cos sin

t tt t t t
c e c e

t t
− −+ −   

+   
   

 

  where 1c  and 2c  now are real numbers. The trajectories are spirals because the eigenvalues are complex. 
The spirals tend toward the origin because the real parts of the eigenvalues are negative. 

 10. 
3 1

.
2 1

 
=  − 

A  An eigenvalue of A is 2 i+  with corresponding eigenvector 
1

.
2

+ 
=  − 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   (2 ) (2 )
1 2

1 1
2 2

i t i ti i
c e c e+ −+ −   

+   − −   
 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite (2 )i te +v  as: 

   

(2 ) 2 2

2
2

2 2

1 1
(cos sin )

2 2

cos cos sin sin
2cos 2 sin

cos sin sin cos
2cos 2sin

i t t it t

t

t t

i i
e e e e t i t

t i t i t i t e
t i t

t t t t
e i e

t t

+ + +   
= = +   − −   
 + + +=  − − 

− +   
= +   − −   

v

 

  The general real solution has the form 

   2 2
1 2

cos sin sin cos
2cos 2sin

t tt t t t
c e c e

t t
− +   

+   − −   
 

  where 1c  and 2c  now are real numbers. The trajectories are spirals because the eigenvalues are complex. 
The spirals tend away from the origin because the real parts of the eigenvalues are positive. 

 11. 
3 9

.
2 3

− − 
=  
 

A  An eigenvalue of A is 3i with corresponding eigenvector 
3 3

.
2

− + 
=  
 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   (3 ) ( 3 )
1 2

3 3 3 3
2 2

i t i ti i
c e c e −− + − −   

+   
   

 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite (3 )i tev  as: 

   

(3 ) 3 3
(cos3 sin 3 )

2

3cos3 3sin3 3sin 3 3cos3
2cos3 2sin 3

i t i
e t i t

t t t t
i

t t

− + 
= + 
 
− − − +   

= +   
   

v
 

  The general real solution has the form 

   1 2
3cos3 3sin 3 3sin 3 3cos3

2cos3 2sin 3
t t t t

c c
t t

− − − +   
+   

   
 

  where 1c  and 2c  now are real numbers. The trajectories are ellipses about the origin because the real 
parts of the eigenvalues are zero. 
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 12. 
7 10

.
4 5

− 
=  − 

A  An eigenvalue of A is 1 2i− +  with corresponding eigenvector 
3

.
2
− 

=  
 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   ( 1 2 ) ( 1 2 )
1 2

3 3
2 1

i t i ti i
c e c e− + − −− +   

+   
   

 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite ( 1 2 )i te − +v  as: 

   

( 1 2 ) 3
(cos2 sin 2 )

2

3cos2 sin 2 3sin 2 cos 2
2cos2 2sin 2

i t t

t t

i
e e t i t

t t t t
e i e

t t

− + −

− −

− 
= + 
 

+ −   
= +   
   

v
 

  The general real solution has the form 

   1 2
3cos2 sin 2 3sin 2 cos2

2cos2 2sin 2
t tt t t t

c e c e
t t

− −+ −   
+   

   
 

  where 1c  and 2c  now are real numbers. The trajectories are spirals because the eigenvalues are complex. 
The spirals tend toward the origin because the real parts of the eigenvalues are negative. 

 13. 
4 3

.
6 2

− 
=  − 

A  An eigenvalue of A is 1 3i+  with corresponding eigenvector 
1

.
2
+ 

=  
 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   (1 3 ) (1 3 )
1 2

1 1
2 1

i t i ti i
c e c e+ −+ −   

+   
   

 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite (1 3 )i te +v  as: 

   

(1 3 ) 1
(cos3 sin 3 )

2

cos3 sin3 sin3 cos3
2cos3 2sin 3

i t t

t t

i
e e t i t

t t t t
e i e

t t

+ + 
= + 
 

− +   
= +   
   

v
 

  The general real solution has the form 

   1 2
cos3 sin3 sin 3 cos3

2cos3 2sin3
t tt t t t

c e c e
t t

− +   
+   

   
 

  where 1c  and 2c  now are real numbers. The trajectories are spirals because the eigenvalues are complex. 
The spirals tend away from the origin because the real parts of the eigenvalues are positive. 

 14. 
2 1

.
8 2

− 
=  − 

A  An eigenvalue of A is 2i with corresponding eigenvector 
1

.
4
− 

=  
 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   (2 ) ( 2 )
1 2

1 1
4 4

i t i ti i
c e c e −− +   

+   
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  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite (2 )i tev  as: 

   

(2 ) 1
(cos2 sin 2 )

4

cos2 sin 2 sin 2 cos2
4cos2 4sin 2

i t i
e t i t

t t t t
i

t t

− 
= + 
 

+ −   
= +   
   

v
 

  The general real solution has the form 

   1 2
cos2 sin 2 sin 2 cos2

4cos2 4sin 2
t t t t

c c
t t

+ −   
+   

   
 

  where 1c  and 2c  now are real numbers. The trajectories are ellipses about the origin because the real 
parts of the eigenvalues are zero. 

 15. [M] 
8 12 6
2 1 2 .
7 12 5

− − − 
 =  
  

A  The eigenvalues of A are: 

  ev =eig(A)=  

   1.0000 

  -1.0000 

  -2.0000 

  nulbasis(A-ev(1)*eye(3)) =  
  -1.0000 

   0.2500 

   1.0000 

  so that 1

4
1
4

− 
 =  
  

v  

  nulbasis(A-ev(2)*eye(3)) =  
  -1.2000 

   0.2000 

   1.0000 

  so that 2

6
1
5

− 
 =  
  

v  

  nulbasis (A-ev(3)*eye(3)) =  
  -1.0000 

   0.0000 

   1.0000 

  so that 3

1
0
1

− 
 =  
  

v  
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  Hence the general solution is 2
1 2 3

4 6 1
( ) 1 1 0 .

4 5 1

t t tt c e c e c e− −
− − −     
     = + +     
          

x  The origin is a saddle point.  

A solution with 1 0c =  is attracted to the origin while a solution with 2 3 0c c= =  is repelled. 

 16. [M] 
6 11 16
2 5 4 .
4 5 10

− − 
 = − 
 − − 

A  The eigenvalues of A are: 

  ev =eig(A)=  

  4.0000 

  3.0000 

  2.0000 

  nulbasis(A-ev(1)*eye(3)) =  
   2.3333 

  -0.6667 

   1.0000 

  so that 1

7
2
3

 
 = − 
  

v  

  nulbasis(A-ev(2)*eye(3)) =  
   3.0000 

  -1.0000 

   1.0000 

  so that 2

3
1
1

 
 = − 
  

v  

  nulbasis(A-ev(3)*eye(3)) =  
  2.0000 

  0.0000 

  1.0000 

  so that 3

2
0
1

 
 =  
  

v  

  Hence the general solution is 4 3 2
1 2 3

7 3 2
( ) 2 1 0 .

3 1 1

t t tt c e c e c e
     
     = − + − +     
          

x  The origin is a repellor, because 

all eigenvalues are positive. All trajectories tend away from the origin. 
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 17. [M] 
30 64 23
11 23 9 .
6 15 4

 
 = − − − 
  

A  The eigenvalues of A are: 

  ev =eig(A)=  

  5.0000 + 2.0000i 

  5.0000 - 2.0000i  

  1.0000 

  nulbasis(A-ev(1)*eye(3)) =  
  7.6667 - 11.3333i 

  -3.0000 + 4.6667i 

  1.0000 

  so that 1

23 34
9 14

3

i
i

− 
 = − + 
  

v  

  nulbasis (A-ev(2)*eye(3)) =  
  7.6667 + 11.3333i 

  -3.0000 - 4.6667i 

  1.0000 

  so that 2

23 34
9 14

3

i
i

+ 
 = − − 
  

v  

  nulbasis (A-ev(3)*eye(3)) =  
  -3.0000 

   1.0000 

   1.0000 

  so that 3

3
1
1

− 
 =  
  

v  

  Hence the general complex solution is 

   (5 2 ) (5 2 )
1 2 3

23 34 23 34 3
( ) 9 14 9 14 1

3 3 1

i t i t t
i i

t c i e c i e c e+ −
− + −     

     = − + + − − +     
          

x  

  Rewriting the first eigenfunction yields 

   5 5 5
23 34 23cos2 34sin 2 23sin 2 34cos2

9 14 (cos 2 sin 2 ) 9cos2 14sin 2 9sin 2 14cos2
3 3cos 2 3sin 2

t t t
i t t t t
i e t i t t t e i t t e

t t

− + −     
     − + + = − − + − +     
          

 



5.7 • Solutions   317 

  Hence the general real solution is 

   5 5
1 2 3

23cos2 34sin 2 23sin 2 34cos2 3
( ) 9cos 2 14sin 2 9sin 2 14cos2 1

3cos2 3sin 2 1

t t t
t t t t

t c t t e c t t e c e
t t

+ − −     
     = − − + − + +     
          

x  

  where 1 2 ,,c c  and 3c  are real. The origin is a repellor, because the real parts of all eigenvalues are 
positive. All trajectories spiral away from the origin. 

 18. [M] 
53 30 2
90 52 3 .
20 10 2

A
− − 

 = − − 
 − 

 The eigenvalues of A are: 

  ev =eig(A)=  
  -7.0000 

   5.0000 + 1.0000i  

   5.0000 - 1.0000i 

  nulbasis(A-ev(1)*eye(3)) =  
  0.5000 

  1.0000 

  0.0000 

  so that 1

1
2
0

 
 =  
  

v  

  nulbasis(A-ev(2)*eye(3)) =  
  0.6000 + 0.2000i 

  0.9000 + 0.3000i 

  1.0000 

  so that 2

6 2
9 3

10

i
i

+ 
 = + 
  

v  

  nulbasis(A-ev(3)*eye(3)) =  
  0.6000 - 0.20000 

  0.9000 - 0.3000i 

  1.0000 

  so that 3

6 2
9 3

10

i
i

− 
 = − 
  

v  

  Hence the general complex solution is 

   7 (5 ) (5 )
1 2 3

1 6 2 6 2
( ) 2 9 3 9 3

0 10 10

t i t i t
i i

t c e c i e c i e− + −
+ −     

     = + + + −     
          

x  
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  Rewriting the second eigenfunction yields 

   5 5 5
6 2 6cos 2sin 6sin 2cos
9 3 (cos sin ) 9cos 3sin 9sin 3cos

10 10cos 10sin

+ − +     
     + + = − + +     
          

t t t
i t t t t
i e t i t t t e i t t e

t t
 

  Hence the general real solution is 

   7 5 5
1 2 3

1 6cos 2sin 6sin 2cos
( ) 2 9cos 3sin 9sin 3cos

0 10cos 10sin

t t t
t t t t

t c e c t t e c t t e
t t

−
− +     

     = + − + +     
          

x  

  where 1 2 ,,c c  and 3c  are real. When 2 3 0c c= =  the trajectories tend toward the origin, and in other cases 
the trajectories spiral away from the origin. 

 19. [M] Substitute 1 2 11 5 1 3 4,= / , = / , =R R C  and 2 3C =  into the formula for A given in Example 1, and use  
a matrix program to find the eigenvalues and eigenvectors: 

   1 1 2 1
2 3 4 1 3

λ 5 λ 2 5
1 1 2 2

A
− / −     

= , = −. : = , = − . : =     −     
v v  

  The general solution is thus 5 2 5
1 2

1 3
( ) .

2 2
−. − .−   

= +   
   

x t tt c e c e  The condition 
4

(0)
4
 

=  
 

x  implies  

that 1

2

1 3 4
.

2 2 4

 
 
 
  

−   
=   

   

c
c

 By a matrix program, 1 5 2c = /  and 2 1 2,= − /c  so that 

   1 5 2 5

2

( ) 1 35 1( )
( ) 2 22 2

t tv t
t e e

v t
−. − .−     

= = −     
    

x  

 20. [M] Substitute 1 2 11 15 1 3 4,= / , = / , =R R C  and 2 2C =  into the formula for A given in Example 1, and use 
a matrix program to find the eigenvalues and eigenvectors: 

   1 1 2 2
2 1 3 1 2

λ 1 λ 2 5
3 2 3 2 3 3

A
− / −     

= , = − : = , = − . : =     / − /     
v v  

  The general solution is thus 2 5
1 2

1 2
( ) .

3 3
− − .−   

= +   
   

x t tt c e c e  The condition 
3

(0)
3
 

=  
 

x  implies  

that 1

2

1 2 3
.

3 3 3

 
 
 
  

−   
=   

   

c
c

 By a matrix program, 1 5 3c = /  and 2 2 3,= − /c  so that 

   1 2 5

2

( ) 1 25 2( )
( ) 3 33 3

t tv t
t e e

v t
− − .−     

= = −     
    

x  

 21. [M] 
1 8

.
5 5

− − 
=  − 

A  Using a matrix program we find that an eigenvalue of A is 3 6i− +  with 

corresponding eigenvector 
2 6

.
5
+ 

=  
 

v
i

 The conjugates of these form the second 

  eigenvalue-eigenvector pair. The general complex solution is 

   ( 3 6 ) ( 3 6 )
1 2

2 6 2 6
( )

5 5
i t i ti i

t c e c e− + − −+ −   
= +   

   
x  
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  where 1c  and 2c  are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real and 
imaginary parts, we have 

   

( 3 6 ) 3

3 3

2 6
(cos6 sin 6 )

5

2cos6 6sin 6 2sin 6 6cos6
5cos6 5sin 6

− + −

− −

+ 
= + 
 

− +   
= +   
   

v i t t

t t

i
e e t i t

t t t t
e i e

t t

 

  The general real solution has the form 

   3 3
1 2

2cos6 6sin 6 2sin 6 6cos6
( )

5cos6 5sin 6
t tt t t t

t c e c e
t t

− −− +   
= +   

   
x  

  where 1c  and 2c  now are real numbers. To satisfy the initial condition 
0

(0) ,
15
 

=  
 

x  we solve 

1 2
2 6 0
5 0 15

c c
     

+ =     
     

 to get 1 23 1.= , = −c c  We now have 

   3 3 3
 

( ) 2cos6 6sin 6 2sin 6 6cos6 20sin 6
( ) 3   

( ) 5cos6 5sin 6 15cos6 5sin 6
− − −− + −       

= = − =       −      
xL t t t

C

i t t t t t t
t e e e

v t t t t t
 

 22. [M] 
0 2

.
4 8

 
=  −. −. 

A  Using a matrix program we find that an eigenvalue of A is 4 8i−. + .  with 

corresponding eigenvector 
1 2

.
1

− − 
=  
 

v
i

 The conjugates of these form the second eigenvalue-

eigenvector pair. The general complex solution is 

   ( 4 8 ) ( 4 8 )
1 2

1 2 1 2
( )

1 1
i t i ti i

t c e c e−. +. −. −.− − − +   
= +   

   
x  

  where 1c  and 2c  are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real and 
imaginary parts, we have 

   

( 4 8 ) 4

4 4

1 2
(cos 8 sin 8 )

1

cos 8 2sin 8 sin 8 2cos 8
cos 8 sin 8

i t t

t t

i
e e t i t

t t t t
e i e

t t

−. +. −.

−. −.

− − 
= . + . 
 
− . + . − . − .   

= +   . .   

v
 

  The general real solution has the form 

   4 4
1 2

cos 8 2sin 8 sin 8 2cos 8
( )

cos 8 sin 8
t tt t t t

t c e c e
t t

−. −.− . + . − . − .   
= +   . .   

x  

  where 1c  and 2c  now are real numbers. To satisfy the initial condition 
0

(0) ,
12
 

=  
 

x  we solve 

1 2
1 2  0
1 0 12

c c
− −     

+ =     
     

 to get 1 212 6.= , = −c c  We now have 

   4 4 4( ) cos 8 2sin 8 sin 8 2cos 8        30sin 8
( ) 12 6

( ) cos 8 sin 8 12cos 8 6sin 8
L t t t

C

i t t t t t t
t e e e

v t t t t t
−. −. −.− . + . − . − . .      

= = − =      . . . − .      
x  
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5.8 SOLUTIONS 

 1. The vectors in the given sequence approach an eigenvector 1.v  The last vector in the sequence, 

4
1

,
3326

 
=  . 

x  is probably the best estimate for 1.v  To compute an estimate for 1,λ  examine 

4
4 9978

.
1 6652

. 
=  . 

xA  This vector is approximately 1 1.λ v  From the first entry in this vector, an estimate  

of 1λ  is 4.9978. 

 2. The vectors in the given sequence approach an eigenvector 1.v  The last vector in the sequence, 

4
2520

,
1

−. 
=  
 

x  is probably the best estimate for 1.v  To compute an estimate for 1,λ  examine 

4
1 2536

.
5 0064

− . 
=  . 

xA  This vector is approximately 1 1.λ v  From the second entry in this vector, an estimate 

of 1λ  is 5.0064. 

 3. The vectors in the given sequence approach an eigenvector 1.v  The last vector in the sequence, 

4
5188

,
1

. 
=  
 

x  is probably the best estimate for 1.v  To compute an estimate for 1,λ  examine 

4
4594

.
9075

. 
=  . 

xA  This vector is approximately 1 1.λ v  From the second entry in this vector, an estimate of 

1λ  is .9075. 

 4. The vectors in the given sequence approach an eigenvector 1.v  The last vector in the sequence, 

4
1

,
7502

 
=  . 

x  is probably the best estimate for 1.v  To compute an estimate for 1,λ  examine 

4
4012

.
3009

−. 
=  −. 

xA  This vector is approximately 1 1.λ v  From the first entry in this vector, an estimate of 1λ  

is 4012.−.  

 5. Since 5 24991
31241

A
 

=  − 
x  is an estimate for an eigenvector, the vector 

24991 79991
31241 131241

−.   
= − =   −   

v  is 

a vector with a 1 in its second entry that is close to an eigenvector of A. To estimate the dominant 

eigenvalue 1λ  of A, compute 
4 0015

.
5 0020

. 
=  − . 

vA  From the second entry in this vector, an estimate of 1λ   

is 5 0020.− .  

 6. Since 5 2045
4093

A
− 

=  
 

x  is an estimate for an eigenvector, the vector 
2045 49961
4093 14093

− −.   
= =   

   
v  is  

a vector with a 1 in its second entry that is close to an eigenvector of A. To estimate the dominant 

eigenvalue 1λ  of A, compute 
2 0008

.
4 0024

− . 
=  . 

vA  From the second entry in this vector, an estimate of 1λ   

is 4.0024. 
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 7. [M] 0
6 7 1

.
8 5 0
   

= , =   
   

xA  The data in the table below was calculated using Mathematica, which carried 

more digits than shown here. 

k 0 1 2 3 4 5 

kx  
1
0
 
 
 

 75
1

. 
 
 

 
1

9565
 
 . 

 
9932

1
. 
 
 

 
1

9990
 
 . 

 
.9998

1
 
 
 

 

kAx  
6
8
 
 
 

 11 5
11 0

. 
 . 

 
12 6957
12 7826

. 
 . 

 
12 9592
12 9456

. 
 . 

 
12 9927
12 9948

. 
 . 

 
12 9990
12 9987

. 
 . 

 

kµ  8 11.5 12.7826 12.9592 12.9948 12.9990 

  The actual eigenvalue is 13. 

 8. [M] 0
2 1 1

.
4 5 0
   

= , =   
   

xA  The data in the table below was calculated using Mathematica, which carried 

more digits than shown here. 

k 0 1 2 3 4 5 

kx  
1
0
 
 
 

 
5
1
. 
 
 

 
2857

1
. 
 
 

 
2558

1
. 
 
 

 
2510

1
. 
 
 

 
.2502

1
 
 
 

 

kAx  
2
4
 
 
 

 
2
7
 
 
 

 
1 5714
6 1429
. 

 . 
 

1 5116
6 0233
. 

 . 
 

1 5019
6 0039
. 

 . 
 

1 5003
6 0006
. 

 . 
 

kµ  4 7 6.1429 6.0233 6.0039 6.0006 

  The actual eigenvalue is 6. 

 9. [M] 0

8 0 12 1
1 2 1 0 .
0 3 0 0

   
   = − , =   
      

xA  The data in the table below was calculated using Mathematica, which 

carried more digits than shown here. 

k 0 1 2 3 4 5 6 

kx  
1
0
0

 
 
 
  

 
1

125
0

 
 . 
  

 
1

0938
0469

 
 . 
 . 

 
1

1004
0328

 
 . 
 . 

 
1

0991
0359

 
 . 
 . 

 
1

0994
0353

 
 . 
 . 

 
1

0993
0354

 
 . 
 . 

 

kAx  
8
1
0

 
 
 
  

 
8

75
375

 
 . 
 . 

 
8 5625

8594
2812

. 
 . 
 . 

 
8 3942

8321
3011

. 
 . 
 . 

 
8 4304

8376
2974

. 
 . 
 . 

 
8 4233

8366
2981

. 
 . 
 . 

 
8 4246

8368
2979

. 
 . 
 . 

 

kµ  8 8 8.5625 8.3942 8.4304 8.4233 8.4246 

  Thus 5 8 4233µ = .  and 6 8 4246.= .µ  The actual eigenvalue is (7 97) 2,+ /  or 8.42443 to five decimal 
places. 
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 10. [M] 0

1 2 2 1
1 1 9 0 .
0 1 9 0

−   
   = , =   
      

xA  The data in the table below was calculated using Mathematica, which 

carried more digits than shown here. 

k 0 1 2 3 4 5 6 

kx  
1
0
0

 
 
 
  

 
1
1
0

 
 
 
  

 
1

6667
3333

 
 . 
 . 

 
3571

1
7857

. 
 
 
 . 

 
0932

1
9576

. 
 
 
 . 

 
0183

1
9904

. 
 
 
 . 

 
0038

1
9982

. 
 
 
 . 

 

kAx  
1
1
0

 
 
 
  

 
3
2
1

 
 
 
  

 
1 6667
4 6667
3 6667

. 
 . 
 . 

 
7857

8 4286
8 0714

. 
 . 
 . 

 
1780

9 7119
9 6186

. 
 . 
 . 

 
0375

9 9319
9 9136

. 
 . 
 . 

 
0075

9 9872
9 9834

. 
 . 
 . 

 

kµ  1 3 4.6667 8.4286 9.7119 9.9319 9.9872 

  Thus 5 9 9319= .µ  and 6 9 9872.= .µ  The actual eigenvalue is 10. 

 11. [M] 0
5 2 1

.
2 2 0
   

= , =   
   

xA  The data in the table below was calculated using Mathematica, which carried 

more digits than shown here. 

k 0 1 2 3 4 

kx  
1
0
 
 
 

 
1
4

 
 . 

 
1

4828
 
 . 

 
1

4971
 
 . 

 
1

4995
 
 . 

 

kAx  
5
2
 
 
 

 
5 8
2 8
. 

 . 
 

5 9655
2 9655
. 

 . 
 

5 9942
2 9942
. 

 . 
 

5 9990
2 9990
. 

 . 
 

kµ  5 5.8 5.9655 5.9942 5.9990 

( )kR x  5 5.9655 5.9990 5.99997 5.9999993 

  The actual eigenvalue is 6. The bottom two columns of the table show that ( )kR x  estimates the 
eigenvalue more accurately than .kµ  

 12. [M] 0
3 2 1

.
2 2 0

−   
= , =   
   

xA  The data in the table below was calculated using Mathematica,  

which carried more digits than shown here. 

k 0 1 2 3 4 

kx  
1
0
 
 
 

 
1

6667
− 

 . 
 

1
4615

 
 −. 

 
1

5098
− 

 . 
 

1
4976

 
 −. 

 

kAx  
3
2

− 
 
 

 
4 3333
2 0000

. 
 − . 

 
3 9231
2 0000

− . 
 . 

 
4 0196
2 0000

. 
 − . 

 
3 9951
2 0000

− . 
 . 

 

kµ  3−  4 3333− .  3 9231− .  4 0196− .  3 9951− .  

( )kR x  3−  3 9231− .  3 9951− .  3 9997− .  3 99998− .  
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  The actual eigenvalue is 4.−  The bottom two columns of the table show that ( )kR x  estimates the 
eigenvalue more accurately than .kµ  

 13. If the eigenvalues close to 4 and 4−  have different absolute values, then one of these is a strictly 
dominant eigenvalue, so the power method will work. But the power method depends on powers of the 
quotients 2 1λ /λ  and 3 1λ /λ  going to zero. If 2 1| λ /λ |  is close to 1, its powers will go to zero slowly, and 
the power method will converge slowly. 

 14. If the eigenvalues close to 4 and 4−  have the same absolute value, then neither of these is a strictly 
dominant eigenvalue, so the power method will not work. However, the inverse power method may still 
be used. If the initial estimate is chosen near the eigenvalue close to 4, then the inverse power method 
should produce a sequence that estimates the eigenvalue close to 4. 

 15. Suppose ,= λx xA  with 0.≠x  For any ( ) ., − = λ −x x xA Iα α α  If α  is not an eigenvalue of A, then 
A Iα−  is invertible and αλ −  is not 0; hence 

  1 1 1( ) ( )  and ( ) ( )A I A Iα α α α− − −= − λ − λ − = −x x x x  

  This last equation shows that x is an eigenvector of 1( )A Iα −−  corresponding to the eigenvalue 
1( ) .−λ −α  

 16. Suppose that µ  is an eigenvalue of 1( )A Iα −−  with corresponding eigenvector x. Since 
1( ) ,−− =x xA Iα µ  

   ( )( ) ( ) ( )( ) ( )A I A I Aα µ µ α µ µ αµ= − = − = −x x x x x x  

  Solving this equation for Ax, we find that 

   1 1( )
   

= + = +   
   

x x x xA αµ α
µ µ

 

  Thus (1 )α µλ = + /  is an eigenvalue of A with corresponding eigenvector x. 

 17. [M] 0

10 8 4 1
8 13 4 0 3 3.
4 5 4 0

− −   
   = − , = , = .   
   −   

xA α  The data in the table below was calculated using 

Mathematica, which carried more digits than shown here. 

k 0 1 2 

kx  
1
0
0

 
 
 
  

 
1

7873
0908

 
 . 
 . 

 
1

7870
0957

 
 . 
 . 

 

ky  
26 0552
20 5128
2 3669

. 
 . 
 . 

 
47 1975
37 1436
4 5187

. 
 . 
 . 

 
47 1233
37 0866

4 5083

. 
 . 
 . 

kµ  26.0552 47.1975 47.1233 

kν  3.3384 3.32119 3.3212209 

  Thus an estimate for the eigenvalue to four decimal places is 3.3212. The actual eigenvalue is 
(25 337) 2,− /  or 3.3212201 to seven decimal places. 
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 18. [M] 0

8 0 12 1
1 2 1 0 1 4.
0 3 0 0

   
   = − , = , = − .   
      

xA α  The data in the table below was calculated using 

Mathematica, which carried more digits than shown here. 

k 0 1 2 3 4 

kx  
1
0
0

 
 
 
  

 
1

3646
7813

 
 . 
 −. 

 
1

3734
7854

 
 . 
 −. 

 
1

3729
7854

 
 . 
 −. 

 
1

3729
7854

 
 . 
 −. 

 

ky  
40

14 5833
31 25

 
 . 
 − . 

 
38 125

14 2361
29 9479

− . 
 − . 
 . 

 
41 1134
15 3300
32 2888

− . 
 − . 
 . 

 
40 9243
15 2608
32 1407

− . 
 − . 
 . 

 
40 9358
15 2650
32 1497

− . 
 − . 
 . 

 

kµ  40 38 125− .  41 1134− .  40 9243− .  40 9358− .  

kν  1 375− .  1 42623− .  1 42432− .  1 42444− .  1 42443− .  

  Thus an estimate for the eigenvalue to four decimal places is 1 4244.− .  The actual eigenvalue is 
(7 97) 2,− /  or 1 424429− .  to six decimal places. 

 19. [M] 0

10 7 8 7 1
7 5 6 5 0

.
8 6 10 9 0
7 5 9 10 0

   
   
   = , =
   
   
      

xA  

(a) The data in the table below was calculated using Mathematica, which carried more digits than 
shown here. 

k 0 1 2 3 

kx  

1
0
0
0

 
 
 
 
 
  

 

1
7
8
7

 
 . 
 .
 .  

 

988679
709434

1
932075

. 
 . 
 
 .  

 

961467
691491

1
942201

. 
 . 
 
 .  

 

kAx  

10
7
8
7

 
 
 
 
 
  

 

26 2
18 8
26 5
24 7

. 
 . 
 .
 .  

 

29 3774
21 1283
30 5547
28 7887

. 
 . 
 .
 .  

 

29 0505
20 8987
30 3205
28 6097

. 
 . 
 .
 .  

 

kµ  10 26.5 30.5547 30.3205 
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k 4 5 6 7 

kx  

958115
689261

1
943578

. 
 . 
 
 .  

 

957691
688978

1
943755

. 
 . 
 
 .  

 

957637
688942

1
943778

. 
 . 
 
 .  

 

957630
688938

1
943781

. 
 . 
 
 .  

 

kAx  

29 0110
20 8710
30 2927
28 5889

. 
 . 
 .
 .  

 

29 0060
20 8675
30 2892
28 5863

. 
 . 
 .
 .  

 

29 0054
20 8671
30 2887
28 5859

. 
 . 
 .
 .  

 

29 0053
20 8670
30 2887
28 5859

. 
 . 
 .
 .  

 

kµ  30.2927 30.2892 30.2887 30.2887 

  Thus an estimate for the eigenvalue to four decimal places is 30.2887. The actual eigenvalue is 

30.2886853 to seven decimal places. An estimate for the corresponding eigenvector is 

957630
688938

.
1

943781

. 
 . 
 
 .  

 

(b) The data in the table below was calculated using Mathematica, which carried more digits than 
shown here. 

k 0 1 2 3 4 

kx  

1
0
0
0

 
 
 
 
 
  

 

609756
1

243902
146341

−. 
 
 
 −.
 .  

 

604007
1

251051
148899

−. 
 
 
 −.
 .  

603973
1

251134
148953

−. 
 
 
 −.
 .  

 

603972
1

251135
148953

−. 
 
 
 −.
 .  

 

ky  

25
41
10

6

 
 − 
 
 −  

 

59 5610
98 6098
24 7561
14 6829

− . 
 . 
 − .
 .  

 

59 5041
98 5211
24 7420
14 6750

− . 
 . 
 − .
 .  

 

59 5044
98 5217
24 7423
14 6751

− . 
 . 
 − .
 .  

 

59 5044
98 5217
24 7423
14 6751

− . 
 . 
 − .
 .  

 

kµ  41−  98.6098 98.5211 98.5217 98.5217 

kν  0243902−.  .0101410 .0101501 .0101500 .0101500 

  Thus an estimate for the eigenvalue to five decimal places is .01015. The actual eigenvalue is 

.01015005 to eight decimal places. An estimate for the corresponding eigenvector is 

603972
1

.
251135

148953

−. 
 
 
 −.
 .  
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 20. [M] 0

1 2 3 2 1
2 12 13 11 0

.
2 3 0 2 0
4 5 7 2 0

   
   
   = , =
   −
   
      

xA  

(a) The data in the table below was calculated using Mathematica, which carried more digits than 
shown here. 

k 0 1 2 3 4 

kx  

1
0
0
0

 
 
 
 
 
  

 

25
5
5

1

. 
 . 
 −.
 
  

 

159091
1

272727
181818

. 
 
 
 .
 .  

187023
1

170483
442748

. 
 
 
 .
 .  

 

184166
1

180439
402197

. 
 
 
 .
 .  

 

kAx  

1
2
2
4

 
 
 
 −
 
  

 

1 75
11
3
2

. 
 
 
 
 
  

 

3 34091
17 8636
3 04545
7 90909

. 
 . 
 .
 .  

3 58397
19 4606
3 51145
7 82697

. 
 . 
 .
 .  

 

3 52988
19 1382
3 43606
7 80413

. 
 . 
 .
 .  

 

kµ  4 11 17.8636 19.4606 19.1382 

 
k 5 6 7 8 9 

kx  

184441
1

179539
407778

. 
 
 
 .
 .  

 

184414
1

179622
407021

. 
 
 
 .
 .  

 

184417
1

179615
407121

. 
 
 
 .
 .  

 

184416
1

179615
407108

. 
 
 
 .
 .  

 

184416
1

179615
407110

. 
 
 
 .
 .  

 

kAx  

3 53861
19 1884
3 44667
7 81010

. 
 . 
 .
 .  

 

3 53732
19 1811
3 44521
7 80905

. 
 . 
 .
 .  

 

3 53750
19 1822
3 44541
7 80921

. 
 . 
 .
 .  

 

3 53748
19 1820
3 44538
7 80919

. 
 . 
 .
 .  

 

3 53748
19 1811
3 44539
7 80919

. 
 . 
 .
 .  

 

kµ  19.1884 19.1811 19.1822 19.1820 19.1820 

  Thus an estimate for the eigenvalue to four decimal places is 19.1820. The actual eigenvalue is 

19.1820368 to seven decimal places. An estimate for the corresponding eigenvector is 

184416
1

.
179615
407110

. 
 
 
 .
 .  
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(b) The data in the table below was calculated using Mathematica, which carried more digits than 
shown here. 

k 0 1 2 

kx  

1
0
0
0

 
 
 
 
 
  

 

1
226087
921739

660870

 
 . 
 −.
 .  

 

1
222577
917970

660496

 
 . 
 −.
 .  

 

ky  

115
26

106
76

 
 
 
 −
 
  

 

81 7304
18 1913
75 0261
53 9826

. 
 . 
 − .
 .  

 

81 9314
18 2387
75 2125
54 1143

. 
 . 
 − .
 .  

 

kµ  115 81.7304 81.9314 

kν  .00869565 .0122353 .0122053 

  Thus an estimate for the eigenvalue to four decimal places is .0122. The actual eigenvalue is 

.01220556 to eight decimal places. An estimate for the corresponding eigenvector is 

1
222577

.
917970

660496

 
 . 
 −.
 .  

 

 21. a. 
8 0 5

.
0 2 5
. .   

= , =   . .   
xA  Here is the sequence kA x  for 1 5 := ,k …  

   
4 32 256 2048 16384
1 02 004 0008 00016

. . . . .         
, , , ,         . . . . .         

 

  Notice that 5A x  is approximately 48( ).. xA  

  Conclusion: If the eigenvalues of A are all less than 1 in magnitude, and if 0,≠x  then kA x  is 
approximately an eigenvector for large k. 

b. 
1 0 5

.
0 8 5

.   
= , =   . .   

xA  Here is the sequence kA x  for 1 5 := ,k …  

   
5 5 5 5 5
4 32 256 2048 16384
. . . . .         

, , , ,         . . . . .         
 

  Notice that kA x  seems to be converging to 
5

.
0
. 
 
 

 

  Conclusion: If the strictly dominant eigenvalue of A is 1, and if x has a component in the direction of 
the corresponding eigenvector, then { }kA x  will converge to a multiple of that eigenvector. 

c. 
8 0 5

.
0 2 5

.   
= , =   .   

xA  Here is the sequence kA x  for 1 5 := ,k …  

   
4 32 256 2048 16384
1 2 4 8 16
         

, , , ,         
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  Notice that the distance of kA x  from either eigenvector of A is increasing rapidly as k increases. 
  Conclusion: If the eigenvalues of A are all greater than 1 in magnitude, and if x is not an eigenvector, 

then the distance from kA x  to the nearest eigenvector will increase as .→ ∞k  

Chapter 5 SUPPLEMENTARY EXERCISES 

 1.  a. True. If A is invertible and if 1A = ⋅x x  for some nonzero x, then left-multiply by 1A−  to obtain 
1 ,−=x xA  which may be rewritten as 1 1 .− = ⋅x xA  Since x is nonzero, this shows 1 is an eigenvalue  

of 1.−A  
 b. False. If A is row equivalent to the identity matrix, then A is invertible. The matrix in Example 4 of 

Section 5.3 shows that an invertible matrix need not be diagonalizable. Also, see Exercise 31 in 
Section 5.3. 

 c. True. If A contains a row or column of zeros, then A is not row equivalent to the identity matrix and 
thus is not invertible. By the Invertible Matrix Theorem (as stated in Section 5.2), 0 is an eigenvalue 
of A. 

 d. False. Consider a diagonal matrix D whose eigenvalues are 1 and 3, that is, its diagonal entries are 1 
and 3. Then 2D  is a diagonal matrix whose eigenvalues (diagonal entries) are 1 and 9. In general, 
the eigenvalues of 2A  are the squares of the eigenvalues of A. 

 e. True. Suppose a nonzero vector x satisfies ,=x xA λ  then 

  2 2( ) ( )A A A A Aλ λ λ= = = =x x x x x  

  This shows that x is also an eigenvector for 2A  

 f. True. Suppose a nonzero vector x satisfies ,=x xA λ  then left-multiply by 1A−  to obtain 
1 1( ) .− −= =x x xA Aλ λ  Since A is invertible, the eigenvalue λ  is not zero. So 1 1 ,− −λ =x xA  which 

shows that x is also an eigenvector of 1.−A  
 g. False. Zero is an eigenvalue of each singular square matrix. 
 h. True. By definition, an eigenvector must be nonzero. 
 i. False. Let v be an eigenvector for A. Then v and 2v are distinct eigenvectors for the same eigenvalue 

(because the eigenspace is a subspace), but v and 2v are linearly dependent. 
 j. True. This follows from Theorem 4 in Section 5.2 
 k. False. Let A be the 3 3×  matrix in Example 3 of Section 5.3. Then A is similar to a diagonal matrix 

D. The eigenvectors of D are the columns of 3,I  but the eigenvectors of A are entirely different. 

 l. False. Let 
2 0

.
0 3
 

=  
 

A  Then 1
1
0
 

=  
 

e  and 2
0
1
 

=  
 

e  are eigenvectors of A, but 1 2+e e  is not. 

(Actually, it can be shown that if two eigenvectors of A correspond to distinct eigenvalues, then their 
sum cannot be an eigenvector.) 

 m. False. All the diagonal entries of an upper triangular matrix are the eigenvalues of the matrix 
(Theorem 1 in Section 5.1). A diagonal entry may be zero. 

 n. True. Matrices A and TA  have the same characteristic polynomial, because 
det( ) det( ) det( ),− λ = − λ = − λT TA I A I A I  by the determinant transpose property. 

 o. False. Counterexample: Let A be the 5 5×  identity matrix. 
 p. True. For example, let A be the matrix that rotates vectors through 2π/  radians about the origin. 

Then Ax is not a multiple of x when x is nonzero. 
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 q. False. If A is a diagonal matrix with 0 on the diagonal, then the columns of A are not linearly 
independent. 

 r. True. If 1A λ=x x  and 2 ,=x xA λ  then 1 2λ λ=x x  and 1 2( ) .− =x 0λ λ  If ,≠x 0  then 1λ  must equal 2.λ  

 s. False. Let A be a singular matrix that is diagonalizable. (For instance, let A be a diagonal matrix with 
0 on the diagonal.) Then, by Theorem 8 in Section 5.4, the transformation Ax x  is represented by 
a diagonal matrix relative to a coordinate system determined by eigenvectors of A. 

 t. True. By definition of matrix multiplication, 
  1 12 2[ ] [ ]n nA AI A A A A= = =e e e e e e  

  If =e ej j jA d  for 1 ,= , ,j … n  then A is a diagonal matrix with diagonal entries 1 ., , nd … d  

 u. True. If 1,−=B PDP  where D is a diagonal matrix, and if 1,−=A QBQ  then 
1 1 1( ) ( ) ( ) ,− − −= =A Q PDP Q QP D PQ  which shows that A is diagonalizable. 

 v. True. Since B is invertible, AB is similar to 1( ) ,−B AB B  which equals BA. 

 w. False. Having n linearly independent eigenvectors makes an n n×  matrix diagonalizable (by the 
Diagonalization Theorem 5 in Section 5.3), but not necessarily invertible. One of the eigenvalues  
of the matrix could be zero. 

 x. True. If A is diagonalizable, then by the Diagonalization Theorem, A has n linearly independent 
eigenvectors 1, ,v vn…  in .Rn  By the Basis Theorem, 1{ }, ,v vn…  spans .Rn  This means that each 
vector in nR  can be written as a linear combination of 1 ., ,v vn…  

 2. Suppose B ≠x 0  and = λx xAB  for some λ . Then ( ) .= λx xA B  Left-multiply each side by B and obtain 
( ) ( ) ( ).= λ = λx x xBA B B B  This equation says that Bx is an eigenvector of BA, because .≠x 0B  

 3. a. Suppose ,= λx xA  with .≠x 0  Then (5 ) 5 5 (5 ) .− = − = − λ = − λx x x x x xI A A  The eigenvalue  
is 5 .− λ  

b. 2 2 2(5 3 ) 5 3 ( ) 5 3( ) (5 3 ) .− + = − + = − λ + λ = − λ + λx x x x x x x xI A A A A A  The eigenvalue is 
25 3 .− λ + λ  

 4. Assume that A λ=x x  for some nonzero vector x. The desired statement is true for 1,=m  by the 
assumption about λ . Suppose that for some 1,≥k  the statement holds when .=m k  That is, suppose  
that .=x xk kA λ  Then 1 ( ) ( )k k kA A A A λ+ = =x x x  by the induction hypothesis. Continuing, 

1 1 ,+ += =x x xk k kA Aλ λ  because x is an eigenvector of A corresponding to A. Since x is nonzero, this 
equation shows that 1kλ +  is an eigenvalue of 1,+kA  with corresponding eigenvector x. Thus the desired 
statement is true when 1.= +m k  By the principle of induction, the statement is true for each positive 
integer m. 

 5. Suppose ,= λx xA  with .≠x 0  Then 

  

2
0 1 2

2
0 1 2

2
0 1 2

( ) ( )

( )

= + + + +

= + + + +

= + λ + λ + + λ = λ

x x

x x x x

x x x x x

n
n

n
n

n
n

p A c I c A c A … c A

c c A c A … c A

c c c … c p

 

  So ( )λp  is an eigenvalue of ( ).p A  
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 6. a. If 1,−=A PDP  then 1,−=k kA PD P  and 

   
2 1 1 2 1

2 1

5 3 5 3
(5 3 )

− − −

−

= − + = − +
= − +

B I A A PIP PDP PD P
P I D D P

 

   Since D is diagonal, so is 25 3 .− +I D D  Thus B is similar to a diagonal matrix. 

b.
 

1 2 1 1
0 1 2

2 1
0 1 2

1

( )
( )
( )

− − −

−

−

= + + + +
= + + + +
=

n
n

n
n

p A c I c PDP c PD P c PD P
P c I c D c D c D P
Pp D P

 

  This shows that ( )p A  is diagonalizable, because ( )p D  is a linear combination of diagonal matrices 
and hence is diagonal. In fact, because D is diagonal, it is easy to see that 

  
(2) 0

( )
0 (7)

p
p D

p
 

=  
 

 

 7. If 1,−=A PDP  then 1( ) ( ) ,−=p A Pp D P  as shown in Exercise 6. If the ( ),j j  entry in D is λ , then the 

( ),j j  entry in kD  is ,λk  and so the ( ),j j  entry in ( )p D  is ( ).λp  If p is the characteristic polynomial 
of A, then ( ) 0λ =p  for each diagonal entry of D, because these entries in D are the eigenvalues of A. 
Thus ( )p D  is the zero matrix. Thus 1( ) 0 0.−= ⋅ ⋅ =p A P P  

 8. a. If λ  is an eigenvalue of an n n×  diagonalizable matrix A, then 1A PDP−=  for an invertible matrix P 
and an n n×  diagonal matrix D whose diagonal entries are the eigenvalues of A. If the multiplicity of 
λ  is n, then λ  must appear in every diagonal entry of D. That is, .=D Iλ  In this case, 

1 1 1( ) .− − −= = = =A P I P PIP PP Iλ λ λ λ  

b. Since the matrix 
3 1
0 3

A
 

=  
 

 is triangular, its eigenvalues are on the diagonal. Thus 3 is an 

eigenvalue with multiplicity 2. If the 2 2×  matrix A were diagonalizable, then A would be 3I, by  
part (a). This is not the case, so A is not diagonalizable. 

 9. If I A−  were not invertible, then the equation ( ) .− =x 0I A  would have a nontrivial solution x. Then 
A− =x x 0  and 1 ,= ⋅x xA  which shows that A would have 1 as an eigenvalue. This cannot happen if all 

the eigenvalues are less than 1 in magnitude. So I A−  must be invertible. 

 10. To show that kA  tends to the zero matrix, it suffices to show that each column of kA  can be made as 
close to the zero vector as desired by taking k sufficiently large. The jth column of A is ,e jA  where je  is 
the jth column of the identity matrix. Since A is diagonalizable, there is a basis for n consisting of 
eigenvectors 1 ,, ,v vn…  corresponding to eigenvalues 1 .λ , ,λn…  So there exist scalars 1 ,, , nc … c  such that 

  1 1 (an eigenvector decomposition of )= + +e v v ej n n j
…c c  

  Then, for 1 2 ,= , ,k …  

  1 1 1( ) ( ) ( )= λ + + λ ∗e v vk k k
j n n nA c c  

  If the eigenvalues are all less than 1 in absolute value, then their kth powers all tend to zero. So ( )∗  
shows that k

jA e tends to the zero vector, as desired. 
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 11. a. Take x in H. Then c=x u  for some scalar c. So ( ) ( ) ( ) ( ) ,= = = λ = λx u u u uA A c c A c c  which shows 
that Ax  is in H. 

b. Let x be a nonzero vector in K. Since K is one-dimensional, K must be the set of all scalar multiples 
of x. If K is invariant under A, then Ax  is in K and hence Ax  is a multiple of x. Thus x is an 
eigenvector of A. 

 12. Let U and V be echelon forms of A and B, obtained with r and s row interchanges, respectively, and no 
scaling. Then det ( 1) det rA U= −  and det ( 1) det sB V= −  

  Using first the row operations that reduce A to U, we can reduce G to a matrix of the form .
0

 
′ =  

 

U Y
G

B
 

Then, using the row operations that reduce B to V, we can further reduce G′  to .
0

 
′′ =  

 

U Y
G

V
 There 

will be r s+  row interchanges, and so det det ( 1) det 
0 0

+   
= = −   

   
r sA X U Y

G
B V

 Since 
0

 
 
 

U Y
V

 is 

upper triangular, its determinant equals the product of the diagonal entries,  
and since U and V are upper triangular, this product also equals (det U ) (det V ). Thus 

  det ( 1) (det )(det ) (det )(det )+= − =r sG U V A B  

  For any scalar λ , the matrix − λG I  has the same partitioned form as G, with − λA I  and − λB I  as its 
diagonal blocks. (Here I  represents various identity matrices of appropriate sizes.) Hence the result 
about det G shows that det( ) det( ) det( )− λ = − λ ⋅ − λG I A I B I  

 13. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix [ ]3  together with the eigenvalues 

of 
5 2

.
4 3

− 
 − 

 The only eigenvalue of [ ]3  is 3, while the eigenvalues of 
5 2
4 3

− 
 − 

 are 1 and 7. Thus the 

eigenvalues of A are 1, 3, and 7. 

 14. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix 
1 5
2 4
 
 
 

 together with the 

eigenvalues of 
7 4

.
3 1

− − 
 
 

 The eigenvalues of 
1 5
2 4
 
 
 

 are 1−  and 6, while the eigenvalues of 

7 4
3 1

− − 
 
 

 are 5−  and 1.−  Thus the eigenvalues of A are 1 5,− , −  and 6, and the eigenvalue 1−  has 

multiplicity 2. 

 15. Replace A by − λA  in the determinant formula from Exercise 16 in Chapter 3 Supplementary Exercises. 

  1det( ) ( ) [ ( 1) ]−− λ = − − λ − λ + −nA I a b a n b  

  This determinant is zero only if 0− − λ =a b  or ( 1) 0.− λ + − =a n b  Thus λ  is an eigenvalue of A if and 
only if λ = −a b  or ( 1).λ = + −a n  From the formula for det( )− λA I  above, the algebraic multiplicity is 

1n −  for a b−  and 1 for ( 1) .+ −a n b  

 16. The 3 3×  matrix has eigenvalues 1 2−  and 1 (2)(2),+  that is, 1−  and 5. The eigenvalues of the 5 5×  
matrix are 7 3−  and 7 (4)(3),+  that is 4 and 19. 
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 17. Note that 2
11 22 12 21 11 22 11 22 12 21det( ) ( )( ) ( ) ( )− λ = − λ − λ − = λ − + λ + −A I a a a a a a a a a a  

2 (tr ) det ,= λ − λ +A A  and use the quadratic formula to solve the characteristic equation: 

   
2tr (tr ) 4det 

2
± −

=
A A Aλ  

  The eigenvalues are both real if and only if the discriminant is nonnegative, that is, 2(tr ) 4det 0.− ≥A A  

This inequality simplifies to 2(tr ) 4detA A≥  and 
2

det .
2

  ≥ 
 

trA A  

 18. The eigenvalues of A are 1 and .6. Use this to factor A and .kA  

  

1 3 1 0 2 31
2 2 0 6 2 14

1 3 1 0 2 31
2 2 2 140 6

2 31 31
2 24 2 ( 6) ( 6)

2 6( 6) 3 3( 6)1
4 4 4( 6) 6 2( 6)

2 31  as 
4 64

 
 
 
 
  

 
 
 
  

 
 
 
 
  

− −     
= ⋅     . − −     

− −   
= ⋅   − −.   

− − 
=   − ⋅ . − . 

− + . − + .=
− . − .

− − 
→ → 

 

k
k

k

k k

k k

k k

A

A

k ∞

 

 19. 20 1
det( ) 6 5 ( )

6 5
 

= ; − λ = − λ + λ = λ − 
p pC C I p  

 20. 
0 1 0
0 0 1 ;

24 26 9

 
 =  
 − 

pC  

  2 3det( ) 24 26 9 ( )− λ = − λ + λ − λ = λpC I p  

 21. If p is a polynomial of order 2, then a calculation such as in Exercise 19 shows that the characteristic 
polynomial of pC  is 2( ) ( 1) ( ),λ = − λp p  so the result is true for 2.=n  Suppose the result is true for 

n k=  for some 2,≥k  and consider a polynomial p of degree 1.+k  Then expanding det( )− λpC I   
by cofactors down the first column, the determinant of − λpC I  equals 

   1
0

1 2

1 0

( )det ( 1)
0 1

+

−λ 
 
 −λ + −
 
 − − − − λ  

k

k

a

a a a
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  The k k×  matrix shown is ,− λqC I  where 1
1 2( ) .−= + + + +k k

kq t a a t a t t  By the induction assumption, 

the determinant of − λqC I  is ( 1) ( ).− λk q  Thus 

  

1
0

1 1
0 1

1

det( ) ( 1) ( )( 1) ( )

( 1) [ ( )]

( 1) ( )

+

+ −

+

− λ = − + −λ − λ

= − + λ + + λ + λ

= − λ

k k
p

k k k
k

k

C I a q

a a a

p

 

  So the formula holds for 1n k= +  when it holds for .=n k  By the principle of induction, the formula for 
det( )− λpC I  is true for all 2.≥n  

 22. a. 

0 1 2

0 1 0
0 0 1pC
a a a

 
 
 
 
 
 
  

=
− − −

 

b. Since λ  is a zero of p, 2 3
0 1 2 0+ λ + λ + λ =a a a  and 2 3

0 1 2 .− − λ − λ = λa a a  Thus 

   2 2

22
0 1 2

1

pC
a a a

    
    
    
    
    
     3
         

λ λ

λ = λ = λ
− − λ − λλ λ

 

  That is, 2 2(1 ) (1 ),,λ,λ = ,λ,λpC λ  which shows that 2(1 ),λ,λ  is an eigenvector of pC  corresponding 
to the eigenvalue λ . 

 23. From Exercise 22, the columns of the Vandermonde matrix V are eigenvectors of ,pC  corresponding to 

the eigenvalues 1 2 3λ ,λ ,λ  (the roots of the polynomial p). Since these eigenvalues are distinct, the 
eigenvectors from a linearly independent set, by Theorem 2 in Section 5.1. Thus V has linearly 
independent columns and hence is invertible, by the Invertible Matrix Theorem. Finally, since the 
columns of V are eigenvectors of ,pC  the Diagonalization Theorem (Theorem 5 in Section 5.3) shows 

that 1
pV C V−  is diagonal. 

 24. [M] The MATLAB command roots (p) requires as input a row vector p whose entries are the 
coefficients of a polynomial, with the highest order coefficient listed first. MATLAB constructs a 
companion matrix pC  whose characteristic polynomial is p, so the roots of p are the eigenvalues of .pC  
The numerical values of the eigenvalues (roots) are found by the same QR algorithm used by the 
command eig(A). 

 25. [M] The MATLAB command [P D]=eig(A) produces a matrix P, whose condition number is 
81 6 10 ,. ×  and a diagonal matrix D, whose entries are almost 2, 2, 1. However, the exact eigenvalues  

of A are 2, 2, 1, and A is not diagonalizable. 

 26. [M] This matrix may cause the same sort of trouble as the matrix in Exercise 25. A matrix program that 
computes eigenvalues by an interative process may indicate that A has four distinct eigenvalues, all close 
to zero. However, the only eigenvalue is 0, with multiplicity 4, because 4 0.=A  
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6.1 SOLUTIONS 

Notes: The first half of this section is computational and is easily learned. The second half concerns the 
concepts of orthogonality and orthogonal complements, which are essential for later work. Theorem 3 is an 
important general fact, but is needed only for Supplementary Exercise 13 at the end of the chapter and in 
Section 7.4. The optional material on angles is not used later. Exercises 27–31 concern facts used later. 

 1. Since 
1

2

�� �
� � �

� �
u  and 

4
,

6

� �
� � �

� �
v  2 2( 1) 2 5	 � � 
 �u u , v 	 u = 4(–1) + 6(2) = 8, and 

8
.

5

	
�

	
v u
u u

 

 2. Since 

3

1

5

� �
� �� �� �
� ��� �

w  and 

6

2 ,

3

� �
� �� �� �
� �� �

x  2 2 23 ( 1) ( 5) 35	 � 
 � 
 � �w w , x 	 w = 6(3) + (–2)(–1) + 3(–5) = 5, and 

5 1
.

35 7

	
� �

	
x w
w w

 

 3. Since 

3

1 ,

5

� �
� �� �� �
� ��� �

w  2 2 23 ( 1) ( 5) 35	 � 
 � 
 � �w w , and 

3/ 35
1

1/ 35 .

1/ 7

� �
� �� �� �	
� ��� �

w
w w

 

 4. Since 
1

,
2

�� �
� � �

� �
u  2 2( 1) 2 5	 � � 
 �u u  and 

1/ 51
.

2 /5

�� �
� � �	 � �

u
u u

 

 5. Since 
1

2

�� �
� � �

� �
u  and 

4
,

6

� �
� � �

� �
v  u 	 v = (–1)(4) + 2(6) = 8, 2 24 6 52,	 � 
 �v v  and 

4 8 /132
.

6 12 /1313

� � � �	� � � � � � � � �	� � � � � �

u v
v

v v
 

 6. Since 

6

2

3

� �
� �� �� �
� �� �

x  and 

3

1 ,

5

� �
� �� �� �
� ��� �

w  x 	 w = 6(3) + (–2)(–1) + 3(–5) = 5, 2 2 26 ( 2) 3 49,	 � 
 � 
 �x x  and 

6 30 / 49
5

2 10 / 49 .
49

3 15/ 49

� � � �
	� � � � � �� � � � � � � � �	� � � � � �� � � �

x w
x

x x
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 7. Since 

3

1 ,

5

� �
� �� �� �
� ��� �

w  2 2 2|| || 3 ( 1) ( 5) 35.� 	 � 
 � 
 � �w w w  

 8. Since 

6

2 ,

3

� �
� �� �� �
� �� �

x  2 2 2|| || 6 ( 2) 3 49 7.� 	 � 
 � 
 � �x x x  

 9. A unit vector in the direction of the given vector is  

   
2 2

30 30 3/ 51 1
40 40 4 / 550( 30) 40

� � �� � � � � �
� �� � � � � �

� � � � � �� 

 

 10. A unit vector in the direction of the given vector is  

   
2 2 2

6 / 616 6
1 1

4 4 4 / 61
61( 6) 4 ( 3) 3 3 3 61

� ��� �� � � � � �� � � �� � � �� � � � � �� 
 
 � � � � �� � �� � � � � �� �

 

 11. A unit vector in the direction of the given vector is  

   
2 2 2

7 / 697 / 4 7 / 4
1 1

1/ 2 1/ 2 2 / 69
69 /16(7 / 4) (1/ 2) 1 1 1 4 / 69

� �� � � � � �� � � �� � � �� � � � � �
 
 � � � �� � � � � �� �

 

 12. A unit vector in the direction of the given vector is  

   
2 2

8/ 3 8/ 3 4 / 51 1
2 2 3/ 5100 / 9(8 / 3) 2

� � � � � �
� �� � � � � �

� � � � � �

 

 13. Since 
10

3

� �
� � ��� �

x  and 
1

,
5

�� �
� � ��� �

y  2 2 2|| || [10 ( 1)] [ 3 ( 5)] 125� � � � 
 � � � �x y  and dist ( , ) 125 5 5.� �x y  

 14. Since 

0

5

2

� �
� �� �� �
� �� �

u  and 

4

1 ,

8

�� �
� �� �� �
� �� �

z  2 2 2 2|| || [0 ( 4)] [ 5 ( 1)] [2 8] 68� � � � 
 � � � 
 � �u z  and 

dist ( , ) 68 2 17.� �u z  

 15. Since a 	 b = 8(–2) + (–5)( –3) = –1 ��0, a and b are not orthogonal. 

 16. Since u 	 v�= 12(2) + (3)( –3) + (–5)(3) = 0, u and v are orthogonal. 

 17. Since u 	 v = 3(–4) + 2(1) + (–5)( –2) + 0(6) = 0, u and v are orthogonal. 

 18. Since y 	 z�= (–3)(1) + 7(–8) + 4(15) + 0(–7) = 1 ��0, y and z are not orthogonal. 

 19. a. True. See the definition of || v ||.  

 b. True. See Theorem 1(c).  

 c. True. See the discussion of Figure 5.  
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 d. False. Counterexample: 
1 1

.
0 0

� �
� �
� �

 

 e. True. See the box following Example 6.  

 20. a. True. See Example 1 and Theorem 1(a).  

 b. False. The absolute value sign is missing. See the box before Example 2.  

 c. True. See the defintion of orthogonal complement.  

 d. True. See the Pythagorean Theorem.  

 e. True. See Theorem 3. 

 21. Theorem 1(b):  

   ( ) ( ) ( )T T T T T
 	 � 
 � 
 � 
 � 	 
 	u v w u v w u v w u w v w u w v w  

  The second and third equalities used Theorems 3(b) and 2(c), respectively, from Section 2.1. 

  Theorem 1(c):  

   ( ) ( ) ( ) ( )T Tc c c c	 � � � 	u v u v u v u v  

  The second and third equalities used Theorems 3(c) and 2(d), respectively, from Section 2.1. 

 22. Since u 	 u is the sum of the squares of the entries in u, u 	 u���0. The sum of squares of numbers is zero 
if and only if all the numbers are themselves zero. 

 23. One computes that u 	 v = 2(–7) + (–5)( –4) + (–1)6 = 0, 2 2 2 2|| || 2 ( 5) ( 1) 30,� 	 � 
 � 
 � �u u u  
2 2 2 2|| || ( 7) ( 4) 6 101,� 	 � � 
 � 
 �v v v  and 2|| || ( ) ( )
 � 
 	 
 �u v u v u v  

2 2 2(2 ( 7)) ( 5 ( 4)) ( 1 6) 131.
 � 
 � 
 � 
 � 
 �  

 24. One computes that  

   2 2 2|| || ( ) ( ) 2 || || 2 || ||
 � 
 	 
 � 	 
 	 
 	 � 
 	 
u v u v u v u u u v v v u u v v  

  and  

   2 2 2|| || ( ) ( ) 2 || || 2 || ||� � � 	 � � 	 � 	 
 	 � � 	 
u v u v u v u u u v v v u u v v  

  so  

   2 2 2 2 2 2 2 2|| || || || || || 2 || || || || 2 || || 2 || || 2 || ||
 
 � � 
 	 
 
 � 	 
 � 
u v u v u u v v u u v v u v  

 25. When ,
a

b

� �
� � �

� �
v  the set H of all vectors 

x

y

� �
� �
� �

 that are orthogonal to � is the subspace of vectors whose 

entries satisfy ax + by = 0. If a ��0, then x = – (b/a)y with y a free variable, and H is a line through the 

origin. A natural choice for a basis for H in this case is .
b

a

� ��� �� �
� �� �
� �� �� �

 If a = 0 and b ��0, then by = 0. Since  

b ��0, y = 0 and x is a free variable. The subspace H is again a line through the origin. A natural choice 

for a basis for H in this case is 
1

,
0

� �� �� �
� �� �
� �� �� �

 but 
b

a

� ��� �� �
� �� �
� �� �� �

 is still a basis for H since a = 0 and b ��0. If a = 0 

and b = 0, then H = 2 since the equation 0x + 0y = 0 places no restrictions on x or y. 

 26. Theorem 2 in Chapter 4 may be used to show that W is a subspace of 3, because W is the null space of 

the 1 ��3 matrix .Tu  Geometrically, W is a plane through the origin. 
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 27. If y is orthogonal to u and v, then y 	 u = y 	 v = 0, and hence by a property of the inner product,  
y 	 (u + v) = y 	 u + y 	 v = 0 + 0 = 0. Thus y is orthogonal to u�+ v. 

 28. An arbitrary w in Span{u, v} has the form 1 2c c� 
w u v . If y is orthogonal to u and v, then  

u 	 y = v 	 y = 0. By Theorem 1(b) and 1(c),  

   1 2 1 2( ) ( ) ( ) 0 0 0c c c c	 � 
 	 � 	 
 	 � 
 �w y u v y u y v y  

 29. A typical vector in W has the form 1 1 .p pc c� 
�
w v v  If x is orthogonal to each ,jv  then by Theorems 

1(b) and 1(c),  

   1 1 1 1( ) ( ) ( ) 0p p p pc c c c	 � 
�
 	 � 	 
�
 	 �w x v v y v x v x  

  So x is orthogonal to each w in W. 

 30. a. If z is in ,W �  u is in W, and c is any scalar, then (cz) ��u�= c(z���u) – c 0 = 0. Since u is any element of 

W, c z is in .W �  

b. Let 1z  and 2z  be in .W �  Then for any u in W, 1 2 1 2( ) 0 0 0.� � � � � � � � �z z u z u z u  Thus 1 2�z z  is 

in .W �  

c. Since 0 is orthogonal to every vector, 0 is in .W �  Thus W �  is a subspace.  

 31. Suppose that x is in W and .W �  Since x is in ,W �  x is orthogonal to every vector in W, including x 
itself. So x � x = 0, which happens only when x = 0. 

 32. [M]  

 a. One computes that 1 2 3 4|| || || || || || || || 1� � � �a a a a  and that 0i j� �a a  for i ��j.  

 b. Answers will vary, but it should be that || Au�|| = || u�|| and || Av�|| = || v�||.  

 c. Answers will again vary, but the cosines should be equal.  

 d. A conjecture is that multiplying by A does not change the lengths of vectors or the angles between 
vectors.  

 33. [M] Answers to the calculations will vary, but will demonstrate that the mapping ( )T
�� �� � ��	 


x v
x x v

v v
�  

(for v���0) is a linear transformation. To confirm this, let x and y be in n, and let c be any scalar. Then  

   
( ) ( ) ( )

( )T
� � � � �� � � �� � �� � � �� �	 
 	 


x y v x v y v
x y v v

v v v v
( ) ( )T T

� �� � � �� � � �� � � �� �	 
 	 


x v y v
v v x y

v v v v
 

  and  

   
( ) ( )

( ) ( )
c c

T c c cT
� � �� � � � � �� � � �� � � � � �� � �	 
 	 
 	 


x v x v x v
x v v v x

v v v v v v
 

 34. [M] One finds that  

   

5 1

1 0 5 0 1/ 31 4

, 0 1 1 0 4 / 31 0

0 0 0 1 1/ 30 1

0 3

N R

� �
� � ��  �� � � �� �� � �� �� � � �� � �� �
� �� �
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  The row-column rule for computing RN produces the 3 ��2 zero matrix, which shows that the rows of R 
are orthogonal to the columns of N. This is expected by Theorem 3 since each row of R is in Row A and 
each column of N is in Nul A. 

6.2 SOLUTIONS 

Notes: The nonsquare matrices in Theorems 6 and 7 are needed for the QR factorizarion in Section 6.4. It is 
important to emphasize that the term orthogonal matrix applies only to certain square matrices. The 
subsection on orthogonal projections not only sets the stage for the general case in Section 6.3, it also 
provides what is needed for the orthogonal diagonalization exercises in Section 7.1, because none of the 
eigenspaces there have dimension greater than 2. For this reason, the Gram-Schmidt process (Section 6.4) is 
not really needed in Chapter 7. Exercises 13 and 14 prepare for Section 6.3. 

 1. Since 

1 3

4 4 2 0,

3 7

� �  �
� � � �� � � �� � � �
� � � �� �� � � �

 the set is not orthogonal. 

 2. Since 

1 0 1 5 0 5

2 1 2 2 1 2 0,

1 2 1 1 2 1

� � �  �  �  �  �  �
� � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �

 the set is orthogonal. 

 3. Since 

6 3

3 1 30 0,

9 1

� �  �
� � � �� � � � �� � � �
� � � ��� � � �

 the set is not orthogonal. 

 4. Since 

2 0 2 4 0 4

5 0 5 2 0 2 0,

3 0 3 6 0 6

 �  �  �  �  �  �
� � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �� �� � � � � � � � � � � �

 the set is orthogonal. 

 5. Since 

3 1 3 3 1 3

2 3 2 8 3 8
0,

1 3 1 7 3 7

3 4 3 0 4 0

� � �  �  �  �  �  �
� � � � � � � � � � � �� �� � � � � � � � � � � �� � � � � �
� � � � � � � � � � � �� �
� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �

 the set is orthogonal. 

 6. Since 

4 3

1 3
32 0,

3 5

8 1

� �  �
� � � �
� � � �� � � �
� � � ��
� � � �

�� � � �� � � �

 the set is not orthogonal. 

 7. Since 1 2 12 12 0,� � � �u u  1 2{ , }u u  is an orthogonal set. Since the vectors are non-zero, 1u  and 2u  are 

linearly independent by Theorem 4. Two such vectors in 2 automatically form a basis for 2. So 

1 2{ , }u u  is an orthogonal basis for 2. By Theorem 5,  

   1 2
1 1 2

1 1 2 2

1
3

2

� �
� � � �

� �
x u x u

x u u u
u u u u
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 8. Since 1 2 6 6 0,� � � � �u u  1 2{ , }u u  is an orthogonal set. Since the vectors are non-zero, 1u  and 2u  are 
linearly independent by Theorem 4. Two such vectors in 2 automatically form a basis for 2. So 

1 2{ , }u u  is an orthogonal basis for 2. By Theorem 5,  

   1 2
1 1 2

1 1 2 2

3 3

2 4

� �
� � � � �

� �
x u x u

x u u u
u u u u

 

 9. Since 1 2 1 3 2 3 0,� � � � � �u u u u u u  ,1 2 3{ , }u u u  is an orthogonal set. Since the vectors are non-zero, 1,u  

2 ,u  and 3u  are linearly independent by Theorem 4. Three such vectors in 3 automatically form a basis 

for 3. So 1 2 3{ , , }u u u  is an orthogonal basis for 3. By Theorem 5,  

   31 2
1 3 1 2 3

1 1 2 2 3 3

5 3
2

2 2

�� �
� � � � � �

� � �
x ux u x u

x u u u u u
u u u u u u

 

 10. Since 1 2 1 3 2 3 0,� � � � � �u u u u u u  ,1 2 3{ , }u u u  is an orthogonal set. Since the vectors are non-zero, 1,u  

2 ,u  and 3u  are linearly independent by Theorem 4. Three such vectors in 3 automatically form a basis 

for 3. So 1 2 3{ , , }u u u  is an orthogonal basis for 3. By Theorem 5,  

   31 2
1 3 1 2 3

1 1 2 2 3 3

4 1 1

3 3 3

�� �
� � � � � �

� � �
x ux u x u

x u u u u u
u u u u u u

 

 11. Let 
1

7

 �
� � �
� �

y  and 
4

.
2

� �
� � �
� �

u  The orthogonal projection of y onto the line through u and the origin is the 

orthogonal projection of y onto u, and this vector is  

   
21

ˆ
12

 ��
� � � � ��� � �

y u
y u u

u u
 

 12. Let 
1

1

 �
� � ��� �

y  and 
1

.
3

� �
� � �
� �

u  The orthogonal projection of y onto the line through u and the origin is the 

orthogonal projection of y onto u, and this vector is  

   
2 / 52

ˆ
6 /55

 ��
� � � � � ��� � �

y u
y u u

u u
 

 13. The orthogonal projection of y onto u is  

   
4 / 513

ˆ
7 / 565

� ��
� � � � � �� � �

y u
y u u

u u
 

  The component of y orthogonal to u is  

   ˆ
���� �

� � � ����� �
y y  

  Thus ˆ ˆ
���� ���� �  �

� � � � � � �� � � ���� ���� � � �
y y y y . 

 14. The orthogonal projection of y onto u is  

   
14 / 52

ˆ
2 /55

 ��
� � � � �� � �

y u
y u u

u u
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  The component of y orthogonal to u is  

   ˆ
���� �

� � � ������ �
y y  

  Thus ˆ ˆ .
���� ���� �  �

� � � � � � �� � � ���� ����� � � �
y y y y  

 15. The distance from y to the line through u and the origin is ||y – ŷ ||. One computes that  

   
3 8 3/ 53

ˆ
1 6 4 / 510

 �  �  ��
� � � � � �� � � � � ��� � � � � � �

y u
y y y u

u u
 

  so ˆ|| � ��� ���������� ��y y  is the desired distance. 

 16. The distance from y to the line through u and the origin is ||y – ŷ ||. One computes that  

   
3 1 6

ˆ 3
9 2 3

� � �  �  ��
� � � � � �� � � � � �� � � � � � �

y u
y y y u

u u
 

  so ˆ|| � ���  � � � �  �y y  is the desired distance. 

 17. Let 

1/ 3

1/ 3 ,

1/ 3

 �
� �� � �
� �� �

u  

1/ 2

0 .

1/ 2

� �
� �� � �
� �� �

v  Since u � v = 0, {u, v} is an orthogonal set. However, 2|| || 1/ 3� � �u u u  and 

2|| || 1/ 2,� � �v v v  so {u, v} is not an orthonormal set. The vectors u and v may be normalized to form 
the orthonormal set  

   

3 / 3 2 / 2

, 3 / 3 , 0
|| || || ||

3 / 3 2 / 2

! " �  ��# #� � � �! " # #� � �$ % $ %� �
& ' � �# #� �

� � � �# #� �& '

u v
u v

 

 18. Let 

0

1 ,

0

 �
� �� � �
� �� �

u  

0

1 .

0

 �
� �� �� �
� �� �

v  Since u � v = –1 ��0, {u, v} is not an orthogonal set.  

 19. Let 
.6

,
.8

� �
� � �
� �

u  
.8

.
.6

 �
� � �
� �

v  Since u � v = 0, {u, v} is an orthogonal set. Also, 2|| || 1� � �u u u  and 

2|| || 1,� � �v v v  so {u, v} is an orthonormal set.  

 20. Let 

2 / 3

1/ 3 ,

2 / 3

� �
� �� � �
� �� �

u  

1/ 3

2 /3 .

0

 �
� �� � �
� �� �

v  Since u � v = 0, {u, v} is an orthogonal set. However, 2|| || 1� � �u u u  and 

2|| || 5 / 9,� � �v v v  so {u, v} is not an orthonormal set. The vectors u and v may be normalized to form 
the orthonormal set  

   

1/ 52 /3

, 1/ 3 , 2 / 5
|| || || ||

2 / 3 0

! " �� �# #� �! " # #� �� � �$ % $ %� �& ' � �# #� �� � � �# #� �& '

u v
u v
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 21. Let 

1/ 10

3/ 20 ,

3/ 20

 �
� �

� � �
� �
� �� �

u  

3/ 10

1/ 20 ,

1/ 20

 �
� �

� �� �
� �
�� �� �

v  and 

0

1/ 2 .

1/ 2

 �
� �

� �� �
� �
� �

w  Since u � v = u � w = v � w = 0, {u, v, w} is an 

orthogonal set. Also, 2|| || 1,� � �u u u  2|| || 1,� � �v v v  and 2|| || 1,� � �w w w  so {u, v, w} is an 
orthonormal set.  

 22. Let 

1/ 18

4 / 18 ,

1/ 18

 �
� �

� � �
� �
� �� �

u  

1/ 2

0 ,

1/ 2

 �
� �

� � �
� ��� �

v  and 

2 /3

1/ 3 .

2 /3

� �
� �� � �
� ��� �

w  Since u � v = u � w = v � w = 0, {u, v, w} is an 

orthogonal set. Also, 2|| || 1,� � �u u u  2|| || 1,� � �v v v  and 2|| || 1,� � �w w w  so {u, v, w} is an 
orthonormal set.  

 23.  a. True. For example, the vectors u and y in Example 3 are linearly independent but not orthogonal.  

 b. True. The formulas for the weights are given in Theorem 5.  

 c. False. See the paragraph following Example 5.  

 d. False. The matrix must also be square. See the paragraph before Example 7.  

 e. False. See Example 4. The distance is ||y – ŷ ||.  

 24.  a. True. But every orthogonal set of nonzero vectors is linearly independent. See Theorem 4.  

 b. False. To be orthonormal, the vectors is S must be unit vectors as well as being orthogonal to each 
other.  

 c. True. See Theorem 7(a).  

 d. True. See the paragraph before Example 3.  

 e. True. See the paragraph before Example 7.  

 25. To prove part (b), note that  

   ( ) ( ) ( ) ( )T T T TU U U U U U� � � � � �x y x y x y x y x y  

  because TU U I� . If y = x in part (b), (Ux) � (Ux) = x � x, which implies part (a). Part (c) of the Theorem 
follows immediately fom part (b). 

 26. A set of n nonzero orthogonal vectors must be linearly independent by Theorem 4, so if such a set spans 
W it is a basis for W. Thus W is an n-dimensional subspace of n, and W � n. 

 27. If U has orthonormal columns, then TU U I�  by Theorem 6. If U is also a square matrix, then the 

equation TU U I�  implies that U is invertible by the Invertible Matrix Theorem. 

 28. If U is an n ��n orthogonal matrix, then 1 TI UU UU�� � . Since U is the transpose of ,TU  Theorem 6 

applied to TU  says that TU  has orthogonal columns. In particular, the columns of TU  are linearly 
independent and hence form a basis for n by the Invertible Matrix Theorem. That is, the rows of U form 
a basis (an orthonormal basis) for n. 

 29. Since U and V are orthogonal, each is invertible. By Theorem 6 in Section 2.2, UV is invertible and 
1 1 1( ) ( ) ,T T TUV V U V U UV� � �� � �  where the final equality holds by Theorem 3 in Section 2.1. Thus UV 

is an orthogonal matrix. 
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 30. If U is an orthogonal matrix, its columns are orthonormal. Interchanging the columns does not change 
their orthonormality, so the new matrix – say, V – still has orthonormal columns. By Theorem 6, 

.TV V I�  Since V is square, 1TV V ��  by the Invertible Matrix Theorem. 

 31. Suppose that ˆ .
�

�
�

y u
y u

u u
 Replacing u by cu with c ��0 gives  

   
2

2 2

( ) ( ) ( )
ˆ( ) ( )

( ) ( ) ( ) ( )

c c c
c c

c c c c

� � � �
� � � �

� �� �
y u y u y u y u

u u u u y
u u u uu u u u

 

  So ŷ  does not depend on the choice of a nonzero u in the line L used in the formula. 

 32. If 1 2 0� �v v , then by Theorem 1(c) in Section 6.1,  

   1 1 2 2 1 1 2 2 1 2 1 2 1 2( ) ( ) [ ( )] ( ) 0 0c c c c c c c c� � � � � � �v v v v v v  

 33. Let L = Span{u}, where u is nonzero, and let ( )T
�

�
�

x u
x u

u u
. For any vectors x and y in n and any 

scalars c and d, the properties of the inner product (Theorem 1) show that  

   
( )

( )
c d

T c d
� �

� �
�

x y u
x y u

u u
 

   
c d� � �

�
�

x u y u
u

u u
 

   
c d� �

� �
� �

x u y u
u u

u u u u
 

   ( ) ( )cT dT� �x y  

  Thus T is a linear transformation. Another approach is to view T as the composition of the following 
three linear mappings: x���a = x � v, a ��b = a / v � v, and b ��bv. 

 34. Let L = Span{u}, where u is nonzero, and let ( ) refl 2projL LT � � �x y y y . By Exercise 33, the mapping 

projLy y�  is linear. Thus for any vectors y and z in n and any scalars c and d,  

   ( ) 2 proj ( ) ( )LT c d c d c d� � � � �y z y z y z  

   2( proj proj )L Lc d c d� � � �y z y z  

   2 proj 2 projL Lc c d d� � � �y y z z  

   (2 proj ) (2 proj )L Lc d� � � �y y z z  

   ( ) ( )cT dT� �y z  

  Thus T is a linear transformation.  

 35. [M] One can compute that 4100 .TA A I�  Since the off-diagonal entries in TA A  are zero, the columns of 

A are orthogonal. 
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 36. [M]  

a. One computes that 4 ,TU U I�  while  

   

82 0 20 8 6 20 24 0

0 42 24 0 20 6 20 32

20 24 58 20 0 32 0 6

8 0 20 82 24 20 6 01

6 20 0 24 18 0 8 20100

20 6 32 20 0 58 0 24

24 20 0 6 8 0 18 20

0 32 6 0 20 24 20 42

TUU

�� �
	 
� �	 

	 
�
	 


�� � 	 
�  � 	 
� �� �
	 


�	 

	 
� �
	 


� �	 
� �

 

  The matrices TU U  and TUU  are of different sizes and look nothing like each other.  

b. Answers will vary. The vector TUU�p y  is in Col U because ( )TU U�p y . Since the columns of U 
are simply scaled versions of the columns of A, Col U = Col A. Thus each p is in Col A.  

c. One computes that TU �z 0 .  

d. From (c), z is orthogonal to each column of A. By Exercise 29 in Section 6.1, z must be orthogonal to 

every vector in Col A; that is, z is in (Col ) .A �  

6.3 SOLUTIONS 

Notes: Example 1 seems to help students understand Theorem 8. Theorem 8 is needed for the Gram-Schmidt 
process (but only for a subspace that itself has an orthogonal basis). Theorems 8 and 9 are needed for the 
discussions of least squares in Sections 6.5 and 6.6. Theorem 10 is used with the QR factorization to provide a 
good numerical method for solving least squares problems, in Section 6.5. Exercises 19 and 20 lead naturally 
into consideration of the Gram-Schmidt process. 

 1. The vector in 4Span{ }u  is  

   4
4 4 4

4 4

10

672
2

236

2

� �
� ��� � �� � �
� ���
� �
� �� 	

x u
u u u

u u
 

  Since 4
1 1 2 2 3 3 4

4 4

,c c c
�

� 
 
 

�

x u
x u u u u

u u
 the vector  

   4
4

4 4

10 10 0

8 6 2

2 2 4

0 2 2

� � � � � �
� � � � � �� � �� � � � � � �� � � �
� � � � � ���
� � � � � ��� � � � � �� 	 � 	 � 	

x u
x u

u u
 

  is in 1 2 3Span{ , , }.u u u  
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 2. The vector in 1Span{ }u  is  

   1
1 1 1

1 1

2

414
2

27

2

� �
� �� � �� � �
� ��
� �
� �� 	

v u
u u u

u u
 

  Since 1
1 2 2 3 3 4 4

1 1

,c c c
�

� 
 
 

�

v u
x u u u u

u u
 the vector  

   1
1

1 1

4 2 2

5 4 1

3 2 5

3 2 1

� � � � � �
� � � � � �� � � � � � �� � � �
� � � � � �� ��
� � � � � �
� � � � � �� 	 � 	 � 	

v u
v u

u u
 

  is in 2 3 4Span{ , , }.u u u  

 3. Since 1 2 1 1 0 0,� � � 
 
 �u u  1 2{ , }u u  is an orthogonal set. The orthogonal projection of y onto 

1 2Span{ , }u u  is  

   1 2
1 2 1 2

1 1 2 2

1 1 1
3 5 3 5

ˆ 1 1 4
2 2 2 2

0 0 0

� �� � � � � �
� � � � � � � �� 
 � 
 � 
 �� � � � � �� �

� � � � � �� 	 � 	 � 	

y u y u
y u u u u

u u u u
 

 4. Since 1 2 12 12 0 0,� � � 
 
 �u u  1 2{ , }u u  is an orthogonal set. The orthogonal projection of y onto 

1 2Span{ , }u u  is  

   1 2
1 2 1 2

1 1 2 2

3 4 6
30 15 6 3

ˆ 4 3 3
25 25 5 5

0 0 0

�� � � � � �
� � � � � � � �� 
 � � � � �� � � � � �� �

� � � � � �� 	 � 	 � 	

y u y u
y u u u u

u u u u
 

 5. Since 1 2 3 1 4 0,� � 
 � �u u  1 2{ , }u u  is an orthogonal set. The orthogonal projection of y onto 

1 2Span{ , }u u  is  

   1 2
1 2 1 2

1 1 2 2

3 1 1
7 15 1 5

ˆ 1 1 2
14 6 2 2

2 2 6

�� � � � � �
� � � � � � � �� 
 � � � � � � �� � � � � �� �

� � � � � �� 	 � 	 � 	

y u y u
y u u u u

u u u u
 

 6. Since 1 2 0 1 1 0,� � � 
 �u u  1 2{ , }u u  is an orthogonal set. The orthogonal projection of y onto 

1 2Span{ , }u u  is  

   1 2
1 2 1 2

1 1 2 2

4 0 6
27 5 3 5

ˆ 1 1 4
18 2 2 2

1 1 1

�� � � � � �
� � � � � � � �� 
 � � 
 � � � 
 �� � � � � �� �

� � � � � �� 	 � 	 � 	

y u y u
y u u u u

u u u u
 

 7. Since 1 2 5 3 8 0,� � 
 � �u u  1 2{ , }u u  is an orthogonal set. By the Orthogonal Decomposition Theorem,  

   1 2
1 2 1 2

1 1 2 2

10 / 3 7 / 3
2

ˆ ˆ0 2 / 3 , 7 / 3
3

8/ 3 7 / 3

�� � � �
� � � � � �� 
 � 
 � � � �� � � �� �

� � � �� 	 � 	

y u y u
y u u u u z y y

u u u u
 

  and y = ŷ + z, where ŷ  is in W and z is in .W �  
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 8. Since 1 2 1 3 2 0,� � � 
 � �u u  1 2{ , }u u  is an orthogonal set. By the Orthogonal Decomposition Theorem,  

   1 2
1 2 1 2

1 1 2 2

3/ 2 5 / 2
1

ˆ ˆ2 7 / 2 , 1/ 2
2

1 2

�� � � �
� � � � � �� 
 � 
 � � � �� � � �� �

� � � �� 	 � 	

y u y u
y u u u u z y y

u u u u
 

  and y = ŷ + z, where ŷ  is in W and z is in .W �  

 9. Since 1 2 1 3 2 3 0,� � � � � �u u u u u u  1 2 3{ , , }u u u  is an orthogonal set. By the Orthogonal Decomposition 

Theorem,  

   31 2
1 2 3 1 2 3

1 1 2 2 3 3

2 2

4 12 2
ˆ ˆ2 ,

0 33 3

0 1

� � � �
	 
 	 
��� � 	 
 	 
� � � � � � � � � �
	 
 	 
� � �
	 
 	 


�	 
 	 
� � � �

y uy u y u
y u u u u u u z y y

u u u u u u
 

  and y�= ŷ + z, where ŷ  is in W and z is in .W �  

 10. Since 1 2 1 3 2 3 0,� � � � � �u u u u u u  1 2 3{ , , }u u u  is an orthogonal set. By the Orthogonal Decomposition 
Theorem,  

   31 2
1 2 3 1 2 3

1 1 2 2 3 3

5 2

2 21 14 5
ˆ ˆ,

3 23 3 3

6 0

�� � � �
	 
 	 
�� � 	 
 	 
� � � � � � � � � �
	 
 	 
� � �
	 
 	 

	 
 	 
� � � �

y uy u y u
y u u u u u u z y y

u u u u u u
 

  and y�= ŷ + z, where ŷ  is in W and z is in .W �  

 11. Note that 1v  and 2v  are orthogonal. The Best Approximation Theorem says that ŷ , which is the 

orthogonal projection of y onto 1 2Span{ , },W � v v  is the closest point to y in W. This vector is  

   1 2
1 2 1 2

1 1 2 2

3

11 3
ˆ

12 2

1

� �
	 
�� � 	 
� � � � �
	 
� �
	 

�	 
� �

y v y v
y v v v v

v v v v
 

 12. Note that 1v  and 2v  are orthogonal. The Best Approximation Theorem says that ŷ , which is the 

orthogonal projection of � onto 1 2Span{ , },W � v v  is the closest point to y in W. This vector is  

   1 2
1 2 1 2

1 1 2 2

1

5
ˆ 3 1

3

9

�� �
	 
�� � 	 
� � � � �
	 
�� �
	 

	 
� �

y v y v
y v v v v

v v v v
 

 13. Note that 1v  and 2v  are orthogonal. By the Best Approximation Theorem, the closest point in 

1 2Span{ , }v v  to z is  

   1 2
1 2 1 2

1 1 2 2

1

32 7
ˆ

23 3

3

�� �
	 
�� � 	 
� � � � �
	 
�� �
	 

	 
� �

z v z v
z v v v v

v v v v
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 14. Note that 1v  and 2v  are orthogonal. By the Best Approximation Theorem, the closest point in 

1 2Span{ , }v v  to z is  

   1 2
1 2 1 2

1 1 2 2

1

01
ˆ 0

1/ 22

3/ 2

� �
	 
� � 	 
� � � � �
	 
�� �
	 

�	 
� �

z v z v
z v v v v

v v v v
 

 15. The distance from the point y in 3 to a subspace W is defined as the distance from y to the closest point 
in W. Since the closest point in W to y is ˆ proj ,W�y y  the desired distance is || y�– ŷ ||. One computes that 

3 2

ˆ ˆ9 0 ,

1 6

   
   = − , − =   
   −   

y y y  and ˆ|| 40 10.− || = = 2y y  

 16. The distance from the point y in 4 to a subspace W is defined as the distance from y to the closest point 
in W. Since the closest point in W to y is ˆ proj ,W�y y  the desired distance is || y – ŷ ||. One computes that 

ˆ ˆ ,

�� �� � � �
	 
 	 
�� �	 
 	 
� � � �
	 
 	 
�� �
	 
 	 

� �	 
 	 
� � � �

y y y  and || y – ŷ || = 8. 

 17. a. 

8 / 9 2 / 9 2 / 9
1 0

, 2 / 9 5/ 9 4 / 9
0 1

2 /9 4 /9 5/ 9

T TU U UU

�� �
� � 	 
� � �	 
 	 
� � 	 
� �

 

 b. Since 2 ,TU U I�  the columns of U form an orthonormal basis for W, and by Theorem 10 

8 / 9 2 / 9 2 / 9 4 2

proj 2 / 9 5/ 9 4 / 9 8 4 .

2 /9 4 / 9 5/ 9 1 5

T
W UU

�� � � � � �
	 
 	 
 	 
� � � �	 
 	 
 	 

	 
 	 
 	 
� � � � � �

y y  

 18. a. � � 1/10 3/10
1 1,

3/10 9 /10
T TU U UU

�� �
� � � 	 
�� �

  

 b. Since 1,TU U �  1{ }u  forms an orthonormal basis for W, and by Theorem 10 

1/10 3/10 7 2
proj .

3/10 9 /10 9 6
T

W UU
� �� � � � � �

� � �	 
 	 
 	 
�� � � � � �
y y  

 19. By the Orthogonal Decomposition Theorem, 3u  is the sum of a vector in 1 2Span{ , }W � u u  and a vector 

v orthogonal to W. This exercise asks for the vector v:  

   3 3 3 1 2

0 0 0
1 1

proj 0 2 / 5 2 / 5
3 15

1 4 / 5 1/ 5
W

� � � � � �
� � 	 
 	 
 	 
� � � � � � � � � � � 	 
 	 
 	 
� � 	 
 	 
 	 
� � � � � �

v u u u u u  

  Any multiple of the vector v will also be in .W �  
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 20. By the Orthogonal Decomposition Theorem, 4u  is the sum of a vector in 1 2Span{ , }W � u u  and a vector 

v orthogonal to W. This exercise asks for the vector v:  

   4 4 4 1 2

0 0 0
1 1

proj 1 1/ 5 4 / 5
6 30

0 2 / 5 2 / 5
W

� � � � � �
� � 	 
 	 
 	 
� � � � � � � � � 	 
 	 
 	 
� � 	 
 	 
 	 
�� � � � � �

v u u u u u  

  Any multiple of the vector v will also be in .W �  

 21. a. True. See the calculations for 2z  in Example 1 or the box after Example 6 in Section 6.1.  

 b. True. See the Orthogonal Decomposition Theorem.  

 c. False. See the last paragraph in the proof of Theorem 8, or see the second paragraph after the 
statement of Theorem 9.  

 d. True. See the box before the Best Approximation Theorem.  

 e. True. Theorem 10 applies to the column space W of U because the columns of U are linearly 
independent and hence form a basis for W.  

 22. a. True. See the proof of the Orthogonal Decomposition Theorem.  

 b. True. See the subsection “A Geometric Interpretation of the Orthogonal Projection.”  

 c. True. The orthgonal decomposition in Theorem 8 is unique.  

 d. False. The Best Approximation Theorem says that the best approximation to y is proj .W y  

 e. False. This statement is only true if x is in the column space of U. If n > p, then the column space of 
U will not be all of n, so the statement cannot be true for all x in n.  

 23. By the Orthogonal Decomposition Theorem, each x in n can be written uniquely as x = p + u, with p in 

Row A and u in (Row ) .A �  By Theorem 3 in Section 6.1, (Row ) Nul ,A A� �  so u is in Nul A. 

  Next, suppose Ax = b is consistent. Let x be a solution and write x = p + u as above. Then  
Ap = A(x – u) = Ax – Au = b�– 0 = b, so the equation Ax = b has at least one solution p in Row A. 

  Finally, suppose that p and 1p  are both in Row A and both satisfy Ax = b. Then 1�p p  is in 

Nul (Row ) ,A A ��  since 1 1( )A A A� � � � � �p p p p b b 0 . The equations 1 ( )� � � 1p p p p  and  

p = p�+ 0 both then decompose p as the sum of a vector in Row A and a vector in (Row )A � . By the 

uniqueness of the orthogonal decomposition (Theorem 8), 1,�p p  and p is unique. 

 24. a. By hypothesis, the vectors 1w , �, pw  are pairwise orthogonal, and the vectors 1v , �, qv  are 

pairwise orthogonal. Since iw  is in W for any i and jv  is in W �  for any j, 0i j� �w v  for any i and j. 

Thus 1 1{ , , , , , }p q� �w w v v  forms an orthogonal set.  

 b. For any y in n, write y = ŷ + z as in the Orthogonal Decomposition Theorem, with ŷ  in  

W and z in W � . Then there exist scalars 1, , pc c�  and 1, , qd d�  such that ˆ� � �y y z  

1 1 1 1p p q qc c d d��� � ���w w v v . Thus the set 1 1{ , , , , , }p q� �w w v v  spans n.  

 c. The set 1 1{ , , , , , }p q� �w w v v  is linearly independent by (a) and spans n by (b), and is thus a basis 

for n. Hence dim dim dimW W p q�� � � � n. 
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 25. [M] Since 4
TU U I� , U has orthonormal columns by Theorem 6 in Section 6.2. The closest point to y in 

Col U is the orthogonal projection ŷ  of y onto Col U. From Theorem 10,  

   ˆ UU �

��� �
� ���� �
� ���
� ���� �� � � ���
� �
��� �
� ���� �

��� �� 	

y y  

 26. [M] The distance from b to Col U is || b – b̂ ||, where ˆ .UU ��b b  One computes that  

   ˆ ˆ ˆUU �

� ��� � � �
� � � ��� ���� � � �
� � � ���� ���
� � � �� � ��� � � �� � � � � � �� � ���� � � ��� ��� �
� � � �
���� ����� � � �

� � � ��� ����� � � �
��� ����� � � �� 	 � 	

b b b b b b  

  which is 2.1166 to four decimal places. 

6.4 SOLUTIONS 

Notes: The QR factorization encapsulates the essential outcome of the Gram-Schmidt process, just as the LU 
factorization describes the result of a row reduction process. For practical use of linear algebra, the 
factorizations are more important than the algorithms that produce them. In fact, the Gram-Schmidt process is 
not the appropriate way to compute the QR factorization. For that reason, one should consider deemphasizing 
the hand calculation of the Gram-Schmidt process, even though it provides easy exam questions.  

The Gram-Schmidt process is used in Sections 6.7 and 6.8, in connection with various sets of orthogonal 
polynomials. The process is mentioned in Sections 7.1 and 7.4, but the one-dimensional projection 
constructed in Section 6.2 will suffice. The QR factorization is used in an optional subsection of Section 6.5, 
and it is needed in Supplementary Exercise 7 of Chapter 7 to produce the Cholesky factorization of a positive 
definite matrix. 

 1. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

1

3 5 .

3

�� �
� � �� � � � � � ��

� ��� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

3 1

0 , 5 .

1 3

� ��� � � �
� �� � � �
� �� � � �
� �� � � �� �� 	 � 	� �
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 2. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

5
1

4 .
2

8

� �
� � �� � � � � � ��

� ��� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

0 5

4 , 4 .

2 8

� �� � � �
� �� � � �
� �� � � �
� �� � � ��� 	 � 	� �

 

 3. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

3
1

3/ 2 .
2

3/ 2

� �
� � �� � � � � � ��

� �� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

2 3

5 , 3/ 2 .

1 3/ 2

� �� � � �
� �� � � ��� �� � � �
� �� � � �� 	 � 	� �

 

 4. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

3

( 2) 6 .

3

� �
� � �� � � � � � � ��

� �� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

3 3

4 , 6 .

5 3

� �� � � �
� �� � � ��� �� � � �
� �� � � �� 	 � 	� �

 

 5. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

5

1
2 .

4

1

� �
� �� � �� � � � �
� ���
� ��� �� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

1 5

4 1
, .

0 4

1 1

� �� � � �
� �� � � ��� �� � � �� �� � � ��� �� � � �� ��� � � �� 	 � 	� �

 

 6. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

4

6
( 3) .

3

0

� �
� �� � �� � � � � �
� ���
� �
� �� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

3 4

1 6
, .

2 3

1 0

� �� � � �
� �� � � ��� �� � � �� �� � � ��� �� � � �� ��� � � �� 	 � 	� �
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 7. Since 1|| || 30�v  and 2|| || 27 / 2 3 6 / 2,� �v  an orthonormal basis for W is  

1 2

1 2

2 / 30 2 / 6

, 5 / 30 , 1/ 6 .
|| || || ||

1/ 30 1/ 6

� �� � � �
� �� � � �� � � �� �� � � �� � � �

� � � �� � � �
� � � �� �� 	 � 	� �

v v
v v

 

 8. Since 1|| || 50�v  and 2|| || 54 3 6,� �v  an orthonormal basis for W is  

1 2

1 2

3/ 50 1/ 6

, 4 / 50 , 2 / 6 .
|| || || ||

5 / 50 1/ 6

� �� � � �
� �� � � �� � � �� �� � � �� � � �

� � � �� � � �
� � � �� �� 	 � 	� �

v v
v v

 

 9. Call the columns of the matrix 1x , 2x , and 3x  and perform the Gram-Schmidt process on these vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

1

3
( 2)

3

1

� �
� �� � �� � � � � �
� ��
� ��� �� 	

x v
v x v x v

v v
 

   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

3

13 1

12 2

3

�� �
� �� � � � � �� � � � � � � ��  � �� � ! "
� �
� �� 	

x v x v
v x v v x v v

v v v v
 

  Thus an orthogonal basis for W is 

3 1 3

1 3 1
, , .

1 3 1

3 1 3

� ��� � � � � �
� �� � � � � �
� �� � � � � �� �� � � � � ��� �� � � � � �� ��� � � � � �� 	 � 	 � 	� �

 

 10. Call the columns of the matrix 1x , 2x , and 3x  and perform the Gram-Schmidt process on these vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

3

1
( 3)

1

1

� �
� �� � �� � � � � �
� ��
� ��� �� 	

x v
v x v x v

v v
 

   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

1

11 5

32 2

1

�� �
� ��� � � �� � � � � � �
� �� �
� ��� �� 	

x v x v
v x v v x v v

v v v v
 

  Thus an orthogonal basis for W is 

1 3 1

3 1 1
, , .

1 1 3

1 1 1

� �� �� � � � � �
� �� � � � � ��� �� � � � � �� �� � � � � �� �� � � � � �� �� �� � � � � �� 	 � 	 � 	� �
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 11. Call the columns of the matrix 1x , 2x , and 3x  and perform the Gram-Schmidt process on these vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

3

0

( 1) 3

3

3

� �
� �
� �� � �� � � � � �

� � ��� �
� �� 	

x v
v x v x v

v v
 

   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

2

0
1

4 2
3

2

2

� �
� �
� �� � � � � �� � � � � � � ��  � � ! " � �
� �
� ��� 	

x v x v
v x v v x v v

v v v v
 

  Thus an orthogonal basis for W is 

1 3 2

1 0 0

, , .1 3 2

1 3 2

1 3 2

� �� � � � � �
� �� � � � � ��� �� � � � � �� �� � � � � ��� �

� � � � � �� ��� � � � � �� �
� � � � � ��� �� 	 � 	 � 	� �

 

 12. Call the columns of the matrix 1x , 2x , and 3x  and perform the Gram-Schmidt process on these vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

1

1

4 2

1

1

�� �
� �
� �� � �� � � � �

� � �
� �
� �� 	

x v
v x v x v

v v
 

   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

3

3
7 3

0
2 2

3

3

� �
� �
� �� � � �� � � � � � �

� � � ��� �
� ��� 	

x v x v
v x v v x v v

v v v v
 

  Thus an orthogonal basis for W is 

1 1 3

1 1 3

, , .0 2 0

1 1 3

1 1 3

� ��� � � � � �
� �� � � � � ��� �� � � � � �� �� � � � � �� �

� � � � � �� ��� � � � � �� �
� � � � � ��� �� 	 � 	 � 	� �
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 13. Since A and Q are given,  

   

5 9

5/ 6 1/ 6 3/ 6 1/ 6 1 7 6 12

1/ 6 5/ 6 1/ 6 3/ 6 3 5 0 6

1 5

TR Q A

� �
� ��� � � �� �� � �� � � �� �� � �� 	 � 	
� �
� �� 	

 

 14. Since A and Q are given,  

   

2 3

2 / 7 5/ 7 2 / 7 4 / 7 5 7 7 7

5/ 7 2 / 7 4 / 7 2 / 7 2 2 0 7

4 6

TR Q A

�� �
� ��� � � �� �� � �� � � �� �� �� 	 � 	
� �
� �� 	

 

 15. The columns of Q will be normalized versions of the vectors 1v , 2v , and 3v  found in Exercise 11. Thus  

   

1/ 5 1/ 2 1/ 2

1/ 5 0 0 5 5 4 5

, 0 6 21/ 5 1/ 2 1/ 2
0 0 41/ 5 1/ 2 1/ 2

1/ 5 1/ 2 1/ 2

TQ R Q A

� �
� �

� ��� � �
� �� �� � � �� � �� �
� �� �� � 	� �

� ��� 	

 

 16. The columns of Q will be normalized versions of the vectors 1v , 2v , and 3v  found in Exercise 12. Thus  

   

1/ 2 1/ 2 2 1/ 2

2 8 71/ 2 1/ 2 2 1/ 2

, 0 2 2 3 20 1/ 2 0
0 0 61/ 2 1/ 2 2 1/ 2

1/ 2 1/ 2 2 1/ 2

TQ R Q A

� ��
� �

� ��� �
� �� �� � � � �� �
� �� �� � 	� �

� �� 	

 

 17. a. False. Scaling was used in Example 2, but the scale factor was nonzero.  

 b. True. See (1) in the statement of Theorem 11.  

 c. True. See the solution of Example 4.  

 18. a. False. The three orthogonal vectors must be nonzero to be a basis for a three-dimensional subspace. 
(This was the case in Step 3 of the solution of Example 2.)  

 b. True. If x is not in a subspace w, then x cannot equal projW x , because projW x  is in W. This idea was 

used for 1k�v  in the proof of Theorem 11.  

 c. True. See Theorem 12.  

 19. Suppose that x satisfies Rx = 0; then Q Rx = Q0 = 0, and Ax = 0. Since the columns of A are linearly 
independent, x must be 0. This fact, in turn, shows that the columns of R are linearly indepedent. Since R 
is square, it is invertible by the Invertible Matrix Theorem. 
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 20. If y is in Col A, then y = Ax for some x. Then y = QRx = Q(Rx), which shows that y is a linear 
combination of the columns of Q using the entries in Rx as weights. Conversly, suppose that y = Qx for 

some x. Since R is invertible, the equation A = QR implies that 1Q AR�� . So 1 1( ),AR A R� �� �y x x  
which shows that y is in Col A. 

 21. Denote the columns of Q by 1{ , , }n�q q . Note that n ��m, because A is m ��n and has linearly 
independent columns. The columns of Q can be extended to an orthonormal basis for m as follows.  
Let 1f  be the first vector in the standard basis for m that is not in 1Span{ , , },n nW � �q q  let 

1 1 1proj
nW� �u f f , and let 1 1 1/ || || .n� �q u u  Then 1 1{ , , , }n n��q q q  is an orthonormal basis for 

1 1 1Span{ , , , }.n n nW
� �
� �q q q  Next let 2f  be the first vector in the standard basis for m that is  

not in 1nW
�

, let 
12 2 2proj ,

nW
�

� �u f f  and let 2 2 2/ || || .n� �q u u  Then 1 1 2{ , , , , }n n n� �
�q q q q  is an 

orthogonal basis for 2 1 1 2Span{ , , , , }.n n n nW
� � �

� �q q q q  This process will continue until m – n vectors 

have been added to the original n vectors, and 1 1{ , , , , , }n n m�
� �q q q q  is an orthonormal basis for m.  

Let � �0 1n mQ
�

� �q q  and � �1 0Q Q Q� . Then, using partitioned matrix multiplication, 

1 .
R

Q QR A
O

� �
� �	 


� �
 

 22. We may assume that 1{ , , }p�u u  is an orthonormal basis for W, by normalizing the vectors in the 

original basis given for W, if necessary. Let U be the matrix whose columns are 1, , .p�u u  Then, by 

Theorem 10 in Section 6.3, ( ) proj ( )T
WT UU� �x x x  for x in n. Thus T is a matrix transformation and 

hence is a linear transformation, as was shown in Section 1.8. 

 23. Given A = QR, partition � �1 2A A A� , where 1A  has p columns. Partition Q as � �1 2Q Q Q�  where 1Q  

has p columns, and partition R as 11 12

22

,
R R

R
O R

� �
� 	 

� �

 where 11R  is a p ��p matrix. Then  

   � � � � � �11 12
1 2 1 2 1 11 1 12 2 22

22

R R
A A A QR Q Q Q R Q R Q R

O R

� �
� � � � �	 


� �
 

  Thus 1 1 11.A Q R�  The matrix 1Q  has orthonormal columns because its columns come from Q. The matrix 

11R  is square and upper triangular due to its position within the upper triangular matrix R. The diagonal 

entries of 11R  are positive because they are diagonal entries of R. Thus 1 11Q R  is a QR factorization of 1A . 

 24. [M] Call the columns of the matrix 1x , 2x , 3x , and 4x  and perform the Gram-Schmidt process on these 

vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

3

3

( 1) 3

0

3

� �
	 

	 
� 	 
� � � � � � �

� 	 

	 

	 
� �

x v
v x v x v

v v
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   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

6

0
1 4

6
2 3

6

0

� �
	 

	 
� � � � � � 	 
� � � � � � � � � �  �� � � � � � 	 

	 

	 
� �

x v x v
v x v v x v v

v v v v
 

   4 34 1 4 2
4 4 1 2 3 4 1 2 3

1 1 2 2 3 3

1 1
( 1)

2 2

�� � � �� � � � � � � � � � �� � � � �

x vx v x v
v x v v v x v v v

v v v v v v

0

5

0

0

5

� �
	 

	 

	 
�
	 

	 

	 
�� �

 

  Thus an orthogonal basis for W is 

10 3 6 0

2 3 0 5

, , , .6 3 6 0

16 0 6 0

2 3 0 5

� ��� � � � � � � �
� �	 
 	 
 	 
 	 

� �	 
 	 
 	 
 	 
� �	 
 	 
 	 
 	 
� � !
	 
 	 
 	 
 	 
� �
	 
 	 
 	 
 	 
� �
	 
 	 
 	 
 	 
�� �� � � � � � � �" #

 

 25. [M] The columns of Q will be normalized versions of the vectors 1v , 2v , and 3v  found in Exercise 24. 

Thus  

   

1/ 2 1/ 2 1/ 3 0
20 20 10 10

1/10 1/ 2 0 1/ 2
0 6 8 6

,3/10 1/ 2 1/ 3 0
0 0 6 3 3 3

4 /5 0 1/ 3 0
0 0 0 5 2

1/10 1/ 2 0 1/ 2

TQ R Q A

� ��
	 
 � �� �
	 
 	 
� �	 
 	 
� � �� �	 
 	 
�	 
 	 

	 
 	 
� �	 
�� �

 

 26. [M] In MATLAB, when A has n columns, suitable commands are  

  Q = A(:,1)/norm(A(:,1)) 

   %  The first column of Q 

   for j=2: n 

    v=A(:,j) – Q*(Q’*A(:,j)) 

    Q(:,j)=v/norm(v) 

    % Add a new column to Q 

   end 

6.5 SOLUTIONS 

Notes: This is a core section – the basic geometric principles in this section provide the foundation for all the 
applications in Sections 6.6–6.8. Yet this section need not take a full day. Each example provides a stopping 
place. Theorem 13 and Example 1 are all that is needed for Section 6.6. Theorem 15, however, gives an 
illustration of why the QR factorization is important. Example 4 is related to Exercise 17 in Section 6.6. 
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 1. To find the normal equations and to find x̂ , compute  

   

1 2
1 2 1 6 11

2 3
2 3 3 11 22

1 3

TA A

�� �
� � �� � � �	 
� � �	 
 	 
	 
� �� � � �	 
�� �

 

   

4
1 2 1 4

1
2 3 3 11

2

TA

� �
� � �� � � �	 
� �	 
 	 
	 
�� � � �	 
� �

b  

a. The normal equations are ( )T TA A A�x b : 1

2

6 11 4
.

11 22 11

x

x

� �� �� � � �
�	 
	 
 	 
�� � � �� �

 

b. Compute  

   
1

1 6 11 4 22 11 41
x̂ ( )

11 22 11 11 6 1111
T TA A A

�

�

� � �� 	 � 	 � 	 � 	
� � �
 � 
 � 
 � 
 ���  �  �  � 

b  

   
33 31

22 211

� 	 � 	
� �
 � 
 �

�  � 
 

 2. To find the normal equations and to find ˆ ,x  compute  

   

2 1
2 2 2 12 8

2 0
1 0 3 8 10

2 3

TA A

� 	
�� 	 � 	
 �� � �
 � 
 �
 ��  � 
 �� 

 

   

5
2 2 2 24

8
1 0 3 2

1

TA

�� 	
� �� 	 � 	
 �� �
 � 
 �
 � ��  � 
 �� 

b  

a. The normal equations are ( )T TA A A�x b : 1

2

12 8 24
.

8 10 2

x

x

�� 	� 	 � 	
�
 �
 � 
 ���  � � 

 

b. Compute  

   
1

1 12 8 24 10 8 241
x̂ ( )

8 10 2 8 12 256
T TA A A

�

�

� � �� 	 � 	 � 	 � 	
� � �
 � 
 � 
 � 
 �� � ��  �  �  � 

b  

   
224 41

168 356

�� 	 � 	
� �
 � 
 �

�  � 
 

 3. To find the normal equations and to find x̂ , compute  

   

1 2

1 1 0 2 1 2 6 6

2 2 3 5 0 3 6 42

2 5

TA A

�� 	

 �� �� 	 � 	
 �� �
 � 
 �
 ���  � 

 �

 �� 

 

   

3

1 1 0 2 1 6

2 2 3 5 4 6

2

TA

� 	

 ��� 	 � 	
 �� �
 � 
 �
 �� � ��  � 

 �

 �� 

b  
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a. The normal equations are ( )T TA A A�x b : 1

2

6 6 6

6 42 6

x

x

� 	� 	 � 	
�
 �
 � 
 ���  � � 

 

b. Compute  

   
6 6 6 42 6 61

ˆ
6 42 6 6 6 6216

T T
−1

−1 −       
= (Α Α) Α = =       − − −       

x b  

   
288 4 / 31

72 1/ 3216

� 	 � 	
� �
 � 
 �� ��  � 

 

 4. To find the normal equations and to find x̂ , compute  

   

1 3
1 1 1 3 3

1 1
3 1 1 3 11

1 1

TA A

� 	
� 	 � 	
 �� � �
 � 
 �
 ���  � 
 �� 

 

   

5
1 1 1 6

1
3 1 1 14

0

TA

� 	
� 	 � 	
 �� �
 � 
 �
 ���  � 
 �� 

b  

a. The normal equations are ( )T TA A A�x b : 1

2

3 3 6

3 11 14

x

x

� 	� 	 � 	
�
 �
 � 
 �

�  � � 
 

b. Compute  

   
6

ˆ
11 14 14

T T
−1

−1 3 3 11 −3 6       1= (Α Α) Α = =       3 −3 324       
x b  

   
24 11

24 124

� 	 � 	
� �
 � 
 �

�  � 
 

 5. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the 

system T TA A A�x b :  

   

4 2 2 14 1 0 1 5

2 2 0 4 0 1 1 3

2 0 2 10 0 0 0 0

T TA A A

� 	 � 	

 � 
 �� 	 � � � ��  
 � 
 �

 � 
 ��  � 

b  

  so all vectors of the form 

5 1

ˆ 3 1

0 1

x3

−   
   = − +   
      

x  are the least-squares solutions of Ax = b. 

 6. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the 

system T TA A A�x b :  

   

6 3 3 27 1 0 1 5

3 3 0 12 0 1 1 1

3 0 3 15 0 0 0 0

T TA A A

� 	 � 	

 � 
 �� 	 � � � ��  
 � 
 �

 � 
 ��  � 

b  

  so all vectors of the form 

5 1

ˆ 1 1

0 1

x3

−   
   = − +   
      

x  are the least-squares solutions of Ax = b. 
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 7. From Exercise 3, 

1 2

1 2
,

0 3

2 5

A

�� 	

 ��
 ��

 �

 �

 �� 

 

3

1
,

4

2

� 	

 �

 ��

 ��

 �

 �� 

b  and ˆ .
���� 	

� 
 ������ 
x  Since  

   ˆ
0

2

A

� �� � � � ��� 	 � 	 � 	 � 	 � 	

 � 
 � 
 � 
 � 
 ��� � ��� � �� � ��� 	
 � 
 � 
 � 
 � 
 �� � � � � �
 �
 � 
 � 
 � 
 � 
 �� ���� �� �� �� �� 

 � 
 � 
 � 
 � 
 �

� � � � ��
 � 
 � 
 � 
 � 
 ��  �  �  �  � 

x b  

  the least squares error is ˆ|| .A � ��� �� � � �x b  

 8. From Exercise 4, 

1 3

1 1 ,

1 1

A

� 	

 �� �
 �

 �� 

 

5

1 ,

0

� 	

 �� 
 �

 �� 

b  and ˆ .
�� 	

� 
 ��� 
x  Since  

   

1 3 5 4 5 1
1

ˆ 1 1 1 0 1 1
1

1 1 0 2 0 2

A

�� 	 � 	 � 	 � 	 � 	
� 	
 � 
 � 
 � 
 � 
 �� � � � � � � �
 �
 � 
 � 
 � 
 � 
 �� 
 � 
 � 
 � 
 � 
 ��  �  �  �  � 

x b  

  the least squares error is ˆ|| .A � ��� �x b  

 9. (a) Because the columns 1a  and 2a  of A are orthogonal, the method of Example 4 may be used to find 

b̂ , the orthogonal projection of b onto Col A:  

   1 2
1 2 1 2

1 1 2 2

1 5 1
2 1 2 1ˆ 3 1 1
7 7 7 7

2 4 0

� 	 � 	 � 	
� � 
 � 
 � 
 �� � � � � � �
 � 
 � 
 �� �


 � 
 � 
 ���  �  � 

b a b a
b a a a a

a a a a
 

(b) The vector x̂  contains the weights which must be placed on 1a  and 2a  to produce b̂ . These weights 

are easily read from the above equation, so ˆ .
���� 	

� 
 ����� 
x  

 10. (a) Because the columns 1a  and 2a  of A are orthogonal, the method of Example 4 may be used to find 

b̂ , the orthogonal projection of b onto Col A:  

   1 2
1 2 1 2

1 1 2 2

1 2 4
1 1ˆ 3 3 1 4 1
2 2

1 2 4

� 	 � 	 � 	
� � 
 � 
 � 
 �� � � � � � � � �
 � 
 � 
 �� �


 � 
 � 
 ��  �  � 

b a b a
b a a a a

a a a a
 

(b) The vector x̂  contains the weights which must be placed on 1a  and 2a  to produce b̂ . These weights 

are easily read from the above equation, so ˆ .
�� 	

� 
 ��� �� 
x  
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 11. (a) Because the columns 1a , 2a  and 3a  of A are orthogonal, the method of Example 4 may be used to 

find b̂ , the orthogonal projection of b onto Col A:  

   31 2
1 2 3 1 2 3

1 1 2 2 3 3

2 1ˆ 0
3 3

�� �
� � � � � �

� � �
b ab a b a

b a a a a a a
a a a a a a

 

   

4 0 1 3

1 5 1 12 1
0

6 1 0 43 3

1 1 5 1

� 	 � 	 � 	 � 	

 � 
 � 
 � 
 ��
 � 
 � 
 � 
 �� � � �

 � 
 � 
 � 
 �

 � 
 � 
 � 
 �

� � �
 � 
 � 
 � 
 ��  �  �  � 

 

(b) The vector x̂  contains the weights which must be placed on 1a , 2a , and 3a  to produce b̂ . These 

weights are easily read from the above equation, so ˆ .

� � �� 	

 �� �
 �

 ��� �� 

x  

 12. (a) Because the columns 1a , 2a  and 3a  of A are orthogonal, the method of Example 4 may be used to 

find b̂ , the orthogonal projection of b onto Col A:  

   31 2
1 2 3 1 2 3

1 1 2 2 3 3

1 14 5ˆ
3 3 3

�� � � �� � � � � � �� �� � � � �

b ab a b a
b a a a a a a

a a a a a a
 

   

1 1 0 5

1 0 1 21 14 5

0 1 1 33 3 3

1 1 1 6

� 	 � 	 � 	 � 	

 � 
 � 
 � 
 ��
 � 
 � 
 � 
 �� � � �

 � 
 � 
 � 
 �

 � 
 � 
 � 
 �
� �
 � 
 � 
 � 
 ��  �  �  � 

 

(b) The vector x̂  contains the weights which must be placed on 1a , 2a , and 3a  to produce b̂ . These 

weights are easily read from the above equation, so ˆ .

���� 	

 �� ����
 �

 ������ 

x  

 13. One computes that  

   

11 0

11 , 2 , || || 40

11 6

A A A

� 	 � 	

 � 
 �� � � � � �
 � 
 �

 � 
 ���  � 

u b u b u  

   

7 4

12 , 3 , || || 29

7 2

A A A

� 	 � 	

 � 
 �� � � � � �
 � 
 �

 � 
 ���  � 

v b v b v  

  Since Av is closer to b than Au is, Au is not the closest point in Col A to b. Thus u cannot be a least-
squares solution of Ax = b. 
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 14. One computes that  

   

3 2

8 , 4 , || || 24

2 2

A A A

� 	 � 	

 � 
 �� � � � � �
 � 
 �

 � 
 ��  � 

u b u b u  

   

7 2

2 , 2 , || || 24

8 4

A A A

�� 	 � 	

 � 
 �� � � � �
 � 
 �

 � 
 ���  � 

v b v b v  

  Since Au and Au are equally close to b, and the orthogonal projection is the unique closest point in Col A 
to b, neither Au nor Av can be the closest point in Col A to b. Thus neither u nor v can be a least-squares 
solution of Ax�= b. 

 15. The least squares solution satisfies ˆ .TR Q�x b  Since 
3 5

0 1
R

� 	
� 
 �

� 
 and 

7

1
TQ

� 	
� 
 ��� 

b , the augmented matrix 

for the system may be row reduced to find  

   
3 5 7 1 0 4

0 1 1 0 1 1
TR Q

� 	 � 	� 	 � �
 � 
 ��  � ��  � 
b  

  and so ˆ
�� 	

� 
 ���� 
x  is the least squares solution of Ax�= b. 

 16. The least squares solution satisfies ˆ .TR Q�x b  Since 
2 3

0 5
R

� 	
� 
 �

� 
 and 

17 / 2

9 / 2
TQ

� 	
� 
 �

� 
b , the augmented 

matrix for the system may be row reduced to find  

   
2 3 17 / 2 1 0 2.9

0 5 9 / 2 0 1 .9
TR Q

� 	 � 	� 	 � �
 � 
 ��  �  � 
b  

  and so ˆ
� !� 	

� 
 � !� 
x  is the least squares solution of Ax�= b. 

 17. a. True. See the beginning of the section. The distance from Ax to b is || Ax�– b�||.  

 b. True. See the comments about equation (1).  

 c. False. The inequality points in the wrong direction. See the definition of a least-squares solution.  

 d. True. See Theorem 13.  

 e. True. See Theorem 14.  

 18. a. True. See the paragraph following the definition of a least-squares solution.  

 b. False. If x̂  is the least-squares solution, then A x̂  is the point in the column space of A closest to b. 
See Figure 1 and the paragraph preceding it.  

 c. True. See the discussion following equation (1).  

 d. False. The formula applies only when the columns of A are linearly independent. See Theorem 14.  

 e. False. See the comments after Example 4.  

 f. False. See the Numerical Note.  
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 19. a. If Ax = 0, then .T TA A A� �x 0 0  This shows that Nul A is contained in Nul .TA A  

 b. If ,TA A �x 0  then 0.T T TA A � �x x x 0  So ( ) ( ) 0,TA A �x x  which means that 2|| || 0,A �x  and hence 

Ax = 0. This shows that Nul TA A  is contained in Nul A.  

 20. Suppose that Ax = 0. Then .T TA A A� �x 0 0  Since TA A  is invertible, x must be 0. Hence the columns of 
A are linearly independent. 

 21. a. If A has linearly independent columns, then the equation Ax = 0 has only the trivial solution. By 

Exercise 17, the equation TA A �x 0  also has only the trivial solution. Since TA A  is a square matrix, 
it must be invertible by the Invertible Matrix Theorem.  

 b. Since the n linearly independent columns of A belong to m, m could not be less than n.  

 c. The n linearly independent columns of A form a basis for Col A, so the rank of A is n.  

 22. Note that TA A  has n columns because A does. Then by the Rank Theorem and Exercise 19,  

   rank dim Nul dim Nul rankT TA A n A A n A A� � � � �  

 23. By Theorem 14, ˆ ˆ .T TA A A A A��� � " #b x b  The matrix 1( )T TA A A A�  is sometimes called the hat-matrix in 
statistics. 

 24. Since in this case ,TA A I�  the normal equations give ˆ .TA�x b  

 25. The normal equations are 
2 2 6

,
2 2 6

x

y

� � � � � �
�� � � � � �

� � � � � �
 whose solution is the set of all (x, y) such that x + y = 3. 

The solutions correspond to the points on the line midway between the lines x + y = 2 and x + y = 4. 

 26. [M] Using .7 as an approximation for 2 / 2,  0 2 .353535a a� �  and 1 .5.a �  Using .707 as an 

approximation for 2 / 2 , 0 2 .35355339a a� � , 1 .5.a �  

6.6 SOLUTIONS 

Notes: This section is a valuable reference for any person who works with data that requires statistical 
analysis. Many graduate fields require such work. Science students in particular will benefit from Example 1. 
The general linear model and the subsequent examples are aimed at students who may take a multivariate 
statistics course. That may include more students than one might expect. 

 1. The design matrix X and the observation vector y are  

   

1 0 1

1 1 1
, ,

1 2 2

1 3 2

X

� � � �
� � � �
� � � �� �
� � � �
� � � �
� � � �� � � �

y  

  and one can compute  

   14 6 6 .9ˆ, , ( )
6 14 11 .4

T T T TX X X X X X�

� � � � � �
� � � �� � � � � �
� � � � � �

y y�  

  The least-squares line 0 1y x� �� �  is thus y = .9 + .4x. 
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 2. The design matrix X and the observation vector y are  

   

1 1 0

1 2 1
, ,

1 4 2

1 5 3

X

� � � �
	 
 	 

	 
 	 
� �
	 
 	 

	 
 	 

	 
 	 
� � � �

y  

  and one can compute  

   14 12 6 .6ˆ, , ( )
12 46 25 .7

T T T TX X X X X X�

�� � � � � �
� � � �� � � � � �

� � � � � �
y y�  

  The least-squares line 0 1y x� �� �  is thus y = –.6 + .7x. 

 3. The design matrix X and the observation vector � are  

   

1 1 0

1 0 1
, ,

1 1 2

1 2 4

X

�� � � �
	 
 	 

	 
 	 
� �
	 
 	 

	 
 	 

	 
 	 
� � � �

y  

  and one can compute  

   14 2 7 1.1ˆ, , ( )
2 6 10 1.3

T T T TX X X X X X�

� � � � � �
� � � �� � � � � �

� � � � � �
y y�  

  The least-squares line 0 1y x� �� �  is thus y = 1.1 + 1.3x. 

 4. The design matrix X and the observation vector y are  

   

1 2 3

1 3 2
, ,

1 5 1

1 6 0

X

� � � �
	 
 	 

	 
 	 
� �
	 
 	 

	 
 	 

	 
 	 
� � � �

y  

  and one can compute  

   14 16 6 4.3ˆ, , ( )
16 74 17 .7

T T T TX X X X X X�

� � � � � �
� � � �	 
 	 
 	 
�� � � � � �

y y�  

  The least-squares line 0 1y x� �� �  is thus y = 4.3 – .7x. 

 5. If two data points have different x-coordinates, then the two columns of the design matrix X cannot be 
multiples of each other and hence are linearly independent. By Theorem 14 in Section 6.5, the normal 
equations have a unique solution. 

 6. If the columns of X were linearly dependent, then the same dependence relation would hold for the 
vectors in 3 formed from the top three entries in each column. That is, the columns of the matrix 

2
1 1

2
2 2

2
3 3

1

1

1

x x

x x

x x

� �
	 

	 

	 

	 
� �

 would also be linearly dependent, and so this matrix (called a Vandermonde matrix) 

would be noninvertible. Note that the determinant of this matrix is 2 1 3 1 3 2( )( )( ) 0x x x x x x� � � �  since 

1x , 2x , and 3x  are distinct. Thus this matrix is invertible, which means that the columns of X are in fact 
linearly independent. By Theorem 14 in Section 6.5, the normal equations have a unique solution. 
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 7. a. The model that produces the correct least-squares fit is y�= X��+ ,�  where  

   

1

2
1

3
2

4

5

1 1 1.8

2 4 2.7

, , , and3 9 3.4

4 16 3.8

5 25 3.9

X
�

�

� 	� 	 � 	

 �
 � 
 �

 �
 � 
 � � 	 
 �
 � 
 �� � � �
 � 
 �
 � 
 � � 

 �
 � 
 �

 �
 � 
 ��  �  � 

y

�

�

�

�

�

� �  

b. [M] One computes that (to two decimal places) 
1.76ˆ ,

.20

� �
� � ��� �

�  so the desired least-squares equation is 

21.76 .20y x x� � .  

 8. a. The model that produces the correct least-squares fit is y�= X��+ ,�  where  

   

2 3
1 1 1 1 1 1

2

2 3
3

, , , and

n nn n n

x x x y

X

yx x x

�

�

�

� � � � � � � �
� � � � � � � �� � � �� � � � � � � �
� � � � � � � �� 	 � 	 � 	� 	

y� � � � �

�

�

� �  

 b. [M] For the given data,  

   

4 16 64 1.58

6 36 216 2.08

8 64 512 2.5

10 100 1000 2.8
and

12 144 1728 3.1

14 196 2744 3.4

16 256 4096 3.8

18 324 5832 4.32

X

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� �� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� 	 � 	

y  

  so 1

.5132
ˆ ( ) .03348 ,

.001016

T TX X X�

� �
� �� � �� �
� �� 	

y�  and the least-squares curve is 2 3.5132 .03348 .001016 .y x x x� � 
  

 9. The model that produces the correct least-squares fit is y�= X��+ ,�  where  

   
1

2

3

cos1 sin 1 7.9

cos 2 sin 2 , 5.4 , , and

cos 3 sin 3 .9

A
X

B

� 	 � 	 � 	
� 	
 � 
 � 
 �� � � �
 �
 � 
 � 
 �� 
 � 
 � 
 ���  �  � 

y

�

�

�

� �  

 10. a. The model that produces the correct least-squares fit is y�= X� + ,�  where  

   

.02(10) .07(10)

1
.02(11) .07(11)

2

.02(12) .07(12)
3

.02(14) .07(14)
4

.02(15) .07(15) 5

21.34

20.68

, , , and ,20.05

18.87

18.30

A

B

e e

e e
M

X e e
M

e e

e e

� �

� �

� �

� �

� �

� 	 � 	� 	
 � 
 �
 �
 � 
 �
 � � 	
 � 
 �
 �� � � �
 �
 � 
 �
 � � 
 � 
 �
 �
 � 
 �
 ��  � 
 �� 

y

�

�

�

�

�

� �  
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 b. [M] One computes that (to two decimal places) 
19.94ˆ ,
10.10

� �
� � �

� �
�  so the desired least-squares equation is 

.02 .0719.94 10.10 .t ty e e� �� �  

 11. [M] The model that produces the correct least-squares fit is y�= X��+ ,�  where  

   

1

2

3

4

5

1 3 cos .88 3

1 2.3 cos1.1 2.3

, , , and1 1.65 cos1.42 1.65

1 1.25 cos1.77 1.25

1 1.01cos 2.14 1.01

X
e

�

� 	� 	 � 	

 �
 � 
 �

 �
 � 
 � � 	 
 �
 � 
 �� � � �
 � 
 �
 � 
 � � 

 �
 � 
 �

 �
 � 
 ��  �  � 

y � �

�

�

�

�

�

 

  One computes that (to two decimal places) 
1.45ˆ
.811

� �
� � �

� �
� . Since e = .811 < 1 the orbit is an ellipse. The 

equation r = � / (1 – e cos �) produces r = 1.33 when ��= 4.6. 

 12. [M] The model that produces the correct least-squares fit is y = X��+ ,�  where  

   

1

2
0

3
1

4

5

1 3.78 91

1 4.11 98

, , , and1 4.41 103

1 4.73 110

1 4.88 112

X
�

�

� 	� 	 � 	

 �
 � 
 �

 �
 � 
 � � 	 
 �
 � 
 �� � � �
 � 
 �
 � 
 � � 

 �
 � 
 �

 �
 � 
 ��  �  � 

y

�

�

�

�

�

� �  

  One computes that (to two decimal places) 
18.56ˆ
19.24

� �
� � �

� �
� , so the desired least-squares equation is  

p = 18.56 + 19.24 ln w. When w = 100, p (�107 millimeters of mercury. 

 13. [M] 

a. The model that produces the correct least-squares fit is y = X� + ,�  where  

   

2 3

2 3

2 3

2 3

2 3

2 3

2 3

2 3

2 3

2 3

2 3

1 0 0 0
01 1 1 1

8.8
1 2 2 2

29.9
1 3 3 3

62.0
1 4 4 4 104.7
1 5 5 5 159.1

1 6 6 6 , 222.0

294.51 7 7 7

380.41 8 8 8
471.11 9 9 9
571.7

1 10 10 10
686.8

1 11 11 11
809.2

1 12 12 12

X

� 	

 � �

 � 


 � 


 � 


 � 


 � 


 �

 �

 �

 �� �
 �

 �

 �

 �

 �

 �

 �

 �

 �

 � �

 �
 �� 

y

1

2

3

4

0 5

1 6

2 7

3 8

9

10

11

12

, , and

�

�

�

�

	
� 	�

 ��

 ��

 ��

 ��

 �
 �

 �
 � � 	

 �
 � 
 �

 �
 � 
 �� � 
 �
 � 
 �

 �
 � 
 �

 �
 �� 
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 � 
 �� 
 �

�

�

�

�

�

�

�

�

�

�

�

�

� �  
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  One computes that (to four decimal places) 

.8558

4.7025ˆ ,
5.5554

.0274

�� �
� �
� ��
� �
� ��� �� 	

�  so the desired least-squares polynomial is 

2 3( ) .8558 4.7025 5.5554 .0274 .y t t t t� � 
 
 �  

b. The velocity v(t) is the derivative of the position function y(t), so 2( ) 4.7025 11.1108 .0822 ,v t t t� 
 �  

and v(4.5) = 53.0 ft/sec.  

 14. Write the design matrix as # $.1 x  Since the residual vector � = y – X �̂  is orthogonal to Col X,  

   ˆ ˆ0 ( ) ( )T TX X� � � � � � �1 1 y 1 y 1� � �  

   0
1 0 1 0 1

1

ˆ
ˆ ˆ ˆ ˆ( )

ˆny y n x y n x ny n n x
�

� � � �
�

� 	
� 	� ��� � � � � � � �
 �� 


 �� 
$ $ $  

  This equation may be solved for y  to find 0 1
ˆ ˆ .y x� �� �  

 15. From equation (1) on page 420,  

   
1

2
1

1
1 1

( )
1

T

n
n

x
n x

X X
x x x x

x

� 	 � 	�� 	 
 �� � 
 �
 � 
 ���  
 �� 
 �� 

$
$ $

� �  

   
1

1

1 1T

n
n

y
y

X
xyx x

y

� 	
� 	�� 	 
 �� � 
 �
 � 
 ���  � 
 �� 

$
$

y �  

  The equations (7) in the text follow immediately from the normal equations .T TX X X� y�  

 16. The determinant of the coefficient matrix of the equations in (7) is 2 2( ) .n x x�$ $  Using the 2 ��2 

formula for the inverse of the coefficient matrix,  

   
2

0
2 2

1

ˆ 1
ˆ ( )

yx x

xyx nn x x

�

�

� 	 � 	 � 	�
�
 � 
 � 
 �

�� 
 �
 � � � � 

$$ $
$$$ $

 

  Hence  

   
2

0 12 2 2 2

( )( ) ( )( ) ( )( )ˆ ˆ,
( ) ( )

x y x xy n xy x y

n x x n x x
� �

� �
� �

� �
$ $ $ $ $ $ $

$ $ $ $
 

  Note: A simple algebraic calculation shows that 1 0
ˆ ˆ( ) ,y x n� �	 �
 
  which provides a simple formula 

for 0�̂  once 1̂�  is known. 

 17. a. The mean of the data in Example 1 is 5.5,x �  so the data in mean-deviation form are (–3.5, 1),  

(–.5, 2), (1.5, 3), (2.5, 3), and the associated design matrix is 

1 3.5

1 .5
.

1 1.5

1 2.5

X

�� �
� ��� ��
� �
� �
� �� �

 The columns of X are 

orthogonal because the entries in the second column sum to 0.  
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 b. The normal equations are ,T TX X X� y�  or 0

1

4 0 9
.

0 21 7.5

�

�

� �� � � �
�� �� � � �

� � � �� �
 One computes that 

9 / 4ˆ ,
5 /14

� �
� � �

� �
�  

so the desired least-squares line is *(9 / 4) (5/14) (9 / 4) (5/14)( 5.5).y x x� 
 � 
 �  

 18. Since  

   
1

2
1

1
1 1

( )
1

T

n
n

x
n x

X X
x x x x

x

� � � ��� � � �� � � �� � � ��� � � �� �� �� �

�
� �

� �  

  TX X  is a diagonal matrix when 0.x ��  

 19. The residual vector �  = y�– ˆX �  is orthogonal to Col X, while ŷ =X �̂  is in Col X. Since �  and ŷ  are 
thus orthogonal, apply the Pythagorean Theorem to these vectors to obtain  

   2 2 2 2 2 2ˆ ˆˆ ˆSS(T) || || || || || || || || || || || || SS(R) SS(E)X X� �� � � � � � � � � �y y y y� �  

 20. Since �̂  satisfies the normal equations, ˆ ,T TX X X� y�  and  

   2ˆ ˆ ˆ ˆ ˆ ˆ|| || ( ) ( )T T T T TX X X X X X� � � y� � � � � �  

  Since 2ˆ|| || SS(R)X ��  and 2|| || SS(T)T � �y y y , Exercise 19 shows that  

   ˆSS(E) SS(T) SS(R) T T TX� � � �y y y�  

6.7 SOLUTIONS 

Notes: The three types of inner products described here (in Examples 1, 2, and 7) are matched by examples in 
Section 6.8. It is possible to spend just one day on selected portions of both sections. Example 1 matches the 
weighted least squares in Section 6.8. Examples 2–6 are applied to trend analysis in Seciton 6.8. This material 
is aimed at students who have not had much calculus or who intend to take more than one course in statistics.  

For students who have seen some calculus, Example 7 is needed to develop the Fourier series in  
Section 6.8. Example 8 is used to motivate the inner product on C[a, b]. The Cauchy-Schwarz and triangle 
inequalities are not used here, but they should be part of the training of every mathematics student. 

 1. The inner product is 1 1 2 2, 4 5x y x y x y% & � � . Let x�= (1, 1), y�= (5, –1).  

 a. Since 2|| || , 9,x x� % & �x  || x�|| = 3. Since 2|| || , 105,y y� % & �y  || || 105.�x  Finally, 
2 2| , | 15 225.x y% & � �  

 b. A vector z is orthogonal to y if and only if %x, y&�= 0, that is, 1 220 5 0,z z� �  or 1 24 .z z�  Thus all 

multiples of 
1

4

� 	

 �
� 

 are orthogonal to y.  

 2. The inner product is 1 1 2 2, 4 5 .x y x y x y% & � �  Let x�= (3, –2), y�= (–2, 1). Compute that 2|| || , 56,x x� % & �x  
2|| || , 21,y y� % & �y  2 2|| || || || 56 21 1176� � �x y , %x, y&�= –34, and 2| , | 1156x y% & � . Thus 

2 2 2| , | || || || || ,x y% & � x y  as the Cauchy-Schwarz inequality predicts. 

 3. The inner product is %�p, q&�= p(–1)q(–1) + p(0)q(0) + p(1)q(1), so 24 ,5 4 3(1) 4(5) 5(1) 28t t% � � & � � � � . 
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 4. The inner product is %�p, q&�= p(–1)q(–1) + p(0)q(0) + p(1)q(1), so 2 23 , 3 2t t t% � � & �  
( 4)(5) 0(3) 2(5) 10.� � � � �  

 5. The inner product is %�p, q&�= p(–1)q(–1) + p(0)q(0) + p(1)q(1), so 
2 2 2, 4 ,4 3 4 5 50p q t t〈 〉 = 〈 + + 〉 = + + =  and || || , 50 5 2p p p� % & � � . Likewise 

2 2 2 2 2, 5 4 ,5 4 1 5 1 27q q t t% & � % � � & � � � �  and || || , 27 3 3q q q� % & � � . 

 6. The inner product is %�p, q&�= p(–1)q(–1) + p(0)q(0) + p(1)q(1), so 2 2, 3 ,3p p t t t t% & � % � � & �  
2 2 2( 4) 0 2 20� � � �  and || || , 20 2 5.p p p� % & � �  Likewise 2 2, 3 2 ,3 2q q t t% & � % � � & �  

2 2 25 3 5 59� � �  and || || , 59.q q q� % & �  

 7. The orthogonal projection q̂  of q onto the subspace spanned by p is  

   
, 28 56 14

ˆ (4 )
, 50 25 25

q p
q p t t

p p

% &
� � � � �

% &
 

 8. The orthogonal projection q̂  of q onto the subspace spanned by p is  

   2 2, 10 3 1
ˆ (3 )

, 20 2 2

q p
q p t t t t

p p

% &
� � � � � � �

% &
 

 9. The inner product is %p, q&�= p(–3)q(–3) + p(–1)q(–1) + p(1)q(1) + p(3)q(3).  

a. The orthogonal projection p̂
�
 of 2p  onto the subspace spanned by 0p  and 1p  is  

   2 0 2 1
2 0 1

0 0 1 1

, , 20 0
ˆ (1) 5

, , 4 20

p p p p
p p p t

p p p p

% & % &
� � � � �

% & % &
 

b. The vector 3 ˆq p p t�
�

� � � � �  will be orthogonal to both 0p  and 1p  and 0 1{ , , }p p q  will be an 

orthogonal basis for 0 1 2Span{ , , }.p p p  The vector of values for q at (–3, –1, 1, 3) is (4, –4, –4, 4), so 

scaling by 1/4 yields the new vector 2(1/ 4)( 5).q t� �  

 10. The best approximation to 3p t�  by vectors in 0 1Span{ , , }W p p q�  will be  

   
2

0 1
0 1

0 0 1 1

, , , 0 164 0 5 41
ˆ proj (1) ( )

, , , 4 20 4 4 5W

p p p p p q t
p p p p q t t

p p p p q q

� �% & % & % & �
� � � � � � � �� �% & % & % & � �

 

 11. The orthogonal projection of 3p t�  onto 0 1 2Span{ , , }W p p p�  will be  

   20 1 2
0 1 2

0 0 1 1 2 2

, , , 0 34 0 17
ˆ proj (1) ( ) ( 2)

, , , 5 10 14 5W

p p p p p p
p p p p p t t t

p p p p p p

% & % & % &
� � � � � � � � �

% & % & % &
 

 12. Let 0 1 2Span{ , , }.W p p p�  The vector 3
3 proj (17 / 5)Wp p p t t� � � �  will make 0 1 2 3{ , , , }p p p p  

an orthogonal basis for the subspace 3 of 4. The vector of values for 3p  at (–2, –1, 0, 1, 2) is  

(–6/5, 12/5, 0, –12/5, 6/5), so scaling by 5/6 yields the new vector 3
3 (5 / 6)( (17 / 5) )p t t� � �  

3(5 / 6) (17 / 6) .t t�  
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 13. Suppose that A is invertible and that %u, v&�= (Au) � (Av) for u and v in n. Check each axiom in the 
definition on page 428, using the properties of the dot product.  

i. %u, v&�= (Au) � (Av) = (Av) � (Au) = %v, u&  
ii. %u + v, w&�= (A(u + v)) � (Aw) = (Au + Av) � (Aw) = (Au) � (Aw) + (Av) � (Aw) = %u, w&�+ %v, w&  
iii. %c u, v&�= (A( cu)) � (Av) = (c(Au)) � (Av) = c((Au) � (Av)) = c%u, v&  

iv. 2, ( ) ( ) || || 0,c A A A% & � � � 'u u u u u  and this quantity is zero if and only if the vector Au is 0. But  
Au = 0 if and only u = 0 because A is invertible.  

 14. Suppose that T is a one-to-one linear transformation from a vector space V into n and that %u, v&�=  
T(u) � T(v) for u and v in n. Check each axiom in the definition on page 428, using the properties of the 
dot product and T. The linearity of T is used often in the following.  

i. %u, v&�= T(u) � T(v) = T(v) � T(u) = %v, u&  
ii. %u�+ v, w&�= T(u + v) � T(w) = (T(u) + T(v)) � T(w) = T(u) � T(w) + T(v) � T(w) = %u, �&�+ %v, w&  
iii. %cu, v&�= T(cu) � T(v) = (cT(u)) � T(v) = c(T(u) � T(v)) = c%u, v&  

iv. 2, ( ) ( ) || ( ) || 0,T T T% & � � � 'u u u u u  and this quantity is zero if and only if u = 0 since T is a one-to-
one transformation.  

 15. Using Axioms 1 and 3, %u, c v&�= %c v, u&�= c%v, u&�= c%u, v&. 

 16. Using Axioms 1, 2 and 3,  

   2|| || , , ,� � % � � & � % � & � % � &u v u v u v u u v v u v  

   , , , , , 2 , ,� % & � % & � % & � % & � % & � % & � % &u u u v v u v v u u u v v v  

   2 2|| || 2 , || ||� � % & �u u v v  

  Since {u, v} is orthonormal, 2 2|| || || || 1� �u v  and %u, v&�= 0. So 2|| || 2.� �u v  

 17. Following the method in Exercise 16,  

   2|| || , , ,� � % � � & � % � & � % � &u v u v u v u u v v u v  

   , , , , , 2 , ,� % & � % & � % & � % & � % & � % & � % &u u u v v u v v u u u v v v  

   2 2|| || 2 , || ||� � % & �u u v v  

  Subtracting these results, one finds that 2 2|| || || || 4 , ,� � � � % &u v u v u v  and dividing by 4 gives the 
desired identity. 

 18. In Exercises 16 and 17, it has been shown that 2 2 2|| || || || 2 , || ||� � � % & �u v u u v v  and 2|| ||� �u v  
2 2|| || 2 , || || .� % & �u u v v  Adding these two results gives 2 2 2 2|| || || || 2 || || 2 || || .� � � � �u v u v u v  

 19. let 
a

b

� 	
� 
 �


 �� 
u  and .

b

a

� 	
� 
 �


 �� 
v  Then 2|| || ,a b� �u  2|| || ,a b� �v  and , 2 .ab% & �u v  Since a and b are 

nonnegative, || || ,a b� �u  || || .a b� �v  Plugging these values into the Cauchy-Schwarz inequality 
gives  

   2 | , | || || || ||ab a b a b a b� % & � � � � � �u v u v  

  Dividing both sides of this equation by 2 gives the desired inequality. 
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 20. The Cauchy-Schwarz inequality may be altered by dividing both sides of the inequality by 2 and then 
squaring both sides of the inequality. The result is  

   
2 2 2, || || || ||

2 4

% &� � �� �
� �

u v u v
 

  Now let 
a

b

� 	
� 
 �

� 
u  and 

1

1

� 	
� 
 �

� 
v . Then 2 2 2|| || ,a b� �u  2|| || 2�v , and %u, v&�= a + b. Plugging these values 

into the inequality above yields the desired inequality. 

 21. The inner product is 
1

0
, ( ) ( ) .f g f t g t dt% & � (  Let 2( ) 1 3 ,f t t� �  3( ) .g t t t� �  Then  

   
1 12 3 5 3

0 0
, (1 3 )( ) 3 4 0f g t t t dt t t t dt% & � � � � � � �( (  

 22. The inner product is 
1

0
, ( ) ( ) .f g f t g t dt% & � (  Let f (t) = 5t – 3, 3 2( ) .g t t t� �  Then  

   
1 13 2 4 3 2

0 0
, (5 3)( ) 5 8 3 0f g t t t dt t t t dt% & � � � � � � �( (  

 23. The inner product is 
1

0
, ( ) ( ) ,f g f t g t dt% & � (  so 

1 12 2 4 2

0 0
, (1 3 ) 9 6 1 4 / 5,f f t dt t t dt% & � � � � � �( (  and 

|| || , 2 / 5.f f f� % & �  

 24. The inner product is 
1

0
, ( ) ( ) ,f g f t g t dt% & � (  so 

1 13 2 2 6 5 4

0 0
, ( ) 2 1/105,g g t t dt t t t dt% & � � � � � �( (  and 

|| || , 1/ 105.g g g� % & �  

 25. The inner product is 
1

1
, ( ) ( ) .f g f t g t dt

�

� � � �  Then 1 and t are orthogonal because 
1

1
1, 0.t t dt

�

� � � ��  So 1 

and t can be in an orthogonal basis for 2Span{1, , }.t t  By the Gram-Schmidt process, the third basis 
element in the orthogonal basis can be  

   
2 2

2 ,1 ,
1

1,1 ,

t t t
t t

t t

� � � �
� �
� � � �

 

  Since 
12 2

1
,1 2 / 3,t t dt

�

� � � ��  
1

1
1,1 1 2,dt

�

� � � ��  and 
12 3

1
, 0,t t t dt

�

� � � ��  the third basis element can be 

written as 2 (1/ 3).t �  This element can be scaled by 3, which gives the orthogonal basis as 2{1, , 3 1}.t t �  

 26. The inner product is 
2

2
, ( ) ( ) .f g f t g t dt

�

� � � �  Then 1 and t are orthogonal because 
2

2
1, 0.t t dt

�

� � � ��  So 1 

and t can be in an orthogonal basis for 2Span{1, , }.t t  By the Gram-Schmidt process, the third basis 
element in the orthogonal basis can be  

   
2 2

2 ,1 ,
1

1,1 ,

t t t
t t

t t

� � � �
� �
� � � �

 

  Since 
22 2

2
,1 16 / 3,t t dt

�

� � � ��  
2

2
1,1 1 4,dt

�

� � � ��  and 
22 3

2
, 0,t t t dt

�

� � � ��  the third basis element can be 

written as 2 (4 / 3).t �  This element can be scaled by 3, which gives the orthogonal basis as 2{1, , 3 4}.t t �  
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 27. [M] The new orthogonal polynomials are multiples of 317 5t t� �  and 2 472 155 35 .t t� �  These 
polynomials may be scaled so that their values at –2, –1, 0, 1, and 2 are small integers. 

 28. [M] The orthogonal basis is 0 ( ) 1,f t �  1( ) cos ,f t t�  2
2 ( ) cos (1/ 2) (1/ 2)cos 2 ,f t t t� � �  and 

3
3 ( ) cos (3/ 4)cos (1/ 4)cos 3 .f t t t t� � �  

6.8 SOLUTIONS 

Notes: The connections between this section and Section 6.7 are described in the notes for that section. For 
my junior-senior class, I spend three days on the following topics: Theorems 13 and 15 in Section 6.5, plus 
Examples 1, 3, and 5; Example 1 in Section 6.6; Examples 2 and 3 in Section 6.7, with the motivation for the 
definite integral; and Fourier series in Section 6.8. 

 1. The weighting matrix W, design matrix X, parameter vector �, and observation vector y are:  

   0

1

1 0 0 0 0 1 2 0

0 2 0 0 0 1 1 0

, , ,0 0 2 0 0 1 0 2

0 0 0 2 0 1 1 4

0 0 0 0 1 1 2 4

W X
�

�

�� 	 � 	 � 	

 � 
 � 
 ��
 � 
 � 
 �� 	

 � 
 � 
 �� � � �
 �

 � 
 � 
 �� 

 � 
 � 
 �

 � 
 � 
 ��  �  � 

y�  

  The design matrix X and the observation vector y are scaled by W:  

   

1 2 0

2 2 0

,2 0 4

2 2 8

1 2 4

WX W

�� 	 � 	

 � 
 ��
 � 
 �

 � 
 �� �

 � 
 �

 � 
 �

 � 
 ��  � 

y  

  Further compute  

   
14 0 28

( ) , ( )
0 16 24

T TWX WX WX W
� 	 � 	

� �
 � 
 �
�  � 

y  

  and find that  

   1 1/14 0 28 2ˆ (( ) ) ( )
0 1/16 24 3/ 2

T TWX WX WX W�

� 	 � 	 � 	
� � �
 � 
 � 
 �

�  �  � 
y�  

  Thus the weighted least-squares line is y = 2 + (3/2)x. 

 2. Let X be the original design matrix, and let y be the original observation vector. Let W be the weighting 
matrix for the first method. Then 2W is the weighting matrix for the second method. The weighted least-
squares by the first method is equivalent to the ordinary least-squares for an equation whose normal 
equation is  

   ˆ( ) ( )T TWX WX WX W� y�  (1) 

  while the second method is equivalent to the ordinary least-squares for an equation whose normal 
equation is  

   ˆ(2 ) (2 ) (2 ) (2 )T TWX W X WX W� y�  (2) 

  Since equation (2) can be written as ˆ4( ) 4( ) ,T TWX WX WX W� � y  it has the same solutions as  
equation (1). 
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 3. From Example 2 and the statement of the problem, 0 ( ) 1,p t �  1( ) ,p t t�  2
2 ( ) 2,p t t� �  

3
3 ( ) (5 / 6) (17 / 6) ,p t t t� �  and g = (3, 5, 5, 4, 3). The cubic trend function for g is the orthogonal 

projection p̂  of g onto the subspace spanned by 0 ,p 1,p 2 ,p and 3 :p  

   0 31 2
0 1 2 3

0 0 1 1 2 2 3 3

, ,, ,
ˆ

, , , ,

g p g pg p g p
p p p p p

p p p p p p p p

% & % &% & % &
� � � �

% & % & % & % &
 

   " #2 320 1 7 2 5 17
(1) 2

5 10 14 10 6 6
t t t t

� � � �� � � � � �� �
� �

 

   " #2 3 2 31 1 1 5 17 2 1 1
4 2 5

10 2 5 6 6 3 2 6
t t t t t t t

� �� � � � � � � � � �� �
� �

 

  This polynomial happens to fit the data exactly. 

 4. The inner product is %�p, q&�= p(–5)q(–5) + p(–3)q(–3) + p(–1)q(–1) + p(1)q(1) + p(3)q(3) + p(5)q(5).  

a. Begin with the basis 2{1, , }t t  for 2. Since 1 and t are orthogonal, let 0 ( ) 1p t �  and 1( ) .p t t�  Then 
the Gram-Schmidt process gives  

   
2 2

2 2 2
2

,1 , 70 35
( ) 1

1,1 , 6 3

t t t
p t t t t t

t t

% & % &
� � � � � � �

% & % &
 

  The vector of values for 2p  is (40/3, –8/3, –32/3, –32/3, –8/3, 40/3), so scaling by 3/8 yields the new 

function 2 2
2 (3/8)( (35/ 3)) (3/8) (35/8).p t t� � � �  

b. The data vector is g = (1, 1, 4, 4, 6, 8). The quadratic trend function for g is the orthogonal projection 
p̂  of g onto the subspace spanned by 0p , 1p  and 2p :  

   20 1 2
0 1 2

0 0 1 1 2 2

, , , 24 50 6 3 35
ˆ (1)

, , , 6 70 84 8 8

g p g p g p
p p p p t t

p p p p p p

% & % & % & � �� � � � � � �� �% & % & % & � �
 

   2 25 1 3 35 59 5 3
4

7 14 8 8 16 7 112
t t t t

� �� � � � � � �� �
� �

 

 5. The inner product is 
2

0
, ( ) ( ) .f g f t g t dt

�

� � � �  Let m �	n. Then  

   
2 2

0 0

1
sin , sin sin sin cos(( ) ) cos(( ) ) 0

2
mt nt mt nt dt m n t m n t dt

� �

� � � � � � � �� �  

  Thus sin mt and sin nt are orthogonal. 

 6. The inner product is 
2

0
, ( ) ( ) .f g f t g t dt

�

� � � �  Let m and n be positive integers. Then  

   
2 2

0 0

1
sin ,cos sin cos sin(( ) ) sin(( ) ) 0

2
mt nt mt nt dt m n t m n t dt

� �

� � � � � � � �� �  

  Thus sinmt and cosnt are orthogonal. 
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 7. The inner product is 
2

0
, ( ) ( ) .f g f t g t dt

�

� � � �  Let k be a positive integer. Then  

   
2 22 2

0 0

1
|| cos || cos ,cos cos 1 cos 2

2
kt kt kt kt dt kt dt

� �

�� � � � � � �� �  

  and  

   
2 22 2

0 0

1
|| sin || sin ,sin sin 1 cos 2

2
kt kt kt kt dt kt dt

� �

�� � � � � � �� �  

 8. Let f(t) = t – 1. The Fourier coefficients for f are:  

   
2 20

0 0

1 1 1
( ) 1 1

2 2 2

a
f t dt t dt

� �

�

� �

� � � � � �� �  

  and for k > 0,  

   
2 2

0 0

1 1
( )cos ( 1)cos 0ka f t kt dt t kt dt

� �

� �

� � � �� �  

   
2 2

0 0

1 1 2
( )sin ( 1)sinkb f t kt dt t kt dt

k

� �

� �

� � � � �� �  

  The third-order Fourier approximation to f is thus  

   0
1 2 3

2
sin sin 2 sin 3 1 2 sin sin 2 sin 3

2 3

a
b t b t b t t t t�� � � � � � � � �  

 9. Let f(t) = 2���– t. The Fourier coefficients for f are:  

   
2 20

0 0

1 1 1
( ) 2

2 2 2

a
f t dt t dt

� �

� �

� �

� � � �� �  

  and for k > 0,  

   
2 2

0 0

1 1
( ) cos (2 ) cos 0ka f t kt dt t kt dt

� �

�

� �

� � � �� �  

   
2 2

0 0

1 1 2
( ) sin (2 ) sinkb f t kt dt t kt dt

k

� �

�

� �

� � � �� �  

  The third-order Fourier approximation to f is thus  

   0
1 2 3

2
sin sin 2 sin 3 2 sin sin 2 sin 3

2 3

a
b t b t b t t t t�� � � � � � �  

 10. Let 
1 for 0

( ) .
1 for 2

t
f t

t

�

� �

� ��
� �� � ��

 The Fourier coefficients for f are:  

   
2 20

0 0

1 1 1 1
( ) 0

2 2 2 2

a
f t dt dt dt

� � �

�
� � �

� � � �� � �  

  and for k > 0,  

   
2 2

0 0

1 1 1
( ) cos cos cos 0ka f t kt dt kt dt kt dt

� � �

�
� � �

� � � �� � �  

   
2 2

0 0

4 /( ) for odd1 1 1
( ) sin sin sin

0 for evenk

k k
b f t kt dt kt dt kt dt

k

� � �

�

�

� � �

�
� � � � �

�
    

  The third-order Fourier approximation to f is thus  

   1 3
4 4

sin sin 3 sin sin 3
3

b t b t t t
� �


 � 
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 11. The trigonometric identity 2cos 2 1 2 sint t� �  shows that  

   2 1 1
sin cos 2

2 2
t t� �  

  The expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or 

less, so this expression is the third-order Fourier approximation to 3cos t . 

 12. The trigonometric identity 3cos 3 4 cos 3 cost t t� �  shows that  

   3 3 1
cos cos cos 3

4 4
t t t� 
  

  The expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or 

less, so this expression is the third-order Fourier approximation to 3cos .t  

 13. Let f and g be in C [0, 2!] and let m be a nonnegative integer. Then the linearity of the inner product 
shows that  

  "( f + g), cos mt#�= "�f, cos mt#�+ "g, cos mt#, "( f + g), sin mt#�= "�f, sin mt#�+ "�g, sin mt# 
  Dividing these identities respectively by "cos mt, cos mt# and "sin mt, sin mt# shows that the Fourier 

coefficients ma  and mb  for f + g are the sums of the corresponding Fourier coefficients of f and of g. 

 14. Note that g and h are both in the subspace H spanned by the trigonometric polynomials of order 2 or less. 
Since h is the second-order Fourier approximation to f, it is closer to f than any other function in the 
subspace H. 

 15. [M] The weighting matrix W is the 13 ��13 diagonal matrix with diagonal entries 1, 1, 1, .9, .9, .8, .7, .6, 
.5, .4, .3, .2, .1. The design matrix X, parameter vector �, and observation vector y are:  

   

2 3

2 3

2 3

2 3 0

2 3 1

22 3

32 3

2 3

2 3

2 3

2 3

1 0 0 0
0.01 1 1 1
8.8

1 2 2 2
29.9

1 3 3 3
62.0

1 4 4 4 104.7
1 5 5 5 159.1

1 6 6 6 , , 222.0

294.51 7 7 7

380.41 8 8 8

1 9 9 9

1 10 10 10

1 11 11 11

1 12 12 12

X

�

�

�

�

� 	

 �

 �

 �

 �

 �

 �

 �

 � � 	

 � 
 �

 � 
 �� � �
 � 
 �

 � 
 �


 �
 � � 

 �

 �

 �

 �

 �

 �

 �

 �
 �� 

y�

471.1

571.7

686.8

809.2

� 	

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �� 
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  The design matrix X and the observation vector y are scaled by W:  

   

1.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0

1.0 2.0 4.0 8.0

.9 2.7 8.1 24.3

.9 3.6 14.4 57.6

.8 4.0 20.0 100.0

.7 4.2 25.2 151.2

.6 4.2 29.4 205.8

.5 4.0 32.0 256.0

.4 3.6 32.4 291.6

.3 3.0 30.0 300.0

.2 2.2 24.2 266.2

.1 1.2 14.4 172.8

WX

� �
� �
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�� �

0.00

8.80

29.90

55.80

94.23

127.28

, 155.40

176.70

190.20

188.44

171.51

137.36

80.92

W

� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � ��
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �� �

y  

  Further compute  

   

6.66 22.23 120.77 797.19 747.844

22.23 120.77 797.19 5956.13 4815.438
( ) , ( )

120.77 797.19 5956.13 48490.23 35420.468

797.19 5956.13 48490.23 420477.17 285262.440

T TWX WX WX W

� � � �
� � � �
� � � �� �
� � � �
� � � �
� � � �� � � �

y  

  and find that  

   1

0.2685

3.6095ˆ (( ) ) ( )
5.8576

0.0477

T TWX WX WX W�

�� �
� �
� �� �
� �
� �
�� �� �

y�  

  Thus the weighted least-squares cubic is 2 3( ) .2685 3.6095 5.8576 .0477 .y g t t t t� � � 	 	 �  The velocity 
at t = 4.5 seconds is g’(4.5) = 53.4 ft./sec. This is about 0.7% faster than the estimate obtained in Exercise 
13 of Section 6.6. 

 16. [M] Let 
1 for 0

( ) .
1 for 2

t
f t

t

�

� �

� ��
� �� � ��

 The Fourier coefficients for f have already been found to be 0ka �  

for all k �	0 and 
4 /( ) for odd

.
0 for evenk

k k
b

k

��
� �
�

 Thus  

   4 5
4 4 4 4 4

( ) sin sin 3 and ( ) sin sin 3 sin 5
3 3 5

f t t t f t t t t
� � � � �

� 
 � 
 
  

  A graph of 4f  over the interval [0, 2�] is  

1

1

0.5

–0.5

–1

2 3 4 5 6
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  A graph of 5f  over the interval [0, 2�] is  

1

0.5

–0.5

–1

1 2 3 4 5 6

 

  A graph of 5f  over the interval [–2�, 2�] is 

1

0.5

–0.5

–1

–6 –4 –2 2 4 6

 

Chapter 6 SUPPLEMENTARY EXERCISES 

 1. a. False. The length of the zero vector is zero.  

 b. True. By the displayed equation before Example 2 in Section 6.1, with c = –1, || –x�|| = || (–1)x�|| = 
| –1 ||| x || = || x�||.  

 c. True. This is the definition of distance.  

 d. False. This equation would be true if r|| v�|| were replaced by | r ||| v�||.  

 e. False. Orthogonal nonzero vectors are linearly independent.  

 f. True. If x � u = 0 and x � v = 0, then x � (u – v) = x � u – x � v = 0.  

 g. True. This is the “only if” part of the Pythagorean Theorem in Section 6.1.  

 h. True. This is the “only if” part of the Pythagorean Theorem in Section 6.1 where v is replaced  

by –v, because 2|| ||�v  is the same as 2|| ||v .  

 i. False. The orthogonal projection of y onto u is a scalar multiple of u, not y (except when y itself is 
already a multiple of u).  

 j. True. The orthogonal projection of any vector y onto W is always a vector in W.  

 k. True. This is a special case of the statement in the box following Example 6 in Section 6.1 (and 
proved in Exercise 30 of Section 6.1).  

 l. False. The zero vector is in both W and .W �  

 m. True. See Exercise 32 in Section 6.2. If 0,i j� �v v  then ( ) ( ) ( ) 0 0.i i j j i j i j i jc c c c c c� � � � �v v v v   

 n. False. This statement is true only for a square matrix. See Theorem 10 in Section 6.3.  

 o. False. An orthogonal matrix is square and has orthonormal columns. 
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 p. True. See Exercises 27 and 28 in Section 6.2. If U has orthonormal columns, then .TU U I�  If U is 

also square, then the Invertible Matrix Theorem shows that U is invertible and 1 .TU U� �  In this 

case, ,TU U I�  which shows that the columns of TU  are orthonormal; that is, the rows of U are 
orthonormal.  

 q. True. By the Orthogonal Decomposition Theorem, the vectors projW v  and projW�v v  are 
orthogonal, so the stated equality follows from the Pythagorean Theorem.  

 r. False. A least-squares solution is a vector x̂  (not A x̂ ) such that A x̂  is the closest point to b  
in Col A.  

 s. False. The equation ˆ � �� �� �� �� �x b  describes the solution of the normal equations, not the matrix 

form of the normal equations. Furthermore, this equation makes sense only when TA A  is 
invertible.  

 2. If 1 2{ , }v v  is an orthonormal set and 1 1 2 2 ,c c� �x v v  then the vectors 1 1c v  and 2 2c v  are orthogonal 
(Exercise 32 in Section 6.2). By the Pythagorean Theorem and properties of the norm  

   2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2 1 1 2 2 1 2|| || || || || || || || ( || ||) ( || ||) | | | |c c c c c c c c� � � � � � � �x v v v v v v  

  So the stated equality holds for p = 2. Now suppose the equality holds for p = k, with k ��2. Let 

1 1{ , , }k�	v v  be an orthonormal set, and consider 1 1 1 1 1 1,k k k k k k kc c c c
� � � �

� �	� � � �x v v v u v  where 

1 1 .k k kc c� �	�u v v  Observe that ku  and 1 1k kc
� �

v  are orthogonal because 1 0j k�� �v v  for j = 1,�,k. 

By the Pythagorean Theorem and the assumption that the stated equality holds for k, and because 
2 2 2 2

1 1 1 1 1|| || | | || || | | ,k k k k kc c c
� � � � �

� �v v  

   2 2 2 2 2 2
1 1 1 1 1 1|| || || || || || || || | | | |k k k k k k kc c c c
� � � � �

� � � � � ���x u v u v  

  Thus the truth of the equality for p = k implies its truth for p = k + 1. By the principle of induction, the 
equality is true for all integers p ��2. 

 3. Given x and an orthonormal set 1{ , , }p�v v  in n, let x̂  be the orthogonal projection of x onto the 

subspace spanned by 1, , p�v v . By Theorem 10 in Section 6.3, 1 1ˆ ( ) ( ) .p p� � ��� �x x v v x v v  By 

Exercise 2, 2 2 2
1ˆ|| || | | | | .p� � ��� �x x v x v  Bessel’s inequality follows from the fact that 2 2ˆ|| || || || ,�x x  

which is noted before the proof of the Cauchy-Schwarz inequality in Section 6.7. 

 4. By parts (a) and (c) of Theorem 7 in Section 6.2, 1{ , , }kU U�v v  is an orthonormal set in n. Since there 

are n vectors in this linearly independent set, the set is a basis for n. 

 5. Suppose that (U x)�(U y) = x�y for all x, y in n, and let 1, , n	e e  be the standard basis for n. For  

j = 1, 	, n, jUe  is the jth column of U. Since 2|| || ( ) ( ) 1,j j j j jU U U� 
 � 
 �e e e e e  the columns of U are 

unit vectors; since ( ) ( ) 0j k j kU U
 � 
 �e e e e  for j ��k, the columns are pairwise orthogonal. 

 6. If Ux = �x for some x���0, then by Theorem 7(a) in Section 6.2 and by a property of the norm,  
|| x�|| = || Ux || = || �x || = | ��||| x�||, which shows that | ��| = 1, because x���0. 

 7. Let u be a unit vector, and let 2 .TQ I� � uu  Since ( ) ,T T TT T T� �uu u u uu  

   ( 2 ) 2( ) 2T T T T T TQ I I I Q� � � � � � �uu uu uu  

  Then  

   2 2( 2 ) 2 2 4( )( )T T T T T TQQ Q I I� � � � � � �uu uu uu uu uu  
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  Since u is a unit vector, 1,T � 
 �u u u u  so ( )( ) ( )( ) ,T T T T T� �uu uu u u u u uu  and  

   2 2 4T T T TQQ I I� � � � �uu uu uu  

  Thus Q is an orthogonal matrix. 

 8. a. Suppose that x 
 y = 0. By the Pythagorean Theorem, 2 2 2|| || || || || || .� � �x y x y  Since T preserves 

lengths and is linear,  

   2 2 2 2|| ( ) || || ( ) || || ( ) || || ( ) ( ) ||T T T T T� � � � �x y x y x y  

  This equation shows that T(x) and T(y) are orthogonal, because of the Pythagorean Theorem. Thus T 
preserves orthogonality.  

 b. The standard matrix of T is  �1( ) ( )nT T	e e , where 1, , n	e e  are the columns of the identity 

matrix. Then 1{ ( ), , ( )}nT T	e e  is an orthonormal set because T preserves both orthogonality and 
lengths (and because the columns of the identity matrix form an orthonormal set). Finally, a square 
matrix with orthonormal columns is an orthogonal matrix, as was observed in Section 6.2.  

 9. Let W = Span{u, v}. Given z in n, let ˆ proj .W�z z  Then ẑ  is in Col A, where  �.A � u v  Thus there is 

a vector, say, x̂  in 2, with A x̂ = ẑ . So, x̂  is a least-squares solution of Ax = z. The normal equations 
may be solved to find x̂ , and then ẑ  may be found by computing A ˆ.x  

 10. Use Theorem 14 in Section 6.5. If c ��0, the least-squares solution of Ax = c b is given by 
1( ) ( ),T TA A A c� b  which equals 1( ) ,T Tc A A A� b  by linearity of matrix multiplication. This solution is c 

times the least-squares solution of Ax�= b. 

 11. Let ,

x

y

z

� 	

 �� 
 �

 �� 

x  ,

a

b

c

� 	

 �� 
 �

 �� 

b  

1

2 ,

5

� 	

 �� �
 �

 �� 

v  and 

1 2 5

1 2 5 .

1 2 5

T

T

T

A

� 	 �� 	
 � 
 �� � �
 � 
 �
 � 
 ��� 
 �� 

v

v

v

 Then the given set of equations is  

Ax = b, and the set of all least-squares solutions coincides with the set of solutions of the normal 

equations T TA A A�x b . The column-row expansions of TA A  and TA b  give  

   3 , ( )T T T T T TA A A a b c a b c� � � � � � � � � �vv vv vv vv b v v v v  

  Thus 3( ) 3 ( ) 3( )T T T TA A � � �x vv x v v x v x v  since Tv x  is a scalar, and the normal equations have 

become 3( ) ( ) ,T a b c� � �v x v v  so 3( ) ,T a b c� � �v x  or ( ) / 3.T a b c� � �v x  Computing Tv x  gives the 
equation x – 2y + 5z = (a + b + c)/3 which must be satisfied by all least-squares solutions to Ax = b. 

 12. The equation (1) in the exercise has been written as V��= b, where V is a single nonzero column vector v, 

and b = Av. The least-squares solution �̂  of V��= b is the exact solution of the normal equations 

.T TV V V� � b  In the original notation, this equation is .T T A� �v v v v  Since Tv v  is nonzero, the least 

squares solution �̂  is /( ).T TAv v v v  This expression is the Rayleigh quotient discussed in the Exercises 
for Section 5.8. 

 13. a. The row-column calculation of Au shows that each row of A is orthogonal to every u in Nul A. So 

each row of A is in (Nul ) .A �  Since (Nul )A �  is a subspace, it must contain all linear combinations 

of the rows of A; hence (Nul )A �  contains Row A.  

 b. If rank A = r, then dim Nul A = n – r by the Rank Theorem. By Exercsie 24(c) in Section 6.3, 

dimNul dim(Nul ) ,A A n�� �  so dim(Nul )A �  must be r. But Row A is an r-dimensional subspace 

of (Nul )A �  by the Rank Theorem and part (a). Therefore, Row (Nul ) .A A ��  
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 c. Replace A by TA  in part (b) and conclude that Row (Nul ) .T TA A ��  Since Row Col ,TA A�  

Col (Nul ) .TA A ��  

 14. The equation Ax = b has a solution if and only if b is in Col A. By Exercise 13(c), Ax = b has a solution 

if and only if b is orthogonal to Nul .TA  This happens if and only if b is orthogonal to all solutions of 

.TA �x 0  

 15. If TA URU�  with U orthogonal, then A is similar to R (because U is invertible and 1TU U �� ), so A has 
the same eigenvalues as R by Theorem 4 in Section 5.2. Since the eigenvalues of R are its n real diagonal 
entries, A has n real eigenvalues. 

 16. a. If  �1 2 ,nU � 	u u u  then  �1 1 2 .nAU A A� � 	u u u  Since 1u  is a unit vector and 

2 , , n	u u  are orthogonal to 1,u  the first column of TU AU  is 1 1 1 1 1 1( ) .T TU U� � � � �u u e  

 b. From (a),  

   

1

1

* * * *

0

0

TU AU
A

�� �
� �
� ��
� �
� �
� �� �

�
 

  View TU AU  as a 2 ��2 block upper triangular matrix, with 1A  as the (2, 2)-block. Then from 
Supplementary Exercise 12 in Chapter 5,  

  1 1 1 1 1 1 1det( ) det(( ) ) det( ) ( ) det( )T
n n nU AU I I A I A I

� �

�� � � �� � � � � � � � � � �  

  This shows that the eigenvalues of ,TU AU  namely, 1, , ,n� � �  consist of 1�  and the eigenvalues of 

1A . So the eigenvalues of 1A  are 2 , , .n� � �  

 17. [M] Compute that || �x�||/|| x�|| = .4618 and 4cond( ) (|| || / || ||) 3363 (1.548 10 ) .5206A �� � � � �b b� . In 

this case, || �x ||/|| x || is almost the same as cond(A) ��|| ���||/|| b�||. 

 18. [M] Compute that || �x�||/|| x�|| = .00212 and cond(A) ��(|| �b�||/|| b�||) = 3363 ��(.00212) ��7.130. In this 
case, || �x ||/|| x || is almost the same as || �b�||/|| b�||, even though the large condition number suggests that 
|| �x�||/|| x�|| could be much larger. 

 19. [M] Compute that 8|| || / || || 7.178 10�� �x x�  and 4cond( ) (|| || / || ||) 23683 (2.832 10 )A �� � � � �b b�  
6.707.  Observe that the realtive change in x is much smaller than the relative change in b. In fact the 
theoretical bound on the realtive change in x is 6.707 (to four significant figures). This exercise shows 
that even when a condition number is large, the relative error in the solution need not be as large as you 
suspect. 

 20. [M] Compute that || �x ||/|| x�|| = .2597 and 5cond( ) (|| || / || ||) 23683 (1.097 10 ) .2598A �� � � � �b b� . This 

calculation shows that the relative change in x, for this particular b and �b, should not exceed .2598. In 
this case, the theoretical maximum change is almost acheived. 
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7.1 SOLUTIONS 

Notes: Students can profit by reviewing Section 5.3 (focusing on the Diagonalization Theorem) before 
working on this section. Theorems 1 and 2 and the calculations in Examples 2 and 3 are important for the 
sections that follow. Note that symmetric matrix means real symmetric matrix, because all matrices in the text 
have real entries, as mentioned at the beginning of this chapter. The exercises in this section have been 
constructed so that mastery of the Gram-Schmidt process is not needed. 

Theorem 2 is easily proved for the 2 × 2 case:  

   If ,
a b

A
c d
 

=  
 

 then ( )2 21 ( ) 4 .
2

a d a d bλ = + ± − +   

If b = 0 there is nothing to prove. Otherwise, there are two distinct eigenvalues, so A must be diagonalizable. 

In each case, an eigenvector for λ is .
d

b
− λ 

 − 
 

 1. Since 
3 5

,
5 7

TA A
 

= = − 
 the matrix is symmetric. 

 2. Since 
3 5

,
5 3

TA A
− 

= ≠ − 
 the matrix is not symmetric. 

 3. Since 
2 2

,
4 4

TA A
 

= ≠ 
 

 the matrix is not symmetric. 

 4. Since 
0 8 3
8 0 2 ,
3 2 0

TA A
 
 = − = 
 − 

 the matrix is symmetric. 

 5. Since 
6 2 0
0 6 2 ,
0 0 6

TA A
− 
 = − ≠ 
 − 

 the matrix is not symmetric. 

 6. Since A is not a square matrix TA A≠  and the matrix is not symmetric. 
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 7. Let 
.6 .8

,
.8 .6

P
 

=  − 
 and compute that  

   2
.6 .8 .6 .8 1 0
.8 .6 .8 .6 0 1

TP P I
     

= = =     − −     
 

  Since P is a square matrix, P is orthogonal and 1 .6 .8
.

.8 .6
TP P−  

= =  − 
 

 8. Let 
1/ 2 1/ 2

,
1/ 2 1/ 2

P
 −

=  
  

 and compute that  

   2
1/ 2 1/ 2 1/ 2 1/ 2 1 0

0 11/ 2 1/ 2 1/ 2 1/ 2
TP P I

   −  
= = =     

−        
 

  Since P is a square matrix, P is orthogonal and 1 1/ 2 1/ 2
.

1/ 2 1/ 2
TP P−  

= =  
−  

 

 9. Let 
5 2

,
2 5

P
− 

=  
 

 and compute that  

   2
5 2 5 2 29 0
2 5 2 5 0 29

TP P I
− −     

= = ≠     
     

 

  Thus P is not orthogonal. 

 10. Let 
1 2 2
2 1 2 ,
2 2 1

P
− 
 = − 
 − 

 and compute that  

   3

1 2 2 1 2 2 9 0 0
2 1 2 2 1 2 0 9 0
2 2 1 2 2 1 0 0 9

TP P I
− −     
     = − − = ≠     
     − −     

 

  Thus P is not orthogonal. 

 11. Let 

2 /3 2 / 3 1/ 3

0 1/ 5 2 / 5 ,

5 / 3 4 / 45 2 / 45

P
 
 

= − 
 − − 

 and compute that  

   3

2 / 3 0 5 / 3 2 / 3 2 /3 1/3 1 0 0
2 / 3 1/ 5 4 / 45 0 1/ 5 2 / 5 0 1 0

0 0 11/ 3 2 / 5 2 / 45 5 / 3 4 / 45 2 / 45

TP P I

          = − − = =          − − − −      
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  Since P is a square matrix, P is orthogonal and 1

2 / 3 0 5 / 3

2 / 3 1/ 5 4 / 45 .

1/ 3 2 / 5 2 / 45

TP P−

 
 

= = − 
 

− −  

 

 12. Let 

.5 .5 .5 .5

.5 .5 .5 .5
,

.5 .5 .5 .5

.5 .5 .5 .5

P

− − 
 − − =
 
 − −  

 and compute that  

   4

.5 .5 .5 .5 .5 .5 .5 .5 1 0 0 0

.5 .5 .5 .5 .5 .5 .5 .5 0 1 0 0

.5 .5 .5 .5 .5 .5 .5 .5 0 0 1 0

.5 .5 .5 .5 .5 .5 .5 .5 0 0 0 1

TP P I

− − − −     
     − −     = = =
     − −
     − − − −          

 

  Since P is a square matrix, P is orthogonal and 1

.5 .5 .5 .5

.5 .5 .5 .5
.

.5 .5 .5 .5

.5 .5 .5 .5

TP P−

− − 
 
 = =
 − −
 − −  

 

 13. Let 
3 1

.
1 3

A
 

=  
 

 Then the characteristic polynomial of A is 2 2(3 ) 1 6 8 ( 4)( 2),− λ − = λ − λ + = λ − λ −  so 

the eigenvalues of A are 4 and 2. For λ = 4, one computes that a basis for the eigenspace is 
1

,
1
 
 
 

 which 

can be normalized to get 1
1/ 2

.
1/ 2

 
=  
  

u  For λ = 2, one computes that a basis for the eigenspace is 
1

,
1

− 
 
 

 

which can be normalized to get 2
1/ 2

.
1/ 2

 −
=  
  

u  Let  

   [ ]1 2
1/ 2 1/ 2 4 0

and
0 21/ 2 1/ 2

P D
 −  

= = =   
   

u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 14. Let 
1 5

.
5 1

A
 

=  
 

 Then the characteristic polynomial of A is 2 2(1 ) 25 2 24 ( 6)( 4),− λ − = λ − λ − = λ − λ +  

so the eigenvalues of A are 6 and –4. For λ = 6, one computes that a basis for the eigenspace is 
1

,
1
 
 
 

 

which can be normalized to get 1
1/ 2

.
1/ 2

 
=  
  

u  For λ = –4, one computes that a basis for the eigenspace is 

1
,

1
− 
 
 

 which can be normalized to get 2
1/ 2

.
1/ 2

 −
=  
  

u   
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  Let  

   [ ]1 2
1/ 2 1/ 2 6 0

and
0 41/ 2 1/ 2

P D
 −  

= = =   −   
u u  

  Then P orthogonally diagonalizes A, and 1.A PDP−=  

 15. Let 
16 4

.
4 1

A
− 

=  − 
 Then the characteristic polynomial of A is 2(16 )(1 ) 16 17 ( 17)− λ − λ − = λ − λ = λ − λ , 

so the eigenvalues of A are 17 and 0. For λ = 17, one computes that a basis for the eigenspace is 
4

,
1

− 
 
 

 

which can be normalized to get 1
4 / 17

.
1/ 17

 −
=  
  

u  For λ = 0, one computes that a basis for the eigenspace 

is 
1
4
 
 
 

, which can be normalized to get 2
1/ 17

.
4 / 17

 
=  
  

u  Let  

   [ ]1 2
4 / 17 1/ 17 17 0

and
0 01/ 17 4 / 17

P D
 −  

= = =   
   

u u  

  Then P orthogonally diagonalizes A, and 1.A PDP−=  

 16. Let 
7 24

.
24 7

A
− 

=  
 

 Then the characteristic polynomial of A is 2( 7 )(7 ) 576 625− − λ − λ − = λ − =  

( 25)( 25)λ − λ + , so the eigenvalues of A are 25 and –25. For λ = 25, one computes that a basis for the 

eigenspace is 
3

,
4
 
 
 

 which can be normalized to get 1
3/ 5

.
4 /5
 

=  
 

u  For λ = –25, one computes that a basis 

for the eigenspace is 
4

,
3

− 
 
 

 which can be normalized to get 2
4 /5

.
3/ 5

− 
=  
 

u  Let  

   [ ]1 2
3/ 5 4 / 5 25 0

and
4 /5 3/5 0 25

P D
−   

= = =   −   
u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 17. Let 
1 1 3
1 3 1 .
3 1 1

A
 
 =  
  

 The eigenvalues of A are 5, 2, and –2. For λ = 5, one computes that a basis for the 

eigenspace is 
1
1 ,
1

 
 
 
  

 which can be normalized to get 1

1/ 3

1/ 3 .

1/ 3

 
 

=  
 
  

u  For λ = 2, one computes that a basis for 
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the eigenspace is 
1
2 ,
1

 
 − 
  

 which can be normalized to get 2

1/ 6

2 / 6 .

1/ 6

 
 

= − 
 
  

u  For λ = –2, one computes that a 

basis for the eigenspace is 
1
0 ,
1

− 
 
 
  

 which can be normalized to get 3

1/ 2
0 .

1/ 2

 −
 

=  
 
 

u  Let  

   [ ]1 2 3

1/ 3 1/ 6 1/ 2 5 0 0
1/ 3 2 / 6 0 and 0 2 0

0 0 21/ 3 1/ 6 1 2

P D

 −     = = − =      −   

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 18. Let 
2 36 0

36 23 0 .
0 0 3

A
− − 

 = − − 
  

 The eigenvalues of A are 25, 3, and –50. For λ = 25, one computes that a basis 

for the eigenspace is 
4
3 ,
0

− 
 
 
  

 which can be normalized to get 1

4 /5
3/ 5 .

0

− 
 =  
  

u  For λ = 3, one computes that a 

basis for the eigenspace is 
0
0 ,
1

 
 
 
  

 which is of length 1, so 2

0
0 .
1

 
 =  
  

u  For λ = –50, one computes that a 

basis for the eigenspace is 
3
4 ,
0

 
 
 
  

 which can be normalized to get 3

3/ 5
4 / 5 .

0

 
 =  
  

u  Let  

   [ ]1 2 3

4 /5 0 3/ 5 25 0 0
3/ 5 0 4 / 5 and 0 3 0

0 1 0 0 0 50
P D

−   
   = = =   
   −   

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 19. Let 
3 2 4
2 6 2 .
4 2 3

A
− 

 = − 
  

 The eigenvalues of A are 7 and –2. For λ = 7, one computes that a basis for the 

eigenspace is 
1 1
2 , 0 .
0 1

 −   
    
    
        

 This basis may be converted via orthogonal projection to an orthogonal 
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basis for the eigenspace: 
1 4
2 , 2 .
0 5

 −   
    
    
        

 These vectors can be normalized to get 1

1/ 5

2 / 5 ,
0

 −
 

=  
 
  

u  

2

4 / 45

2 / 45 .

5/ 45

 
 

=  
 
  

u  For λ = –2, one computes that a basis for the eigenspace is 
2
1 ,
2

− 
 − 
  

 which can be 

normalized to get 3

2 /3
1/ 3 .
2 /3

− 
 = − 
  

u  Let  

   [ ]1 2 3

1/ 5 4 / 45 2 / 3 7 0 0
2 / 5 2 / 45 1/ 3 and 0 7 0

0 0 20 5/ 45 2 / 3

P D

 − −     = = − =      −   

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 20. Let 
7 4 4
4 5 0 .
4 0 9

A
− 

 = − 
  

 The eigenvalues of A are 13, 7, and 1. For λ = 13, one computes that a basis for 

the eigenspace is 
2
1 ,
2

 
 − 
  

 which can be normalized to get 1

2 /3
1/ 3 .
2 /3

 
 = − 
  

u  For λ = 7, one computes that a 

basis for the eigenspace is 
1
2 ,
2

− 
 
 
  

 which can be normalized to get 2

1/ 3
2 / 3 .
2 / 3

− 
 =  
  

u  For λ = 1, one computes 

that a basis for the eigenspace is 
2
2 ,
1

 
 
 
 − 

 which can be normalized to get 3

2 /3
2 /3 .
1/ 3

 
 =  
 − 

u  Let  

   [ ]1 2 3

2 /3 1/3 2 / 3 13 0 0
1/ 3 2 / 3 2 / 3 and 0 7 0
2 /3 2 /3 1/ 3 0 0 1

P D
−   

   = = − =   
   −   

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 
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 21. Let 

4 1 3 1
1 4 1 3

.
3 1 4 1
1 3 1 4

A

 
 
 =
 
 
  

 The eigenvalues of A are 9, 5, and 1. For λ = 9, one computes that a basis for 

the eigenspace is 

1
1

,
1
1

 
 
 
 
 
  

 which can be normalized to get 1

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 =
 
 
  

u  For λ = 5, one computes that a basis 

for the eigenspace is 

1
1

,
1
1

− 
 
 
 −
 
  

 which can be normalized to get 2

1/ 2
1/ 2

.
1/ 2
1/ 2

− 
 
 =
 −
 
  

u  For λ = 1, one computes that a 

basis for the eigenspace is 

1 0
0 1

, .
1 0
0 1

 −   
    −                    

 This basis is an orthogonal basis for the eigenspace, and these 

vectors can be normalized to get 3

1/ 2
0

,
1/ 2

0

 −
 
 =  
 
  

u  4

0

1/ 2
.

0

1/ 2

 
 
− =  
 
  

u  Let  

   [ ]1 2 3 4

1/ 2 1/ 2 1/ 2 0 9 0 0 0
1/ 2 1/ 2 0 1/ 2 0 5 0 0

and
0 0 1 01/ 2 1/ 2 1/ 2 0
0 0 0 11/ 2 1/ 2 0 1/ 2

P D

 − −     −   = = =   −        

u u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 22. Let 

2 0 0 0
0 1 0 1

.
0 0 2 0
0 1 0 1

A

 
 
 =
 
 
  

 The eigenvalues of A are 2 and 0. For λ = 2, one computes that a basis for the 

eigenspace is 

1 0 0
0 1 0

, , .
0 0 1
0 1 0

      
      
                              

 This basis is an orthogonal basis for the eigenspace, and these vectors 
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can be normalized to get 1

1
0

,
0
0

 
 
 =
 
 
  

u  2

0

1/ 2
,

0

1/ 2

 
 
 =  
 
  

u  and 3

0
0

.
1
0

 
 
 =
 
 
  

u  For λ = 0, one computes that a basis for 

the eigenspace is 

0
1

,
0
1

 
 − 
 
 
  

 which can be normalized to get 4

0

1/ 2
.

0

1/ 2

 
 
− =  
 
  

u  Let  

   [ ]1 2 3 4

1 0 0 0 2 0 0 0
0 1/ 2 0 1/ 2 0 2 0 0

and
0 0 1 0 0 0 2 0

0 0 0 00 1/ 2 0 1/ 2

P D

   
   −   = = =   
   

     

u u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 23. Let 
3 1 1
1 3 1
1 1 3

A
 
 =  
  

. Since each row of A sums to 5,  

   
1 3 1 1 1 5 1
1 1 3 1 1 5 5 1
1 1 1 3 1 5 1

A
         
         = = =         
                  

 

  and 5 is an eigenvalue of A. The eigenvector 
1
1
1

 
 
 
  

 may be normalized to get 1

1/ 3

1/ 3

1/ 3

 
 

=  
 
  

u . One may also 

compute that  

   
1 3 1 1 1 2 1
1 1 3 1 1 2 2 1
0 1 1 3 0 0 0

A
− − − −         
         = = =         
                  

 

  so 
1

1
0

− 
 
 
  

 is an eigenvector of A with associated eigenvalue λ = 2. For λ = 2, one computes that a basis for 

the eigenspace is 
1 1

1 , 1 .
0 2

 − −   
    −    
        

 This basis is an orthogonal basis for the eigenspace, and these vectors 

can be normalized to get 2

1/ 2

1/ 2
0

 −
 

=  
 
  

u  and 3

1/ 6

1/ 6 .

2 / 6

 −
 

= − 
 
  

u   
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  Let  

   [ ]1 2 3

1/ 3 1/ 2 1/ 6 5 0 0
1/ 3 1/ 2 1/ 6 and 0 2 0

0 0 21/ 3 0 2 / 6

P D

 − −     = = − =         

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 24. Let 
5 4 2
4 5 2 .
2 2 2

A
− − 

 = − 
 − 

 One may compute that  

   
2 20 2
2 20 10 2
1 10 1

A
− − −     
     = =     
          

 

  so 1

2
2
1

− 
 =  
  

v  is an eigenvector of A with associated eigenvalue 1 10λ = . Likewise one may compute that  

   
1 1 1
1 1 1 1
0 0 0

A
     
     = =     
          

 

  so 
1
1
0

 
 
 
  

 is an eigenvector of A with associated eigenvalue 2 1λ = . For 2 1λ = , one computes that a basis 

for the eigenspace is 
1 1
1 , 0 .
0 2

    
    
    
        

 This basis may be converted via orthogonal projection to an 

orthogonal basis for the eigenspace: { }2 3

1 1
, 1 , 1 .

0 4

    
    = −    
        

v v  The eigenvectors 1v , 2v , and 3v  may be 

normalized to get the vectors 1

2 /3
2 /3 ,
1/ 3

− 
 =  
  

u  2

1/ 2

1/ 2 ,
0

 
 

=  
 
  

u  and 3

1/ 18

1/ 18 .

4 / 18

 
 

=  
 
  

u  Let  

   [ ]1 2 3

2 /3 1/ 2 1/ 18 10 0 0
2 /3 1/ 2 1/ 18 and 0 1 0

0 0 11/ 3 0 4 / 18

P D

 −     = = − =         

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 
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 25. a. True. See Theorem 2 and the paragraph preceding the theorem.  
 b. True. This is a particular case of the statement in Theorem 1, where u and v are nonzero.  
 c. False. There are n real eigenvalues (Theorem 3), but they need not be distinct (Example 3).  
 d. False. See the paragraph following formula (2), in which each u is a unit vector.  

 26. a. True. See Theorem 2.  
 b. True. See the displayed equation in the paragraph before Theorem 2.  
 c. False. An orthogonal matrix can be symmetric (and hence orthogonally diagonalizable), but not every 

orthogonal matrix is symmetric. See the matrix P in Example 2.  
 d. True. See Theorem 3(b).  

 27. Since A is symmetric, ( )T T T T TT TB AB B A B B AB= = , and TB AB  is symmetric. Applying this result with 
A = I gives TB B  is symmetric. Finally, ( )T T TT T TBB B B BB= = , so TBB  is symmetric. 

 28. Let A be an n × n symmetric matrix. Then  

   ( ) ( ) ( )T T T TA A A A A⋅ = = = = ⋅x y x y x y x y x y  

  since TA A= . 

 29. Since A is orthogonally diagonalizable, 1A PDP−= , where P is orthogonal and D is diagonal. Since A is 
invertible, 1 1 1 1 1( )A PDP PD P− − − − −= = . Notice that 1D−  is a diagonal matrix, so 1A−  is orthogonally 
diagonalizable.  

 30. If A and B are orthogonally diagonalizable, then A and B are symmetric by Theorem 2. If AB = BA,  
then ( ) ( )T T T TAB BA A B AB= = = . So AB is symmetric and hence is orthogonally diagonalizable by 
Theorem 2.  

 31. The Diagonalization Theorem of Section 5.3 says that the columns of P are linearly independent 
eigenvectors corresponding to the eigenvalues of A listed on the diagonal of D. So P has exactly k 
columns of eigenvectors corresponding to λ. These k columns form a basis for the eigenspace. 

 32. If 1,A PRP−=  then 1 .P AP R− =  Since P is orthogonal, TR P AP= . Hence ( )T T T T T TTR P AP P A P= = =  
,TP AP R=  which shows that R is symmetric. Since R is also upper triangular, its entries above the 

diagonal must be zeros to match the zeros below the diagonal. Thus R is a diagonal matrix. 

 33. It is previously been found that A is orthogonally diagonalized by P, where  

   [ ]1 2 3

1/ 2 1/ 6 1/ 3 8 0 0
1/ 2 1/ 6 1/ 3 and 0 6 0

0 0 30 2 / 6 1/ 3

P D

 − −     = = − =         

u u u  

  Thus the spectral decomposition of A is  

   1 1 1 2 2 2 3 3 3 1 1 2 2 3 3λ λ λ 8 6 3T T T T T TA = + + = + +u u u u u u u u u u u u  

   
1/ 2 1/ 2 0 1/ 6 1/ 6 2 / 6 1/ 3 1/ 3 1/ 3

8 1/ 2 1/ 2 0 6 1/ 6 1/ 6 2 / 6 3 1/ 3 1/ 3 1/ 3
0 0 0 2 / 6 2 / 6 4 / 6 1/ 3 1/ 3 1/ 3

− −     
     = − + − +     
     − −     
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 34. It is previously been found that A is orthogonally diagonalized by P, where  

   [ ]1 2 3

1/ 2 1/ 18 2 / 3 7 0 0
0 4 / 18 1/ 3 and 0 7 0

0 0 21/ 2 1/ 18 2 / 3

P D

 − −     = = − =      −   

u u u  

  Thus the spectral decomposition of A is  

  1 1 1 2 2 2 3 3 3 1 1 2 2 3 3λ λ λ 7 7 2T T T T T TA = + + = + −u u u u u u u u u u u u  

   
1/ 2 0 1/ 2 1/18 4 /18 1/18 4 / 9 2 / 9 4 / 9

7 0 0 0 7 4 /18 16 /18 4 /18 2 2 /9 1/ 9 2 /9
1/ 2 0 1/ 2 1/18 4 /18 1/18 4 / 9 2 / 9 4 / 9

− − −     
     = + − − −     
     − − −     

 

 35. a. Given x in n, ( ) ( ) ( ) ,T T Tb = = =x uu x u u x u x u  because Tu x  is a scalar. So Bx = (x ⋅ u)u. Since u is a 
unit vector, Bx is the orthogonal projection of x onto u.  

 b. Since ( ) ,T T T TT T TB B= = = =uu u u uu  B is a symmetric matrix. Also, 
2 ( )( ) ( )T T T T TB B= = = =uu uu u u u u uu  because 1.T =u u   

 c. Since 1T =u u , ( ) ( ) (1)T TB = = = =u uu u u u u u u , so u is an eigenvector of B with corresponding 
eigenvalue 1.  

 36. Given any y in n, let ŷ = By and z = y – ŷ . Suppose that TB B=  and 2B B= . Then .TB B BB B= =   

a. Since ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0T T T T TB B B B B B B B B⋅ = − ⋅ = ⋅ − ⋅ = − = − =z y y y y y y y y y y y y y y y y , z is 
orthogonal to ˆ.y  

b. Any vector in W = Col B has the form Bu for some u. Noting that B is symmetric, Exercise 28 gives  
   ( y – ŷ ) ⋅ (Bu) = [B(y – ŷ )] ⋅ u = [By – BBy] ⋅ u = 0 

  since 2 .B B=  So y – ŷ  is in ,W ⊥  and the decomposition y = ŷ + (y – ŷ ) expresses y as the sum of a 
vector in W and a vector in .W ⊥  By the Orthogonal Decomposition Theorem in Section 6.3, this 
decomposition is unique, and so ŷ  must be proj .W y  

 37. [M] Let 

5 2 9 6
2 5 6 9

.
9 6 5 2
6 9 2 5

A

− 
 − =
 −
 −  

 The eigenvalues of A are 18, 10, 4, and –12. For λ = 18, one 

computes that a basis for the eigenspace is 

1
1

,
1
1

− 
 
 
 −
 
  

 which can be normalized to get 1

1/ 2
1/ 2

.
1/ 2
1/ 2

− 
 
 =
 −
 
  

u  For  

λ = 10, one computes that a basis for the eigenspace is 

1
1
1
1

 
 
 
 
 
  

, which can be normalized to get 2

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 =
 
 
  

u  
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For λ = 4, one computes that a basis for the eigenspace is 

1
1
1
1

 
 
 
 −
 −  

, which can be normalized to get 

3

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 =
 −
 −  

u  For λ = –12, one computes that a basis for the eigenspace is 

1
1

,
1
1

 
 − 
 −
 
  

 which can be 

normalized to get 4

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 − =
 −
 
  

u  Let [ ]1 2 3 4

1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2

P

− 
 − = =
 − − −
 −  

u u u u  and 

18 0 0 0
0 10 0 0

.
0 0 4 0
0 0 0 12

D

 
 
 =
 
 −  

 Then P orthogonally diagonalizes A, and 1A PDP−= . 

 38. [M] Let 

.38 .18 .06 .04

.18 .59 .04 .12
.

.06 .04 .47 .12

.04 .12 .12 .41

A

− − − 
 − − =
 − − −
 − −  

 The eigenvalues of A are .25, .30, .55, and .75. For λ = .25, 

one computes that a basis for the eigenspace is 

4
2

,
2
1

 
 
 
 
 
  

 which can be normalized to get 1

.8

.4
.

.4

.2

 
 
 =
 
 
  

u  For  

λ = .30, one computes that a basis for the eigenspace is 

1
2

,
2
4

− 
 − 
 
 
  

 which can be normalized to get 

2

.2

.4
.

.4

.8

− 
 − =
 
 
  

u  For λ = .55, one computes that a basis for the eigenspace is 

2
1

,
4
2

 
 − 
 −
 
  

 which can be normalized 

to get 3

.4

.2
.

.8

.4

 
 − =
 −
 
  

u  For λ = .75, one computes that a basis for the eigenspace is 

2
4

,
1
2

− 
 
 
 −
 
  

 which can be 
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normalized to get 4

.4

.8
.

.2

.4

− 
 
 =
 −
 
  

u  Let [ ]1 2 3 4

.8 .2 .4 .4

.4 .4 .2 .8

.4 .4 .8 .2

.2 .8 .4 .4

P

− − 
 − − = =
 − −
 
  

u u u u  and 

.25 0 0 0
0 .30 0 0

.
0 0 .55 0
0 0 0 .75

D

 
 
 =
 
 
  

 Then P orthogonally diagonalizes A, and 1A PDP−= . 

 39. [M] Let 

.31 .58 .08 .44
.58 .56 .44 .58

.
.08 .44 .19 .08
.44 .58 .08 .31

A

 
 − − =
 −
 − −  

 The eigenvalues of A are .75, 0, and –1.25. For λ = .75, one 

computes that a basis for the eigenspace is 

1 3
0 2

, .
0 2
1 0

    
    
                    

 This basis may be converted via orthogonal 

projection to the orthogonal basis 

1 3
0 4

, .
0 4
1 3

    
    
             −       

 These vectors can be normalized to get 1

1/ 2
0

,
0

1/ 2

 
 
 =  
 
  

u  

2

3/ 50

4 / 50
.

4 / 50

3/ 50

 
 
 

=  
 
 − 

u  For λ = 0, one computes that a basis for the eigenspace is 

2
1

,
4
2

− 
 − 
 
 
  

 which can be 

normalized to get 3

.4

.2
.

.8

.4

− 
 − =
 
 
  

u  For λ = –1.25, one computes that a basis for the eigenspace is 

2
4

,
1
2

− 
 
 
 −
 
  

 

which can be normalized to get 4

.4

.8
.

.2

.4

− 
 
 =
 −
 
  

u  

  Let [ ]1 2 3 4

1/ 2 3/ 50 .4 .4

0 4 / 50 .2 .8

0 4 / 50 .8 .2

1/ 2 3/ 50 .4 .4

P

 − −
 

− 
= =  

− 
 − 

u u u u  and 

.75 0 0 0
0 .75 0 0
0 0 0 0
0 0 0 1.25

D

 
 
 =
 
 −  

. Then P 

orthogonally diagonalizes A, and 1A PDP−= . 
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 40. [M] Let 

10 2 2 6 9
2 10 2 6 9

.2 2 10 6 9
6 6 6 26 9
9 9 9 9 19

A

− 
 − 
 = −
 − − − 
 − 

 The eigenvalues of A are 8, 32, –28, and 17. For λ = 8, one 

computes that a basis for the eigenspace is 

1 1
1 0

, .0 1
0 0
0 0

 −   
    −         
    
    
        

 This basis may be converted via orthogonal 

projection to the orthogonal basis 

1 1
1 1

, .0 2
0 0
0 0

    
    −        − 
    
    
        

 These vectors can be normalized to get 

1

1/ 2

1/ 2
,0

0
0

 
 
− 
 =
 
 
 
  

u  2

1/ 6

1/ 6
.2 / 6

0
0

 
 
 
 = − 
 
 
  

u  For λ = 32, one computes that a basis for the eigenspace is 

1
1

,1
3
0

 
 
 
 
 − 
  

 which 

can be normalized to get 3

1/ 12

1/ 12
.1/ 12

3/ 12
0

 
 
 
 =  
 − 
  

u  For λ = –28, one computes that a basis for the eigenspace is 

1
1

,1
1
4

 
 
 
 
 
 
 − 

 which can be normalized to get 4

1/ 20

1/ 20
.1/ 20

1/ 20

4 / 20

 
 
 
 =  
 
 
 − 

u  For λ = 17, one computes that a basis for the 

eigenspace is 

1
1

,1
1
1

 
 
 
 
 
 
  

 which can be normalized to get 5

1/ 5

1/ 5
.1/ 5

1/ 5

1/ 5

 
 
 
 =  
 
 
  

u  
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  Let [ ]1 2 3 4 5

1/ 2 1/ 6 1/ 12 1/ 20 1/ 5

1/ 2 1/ 6 1/ 12 1/ 20 1/ 5

0 2 / 6 1/ 12 1/ 20 1/ 5

0 0 3/ 12 1/ 20 1/ 5

0 0 0 4 / 20 1/ 5

P

 
 
− 
 = = − 
 − 
 − 

u u u u u  and 

8 0 0 0 0
0 8 0 0 0

.0 0 32 0 0
0 0 0 28 0
0 0 0 0 17

D

 
 
 
 =
 − 
  

 Then P orthogonally diagonalizes A, and 1A PDP−= . 

7.2 SOLUTIONS 

Notes: This section can provide a good conclusion to the course, because the mathematics here is widely 
used in applications. For instance, Exercises 23 and 24 can be used to develop the second derivative test for 
functions of two variables. However, if time permits, some interesting applications still lie ahead. Theorem 4 
is used to prove Theorem 6 in Section 7.3, which in turn is used to develop the singular value decomposition. 

 1. a. [ ] 21 2
1 2 1 1 2 2

2

5 1/ 3
5 (2 / 3)

1/ 3 1
T x

A x x x x x x
x
  

= = + +  
   

x x   

 b. When 
6

,
1
 

=  
 

x  2 25(6) (2 / 3)(6)(1) (1) 185.T A = + + =x x  

 c. When 
1

,
3
 

=  
 

x  2 25(1) (2 / 3)(1)(3) (3) 16.T A = + + =x x  

 2. a. [ ]
1

2 2 2
1 2 3 2 1 2 3 1 2 2 3

3

4 3 0
3 2 1 4 2 6 2
0 1 1

T
x

A x x x x x x x x x x x
x

   
   = = + + + +   
      

x x   

 b. When 
2
1 ,
5

 
 = − 
  

x  2 2 24(2) 2( 1) (5) 6(2)( 1) 2( 1)(5) 21.T A = + − + + − + − =x x  

 c. When 

1/ 3

1/ 3 ,

1/ 3

 
 

=  
 
  

x  2 2 24(1/ 3) 2(1/ 3) (1/ 3) 6(1/ 3)(1/ 3) 2(1/ 3)(1/ 3) 5.T A = + + + + =x x  

 3. a. The matrix of the quadratic form is 
10 3

.
3 3

− 
 − − 

 

 b. The matrix of the quadratic form is 
5 3/ 2

.
3/ 2 0
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 4. a. The matrix of the quadratic form is 
20 15/ 2

.
15 / 2 10
 
 − 

 

 b. The matrix of the quadratic form is 
0 1/ 2

.
1/ 2 0
 
 
 

 

 5. a. The matrix of the quadratic form is 
8 3 2
3 7 1 .
2 1 3

− 
 − − 
 − − 

 

 b. The matrix of the quadratic form is 
0 2 3
2 0 4 .
3 4 0

 
 − 
 − 

 

 6. a. The matrix of the quadratic form is 
5 5/ 2 3/ 2

5/ 2 1 0 .
3/ 2 0 7

− 
 − 
 − 

 

 b. The matrix of the quadratic form is 
0 2 0
2 0 2 .
0 2 1

− 
 − 
  

 

 7. The matrix of the quadratic form is 
1 5

.
5 1

A
 

=  
 

 The eigenvalues of A are 6 and –4. An eigenvector for 

λ = 6 is 
1

,
1
 
 
 

 which may be normalized to 1
1/ 2

.
1/ 2

 
=  
  

u  An eigenvector for λ = –4 is 
1

,
1

− 
 
 

 which may 

be normalized to 2
1/ 2

.
1/ 2

 −
=  
  

u  Then 1A PDP−= , where [ ]1 2
1/ 2 1/ 2

1/ 2 1/ 2
P

 −
= =  

  
u u  and 

6 0
.

0 4
D

 
=  − 

 The desired change of variable is x = Py, and the new quadratic form is  

   2 2
1 2( ) ( ) 6 4T T T T TA P A P P AP D y y= = = = −x x y y y y y y  

 8. The matrix of the quadratic form is 
9 4 4
4 7 0 .
4 0 11

A
− 

 = − 
  

 The eigenvalues of A are 3, 9, and 15. An 

eigenvector for λ = 3 is 
2
2 ,
1

− 
 − 
  

 which may be normalized to 1

2 /3
2 /3 .
1/ 3

− 
 = − 
  

u  An eigenvector for λ = 9 is 

1
2 ,
2

− 
 
 
  

 which may be normalized to 2

1/ 3
2 / 3 .
2 / 3

− 
 =  
  

u  An eigenvector for λ = 15 is 
2
1 ,
2

 
 − 
  

 which may be 
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normalized to 3

2 /3
1/ 3 .
2 /3

 
 = − 
  

u  Then 1A PDP−= , where [ ]1 2 3

2 /3 1/ 3 2 / 3
2 /3 2 / 3 1/ 3
1/ 3 2 / 3 2 / 3

P
− − 
 = = − − 
  

u u u  and 

3 0 0
0 9 0 .
0 0 15

D
 
 =  
  

 The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2
1 2 3( ) ( ) 3 9 15T T T T TA P A P P AP D y y y= = = = + +x x y y y y y y  

 9. The matrix of the quadratic form is 
3 2

.
2 6

A
− 

=  − 
 The eigenvalues of A are 7 and 2, so the quadratic 

form is positive definite. An eigenvector for λ = 7 is 
1

,
2

− 
 
 

 which may be normalized to 1
1/ 5

.
2 / 5

 −
=  
  

u  

An eigenvector for λ = 2 is 
2

,
1
 
 
 

 which may be normalized to 2
2 / 5

.
1/ 5

 
=  
  

u  Then 1A PDP−= , where 

[ ]1 2
1/ 5 2 / 5

2 / 5 1/ 5
P

 −
= =  

  
u u  and 

7 0
.

0 2
D

 
=  
 

 The desired change of variable is x = Py, and the 

new quadratic form is  

   2 2
1 2( ) ( ) 7 2T T T T TA P A P P AP D y y= = = = +x x y y y y y y  

 10. The matrix of the quadratic form is 
9 4

.
4 3

A
− 

=  − 
 The eigenvalues of A are 11 and 1, so the quadratic 

form is positive definite. An eigenvector for λ = 11 is 
2

,
1

 
 − 

 which may be normalized to 1
2 / 5

.
1/ 5

 
=  

−  
u  

An eigenvector for λ = 1 is 
1
2
 
 
 

, which may be normalized to 2
1/ 5

.
2 / 5

 
=  
  

u  Then 1A PDP−= , where 

[ ]1 2
2 / 5 1/ 5

1/ 5 2 / 5
P

 
= =  

−  
u u  and 

11 0
.

0 1
D

 
=  
 

 The desired change of variable is x = Py, and the 

new quadratic form is  

   2 2
1 2( ) ( ) 11T T T T TA P A P P AP D y y= = = = +x x y y y y y y  

 11. The matrix of the quadratic form is 
2 5

.
5 2

A
 

=  
 

 The eigenvalues of A are 7 and –3, so the quadratic 

form is indefinite. An eigenvector for λ = 7 is 
1

,
1
 
 
 

 which may be normalized to 1
1/ 2

.
1/ 2

 
=  
  

u  An 

eigenvector for λ = –3 is 
1

,
1

− 
 
 

 which may be normalized to 2
1/ 2

.
1/ 2

 −
=  
  

u  Then 1A PDP−= ,  
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  where [ ]1 2
1/ 2 1/ 2

1/ 2 1/ 2
P

 −
= =  

  
u u  and 

7 0
.

0 3
D

 
=  − 

 The desired change of variable is x = Py, 

and the new quadratic form is  

   2 2
1 2( ) ( ) 7 3T T T T TA P A P P AP D y y= = = = −x x y y y y y y  

 12. The matrix of the quadratic form is 
5 2

.
2 2

A
− 

=  − 
 The eigenvalues of A are –1 and –6, so the quadratic 

form is negative definite. An eigenvector for λ = –1 is 
1

,
2
 
 
 

 which may be normalized to 1
1/ 5

.
2 / 5

 
=  
  

u  

An eigenvector for λ = –6 is 
2

,
1

− 
 
 

 which may be normalized to 2
2 / 5

.
1/ 5

 −
=  
  

u  Then 1A PDP−= , 

where [ ]1 2
1/ 5 2 / 5

2 / 5 1/ 5
P

 −
= =  

  
u u  and 

1 0
0 6

D
− 

=  − 
. The desired change of variable is x = Py, 

and the new quadratic form is  

   2 2
1 2( ) ( ) 6T T T T TA P A P P AP D y y= = = = − −x x y y y y y y  

 13. The matrix of the quadratic form is 
1 3

.
3 9

A
− 

=  − 
 The eigenvalues of A are 10 and 0, so the quadratic 

form is positive semidefinite. An eigenvector for λ = 10 is 
1

,
3

 
 − 

 which may be normalized to 

1
1/ 10

.
3/ 10

 
=  

−  
u  An eigenvector for λ = 0 is 

3
,

1
 
 
 

 which may be normalized to 2
3/ 10

.
1/ 10

 
=  
  

u  Then 

1A PDP−= , where [ ]1 2
1/ 10 3/ 10

3/ 10 1/ 10
P

 
= =  

−  
u u  and 

10 0
.

0 0
D

 
=  
 

 The desired change of 

variable is x = Py, and the new quadratic form is  

   2
1( ) ( ) 10T T T T TA P A P P AP D y= = = =x x y y y y y y  

 14. The matrix of the quadratic form is 
8 3

.
3 0

A
 

=  
 

 The eigenvalues of A are 9 and –1, so the quadratic 

form is indefinite. An eigenvector for λ = 9 is 
3

,
1
 
 
 

 which may be normalized to 1
3/ 10

.
1/ 10

 
=  
  

u  An 

eigenvector for λ = –1 is 
1

,
3

− 
 
 

 which may be normalized to 2
1/ 10

.
3/ 10

 −
=  
  

u  Then 1A PDP−= , where 

[ ]1 2
3/ 10 1/ 10

1/ 10 3/ 10
P

 −
= =  

  
u u  and 

9 0
.

0 1
D

 
=  − 

 The desired change of variable is x = Py, and the 

new quadratic form is  

   2 2
1 2( ) ( ) 9T T T T TA P A P P AP D y y= = = = −x x y y y y y y  
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 15. [M] The matrix of the quadratic form is 

2 2 2 2
2 6 0 0

.
2 0 9 3
2 0 3 9

A

− 
 − =
 −
 −  

 The eigenvalues of A are 0, –6, –8, 

and –12, so the quadratic form is negative semidefinite. The corresponding eigenvectors may be 
computed:  

   

3 0 1 0
1 2 1 0

λ 0 : , λ 6 : , λ 8: , λ 12 :
1 1 1 1
1 1 1 1

−       
       −       = = − = − = −
       −
       
              

 

  These eigenvectors may be normalized to form the columns of P, and 1A PDP−= , where  

   

3/ 12 0 1/ 2 0 0 0 0 0
1/ 12 2 / 6 1/ 2 0 0 6 0 0

and
0 0 8 01/ 12 1/ 6 1/ 2 1/ 2
0 0 0 121/ 12 1/ 6 1/ 2 1/ 2

P D

 −     − −   = =   −−     −   

 

  The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2
2 3 4( ) ( ) 6 8 12T T T T TA P A P P AP D y y y= = = = − − −x x y y y y y y  

 16. [M] The matrix of the quadratic form is 

4 3/ 2 0 2
3/ 2 4 2 0

.
0 2 4 3/ 2
2 0 3/ 2 4

A

− 
 
 =
 
 −  

 The eigenvalues of A are 13/2 

and 3/2, so the quadratic form is positive definite. The corresponding eigenvectors may be computed:  

   

4 3 4 3
0 5 0 5

λ 13/ 2 : , , λ 3/ 2 : ,
3 4 3 4
5 0 5 0

   −       
          −          = =          −                              

 

  Each set of eigenvectors above is already an orthogonal set, so they may be normalized to form the 
columns of P, and 1A PDP−= , where  

   

3/ 50 4 / 50 3/ 50 4 / 50 13/ 2 0 0 0
5/ 50 0 5/ 50 0 0 13/ 2 0 0

and
0 0 3/ 2 04 / 50 3/ 50 4 / 50 3/ 50
0 0 0 3/ 20 5/ 50 0 5/ 50

P D

 −     −   = =   −        

 

  The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2 2
1 2 3 4

13 13 3 3( ) ( )
2 2 2 2

T T T T TA P A P P AP D y y y y= = = = + + +x x y y y y y y  
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 17. [M] The matrix of the quadratic form is 

1 9 / 2 0 6
9 / 2 1 6 0

.
0 6 1 9 / 2
6 0 9 / 2 1

A

− 
 
 =
 
 −  

 The eigenvalues of A are 17/2 

and –13/2, so the quadratic form is indefinite. The corresponding eigenvectors may be computed:  

   

4 3 4 3
0 5 0 5

λ 17 / 2 : , , λ 13/ 2 : ,
3 4 3 4
5 0 5 0

   −       
          −          = = −          −                              

 

  Each set of eigenvectors above is already an orthogonal set, so they may be normalized to form the 
columns of P, and 1A PDP−= , where  

   

3/ 50 4 / 50 3/ 50 4 / 50 17 / 2 0 0 0
5/ 50 0 5/ 50 0 0 17 / 2 0 0

and
0 0 13/ 2 04 / 50 3/ 50 4 / 50 3/ 50
0 0 0 13/ 20 5/ 50 0 5/ 50

P D

 −     −   = =   −−     −   

 

  The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2 2
1 2 3 4

17 17 13 13( ) ( )
2 2 2 2

T T T T TA P A P P AP D y y y y= = = = + − −x x y y y y y y  

 18. [M] The matrix of the quadratic form is 

11 6 6 6
6 1 0 0

.
6 0 0 1
6 0 1 0

A

− − − 
 − − =
 − −
 − −  

 The eigenvalues of A are 17, 1, –1, 

and –7, so the quadratic form is indefinite. The corresponding eigenvectors may be computed:  

   

3 0 0 1
1 0 2 1

λ 17 : , λ 1: , λ 1: , λ 7 :
1 1 1 1
1 1 1 1

−       
       −       = = = − = −
       −
       
              

 

  These eigenvectors may be normalized to form the columns of P, and 1A PDP−= , where  

   

3/ 12 0 0 1/ 2 17 0 0 0
1/ 12 0 2 / 6 1/ 2 0 1 0 0

and
0 0 1 01/ 12 1/ 2 1/ 6 1/ 2
0 0 0 71/ 12 1/ 2 1/ 6 1/ 2

P D

 −        = =   −−     −   

 

  The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2 2
1 2 3 4( ) ( ) 17 7T T T T TA P A P P AP D y y y y= = = = + − −x x y y y y y y  

 19. Since 8 is larger than 5, the 2
2x  term should be as large as possible. Since 2 2

1 2 1x x+ = , the largest value 
that 2x  can take is 1, and 1 0x =  when 2 1x = . Thus the largest value the quadratic form can take when 

1T =x x  is 5(0) + 8(1) = 8. 
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 20. Since 5 is larger in absolute value than –3, the 2
1x  term should be as large as possible. Since 2 2

1 2 1x x+ = , 
the largest value that 1x  can take is 1, and 2 0x =  when 1 1x = . Thus the largest value the quadratic form 
can take when 1T =x x  is 5(1) – 3(0) = 5. 

 21. a. True. See the definition before Example 1, even though a nonsymmetric matrix could be used to 
compute values of a quadratic form.  

 b. True. See the paragraph following Example 3.  
 c. True. The columns of P in Theorem 4 are eigenvectors of A. See the Diagonalization Theorem in 

Section 5.3.  
 d. False. Q(x) = 0 when x = 0.  
 e. True. See Theorem 5(a).  
 f. True. See the Numerical Note after Example 6.  

 22. a. True. See the paragraph before Example 1.  
 b. False. The matrix P must be orthogonal and make TP AP  diagonal. See the paragraph before 

Example 4.  
 c. False. There are also “degenerate” cases: a single point, two intersecting lines, or no points at all. See 

the subsection “A Geometric View of Principal Axes.”  
 d. False. See the definition before Theorem 5.  
 e. True. See Theorem 5(b). If T Ax x  has only negative values for x ≠ 0, then T Ax x  is negative definite.  

 23. The characteristic polynomial of A may be written in two ways:  

   2 2λ
det( λ ) det λ ( )λ

λ
a b

A I a d ad b
b d
− 

− = = − + + − − 
 

  and  

   2
1 2 1 2 1 2(λ λ )(λ λ ) λ (λ λ )λ λ λ− − = − + +  

  The coefficients in these polynomials may be equated to obtain 1 2λ λ a d+ = +  and 1 2λ λ =  
2 detad b A− = . 

 24. If det A > 0, then by Exercise 23, 1 2λ λ 0> , so that 1λ  and 2λ  have the same sign; also, 
2det 0ad A b= + > .  

 a. If det A > 0 and a > 0, then d > 0 also, since ad > 0. By Exercise 23, 1 2λ λ 0a d+ = + > . Since 1λ  and 

2λ  have the same sign, they are both positive. So Q is positive definite by Theorem 5.  
 b. If det A > 0 and a < 0, then d < 0 also, since ad > 0. By Exercise 23, 1 2λ λ 0a d+ = + < . Since 1λ  and 

2λ  have the same sign, they are both negative. So Q is negative definite by Theorem 5.  
 c. If det A < 0, then by Exercise 23, 1 2λ λ 0< . Thus 1λ  and 2λ  have opposite signs. So Q is indefinite by 

Theorem 5.  

 25. Exercise 27 in Section 7.1 showed that TB B  is symmetric. Also ( ) || || 0T T TB B B B B= = ≥x x x x x , so the 
quadratic form is positive semidefinite, and the matrix TB B  is positive semidefinite. Suppose that B is 
square and invertible. Then if 0,T TB B =x x  || Bx || = 0 and Bx = 0. Since B is invertible, x = 0. Thus if 
x ≠ 0, 0T TB B >x x  and TB B  is positive definite. 
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 26. Let ,TA PDP=  where 1.TP P−=  The eigenvalues of A are all positive: denote them 1λ , ,λ .n…  Let C be 
the diagonal matrix with 1λ , , λn…  on its diagonal. Then 2 TD C C C= = . If TB PCP= , then B is 
positive definite because its eigenvalues are the positive numbers on the diagonal of C. Also  

   ( ) ( ) ( )( )T T T T TT T T T T T TB B PCP PCP P C P PCP PC CP PDP A= = = = =  

  since .TP P I=  

 27. Since the eigenvalues of A and B are all positive, the quadratic forms T Ax x  and T Bx x  are positive 
definite by Theorem 5. Let x ≠ 0. Then 0T A >x x  and 0T B >x x , so ( ) 0T T TA B A B+ = + >x x x x x x , and 
the quadratic form ( )T A B+x x  is positive definite. Note that A + B is also a symmetric matrix. Thus by 
Theorem 5 all the eigenvalues of A + B must be positive. 

 28. The eigenvalues of A are all positive by Theorem 5. Since the eigenvalues of 1A−  are the reciprocals of 
the eigenvalues of A (see Exercise 25 in Section 5.1), the eigenvalues of 1A−  are all positive. Note that 

1A−  is also a symmetric matrix. By Theorem 5, the quadratic form 1T A−x x  is positive definite. 

7.3 SOLUTIONS 

Notes: Theorem 6 is the main result needed in the next two sections. Theorem 7 is mentioned in Example 2 
of Section 7.4. Theorem 8 is needed at the very end of Section 7.5. The economic principles in Example 6 
may be familiar to students who have had a course in macroeconomics. 

 1. The matrix of the quadratic form on the left is 
5 2 0
2 6 2 .
0 2 7

A
 
 = − 
 − 

 The equality of the quadratic forms 

implies that the eigenvalues of A are 9, 6, and 3. An eigenvector may be calculated for each eigenvalue 
and normalized:  

   
1/ 3 2 / 3 2 / 3

λ 9 : 2 / 3 ,λ 6 : 1/ 3 ,λ 3: 2 / 3
2 / 3 1/ 3 1/ 3

−     
     = = =     
     −     

 

  The desired change of variable is x = Py, where 
1/ 3 2 / 3 2 / 3
2 / 3 1/ 3 2 / 3 .
2 / 3 2 / 3 1/ 3

P
− 

 =  
 − 

 

 2. The matrix of the quadratic form on the left is 
3 1 1
1 2 2 .
1 2 2

A
 
 =  
  

 The equality of the quadratic forms 

implies that the eigenvalues of A are 5, 2, and 0. An eigenvector may be calculated for each eigenvalue 
and normalized:  

   

1/ 3 2 / 6 0

λ 5: 1/ 3 , λ 2 : 1/ 6 , λ 0 : 1/ 2

1/ 3 1/ 6 1/ 2

   −  
     

= = = −     
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  The desired change of variable is x = Py, where 

1/ 3 2 / 6 0

1/ 3 1/ 6 1/ 2 .

1/ 3 1/ 6 1/ 2

P

 −
 

= − 
 
  

 

 3. (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A. By Exercise 1, 1λ 9.=  

(b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. By Exercise 1, 
1/ 3
2 /3 .
2 /3

 
 = ±  
 − 

u  

(c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A. By Exercise 1, 2λ 6.=  

 4. (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A. By Exercise 2, 1λ 5.=  

(b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. By Exercise 2, 

1/ 3

1/ 3 .

1/ 3

 
 

= ±  
 
  

u  

(c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A. By Exercise 2, 2λ 2.=  

 5. The matrix of the quadratic form is 
5 2

.
2 5

A
− 

=  − 
 The eigenvalues of A are 1λ 7=  and 2λ 3.=  

(a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 7.  

(b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 
1
1

− 
 
 

 is an 

eigenvector corresponding to 1λ 7,=  so 
1/ 2

.
1/ 2

 −
= ±  

  
u  

(c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is 3.  

 6. The matrix of the quadratic form is 
7 3/ 2

.
3/ 2 3

A
 

=  
 

 The eigenvalues of A are 1λ 15/ 2=  and 2λ 5/ 2.=  

(a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 15/2.  
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(b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 
3
1
 
 
 

 is an 

eigenvector corresponding to 1λ 7,=  so 
3/ 10

.
1/ 10

 
= ±  

  
u  

(c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is 5/2.  

 7. The eigenvalues of the matrix of the quadratic form are 1λ 2,=  2λ 1,= −  and 3λ 4.= −  By Theorem 6, 
the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit eigenvector u 

corresponding to the greatest eigenvalue 1λ  of A. One may compute that 
1/ 2

1
1

 
 
 
  

 is an eigenvector 

corresponding to 1λ 2,=  so 
1/ 3
2 /3 .
2 /3

 
 = ±  
  

u  

 8. The eigenvalues of the matrix of the quadratic form are 1λ 9,=  and 2λ 3.= −  By Theorem 6, the 
maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit eigenvector u corresponding 

to the greatest eigenvalue 1λ  of A. One may compute that 
1
0
1

− 
 
 
  

 and 
2
1
0

− 
 
 
  

 are linearly independent 

eigenvectors corresponding to 1λ 2,=  so u can be any unit vector which is a linear combination of 
1
0
1

− 
 
 
  

 

and 
2
1 .
0

− 
 
 
  

 Alternatively, u can be any unit vector which is orthogonal to the eigenspace corresponding to 

the eigenvalue 2λ 3.= −  Since multiples of 
1
2
1

 
 
 
  

 are eigenvectors corresponding to 2λ 3,= −  u can be any 

unit vector orthogonal to 
1
2 .
1

 
 
 
  

 

 9. This is equivalent to finding the maximum value of T Ax x  subject to the constraint 1.T =x x  By Theorem 
6, this value is the greatest eigenvalue 1λ  of the matrix of the quadratic form. The matrix of the quadratic 

form is 
7 1

,
1 3

A
− 

=  − 
 and the eigenvalues of A are 1λ 5 5,= +  2λ 5 5.= −  Thus the desired 

constrained maximum value is 1λ 5 5.= +  
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 10. This is equivalent to finding the maximum value of T Ax x  subject to the constraint 1T =x x . By Theorem 
6, this value is the greatest eigenvalue 1λ  of the matrix of the quadratic form. The matrix of the quadratic 

form is 
3 1

,
1 5

A
− − 

=  − 
 and the eigenvalues of A are 1λ 1 17,= +  2λ 1 17.= −  Thus the desired 

constrained maximum value is 1λ 1 17.= +  

 11. Since x is an eigenvector of A corresponding to the eigenvalue 3, Ax = 3x, and (3 )T TA = =x x x x  
23( ) 3 || || 3T = =x x x  since x is a unit vector. 

 12. Let x be a unit eigenvector for the eigenvalue λ. Then (λ ) λ( ) λT T TA = = =x x x x x x  since 1T =x x . So λ 
must satisfy m ≤ λ ≤ M. 

 13. If m = M, then let t = (1 – 0)m + 0M = m and .n=x u  Theorem 6 shows that .T
n nA m=u u  Now suppose 

that m < M, and let t be between m and M. Then 0 ≤ t – m ≤ M – m and 0 ≤ (t – m)/(M – m) ≤ 1. Let  
α = (t – m)/(M – m), and let 11 .nα α= − +x u u  The vectors 1 nα− u  and 1α u  are orthogonal 
because they are eigenvectors for different eigenvectors (or one of them is 0). By the Pythagorean 
Theorem  

  2 2 2 2 2
1 1|| || || 1 || || || |1 ||| || | ||| || (1 ) 1T

n nα α α α α α= = − + = − + = − + =x x x u u u u  

  since nu  and 1u  are unit vectors and 0 ≤ α ≤ 1. Also, since nu  and 1u  are orthogonal,  

   1 1( 1 ) ( 1 )T T
n nA Aα α α α= − + − +x x u u u u  

   1 1( 1 ) ( 1 )T
n nm Mα α α α= − + − +u u u u  

   1 1|1 | | | (1 )T T
n nm M m M tα α α α= − + = − + =u u u u  

  Thus the quadratic form T Ax x  assumes every value between m and M for a suitable unit vector x. 

 14. [M] The matrix of the quadratic form is 

0 1/ 2 3/ 2 15
1/ 2 0 15 3/ 2

.
3/ 2 15 0 1/ 2

15 3/ 2 1/ 2 0

A

 
 
 =
 
 
  

 The eigenvalues of A are 

1λ 17,=  2λ 13,=  3λ 14,= −  and 4λ 16.= −  

 (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 17.  

 (b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 

1
1
1
1

 
 
 
 
 
  

 is an 

eigenvector corresponding to 1λ 17,=  so 

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 = ±
 
 
  

u  

 (c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is 13.  
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 15. [M] The matrix of the quadratic form is 

0 3/ 2 5/ 2 7 / 2
3/ 2 0 7 / 2 5/ 2

.
5 / 2 7 / 2 0 3/ 2
7 / 2 5/ 2 3/ 2 0

A

 
 
 =
 
 
  

 The eigenvalues of A are 

1λ 15/ 2,=  2λ 1/ 2,= −  3λ 5/ 2,= −  and 4λ 9 / 2.= −  

 (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 15/2.  

 (b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 

1
1
1
1

 
 
 
 
 
  

 is an 

eigenvector corresponding to 1λ 15/ 2,=  so 

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 = ±
 
 
  

u  

 (c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is –1/2.  

 16. [M] The matrix of the quadratic form is 

4 3 5 5
3 0 3 3

.
5 3 0 1
5 3 1 0

A

− − − 
 − − − =
 − − −
 − − −  

 The eigenvalues of A are 1λ 9,=  

2λ 3,=  3λ 1,=  and 4λ 9.= −  

 (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 9.  

 (b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 

2
0
1
1

− 
 
 
 
 
  

 is an 

eigenvector corresponding to 1λ 9,=  so 

2 / 6
0

.
1/ 6

1/ 6

 −
 
 = ±  
 
  

u  

 (c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is 3.  
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 17. [M] The matrix of the quadratic form is 

6 2 2 2
2 10 0 0

.
2 0 13 3
2 0 3 13

A

− − − − 
 − − =
 − −
 − −  

 The eigenvalues of A are 1λ 4,= −  

2λ 10,= −  3λ 12,= −  and 4λ 16.= −  

 (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is –4.  

 (b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 

3
1
1
1

− 
 
 
 
 
  

 is an 

eigenvector corresponding to 1λ 4,= −  so 

3/ 12

1/ 12
.

1/ 12

1/ 12

 −
 
 

= ±  
 
 
 

u  

 (c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is –10. 

7.4 SOLUTIONS 

Notes: The section presents a modern topic of great importance in applications, particularly in computer 
calculations. An understanding of the singular value decomposition is essential for advanced work in science 
and engineering that requires matrix computations. Moreover, the singular value decomposition explains 
much about the structure of matrix transformations. The SVD does for an arbitrary matrix almost what an 
orthogonal decomposition does for a symmetric matrix. 

 1. Let 
1 0

.
0 3

A
 

=  − 
 Then 

1 0
,

0 9
TA A

 
=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing 

order) 1λ 9=  and 2λ 1.=  Thus the singular values of A are 1 9 3σ = =  and 2 1 1.σ = =  

 2. Let 
5 0

.
0 0

A
− 

=  
 

 Then 
25 0

,
0 0

TA A
 

=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing 

order) 1λ 25=  and 2λ 0.=  Thus the singular values of A are 1 25 5σ = =  and 2 0 0.σ = =  

 3. Let 
6 1

.
0 6

A
 

=  
  

 Then 
6 6

,
6 7

TA A
 

=  
  

 and the characteristic polynomial of TA A  is 

2λ 13λ 36 (λ 9)(λ 4),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 9=  and 2λ 4.=  
Thus the singular values of A are 1 9 3σ = =  and 2 4 2.σ = =  
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 4. Let 
3 2

.
0 3

A
 

=  
  

 Then 
3 2 3

,
2 3 7

TA A
 

=  
  

 and the characteristic polynomial of TA A  is 

2λ 10λ 9 (λ 9)(λ 1),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 9=  and 2λ 1.=  
Thus the singular values of A are 1 9 3σ = =  and 2 1 1.σ = =  

 5. Let 
3 0

.
0 0

A
− 

=  
 

 Then 
9 0

,
0 0

TA A
 

=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing 

order) 1λ 9=  and 2λ 0.=  Associated unit eigenvectors may be computed:  

   
1 0

λ 9 : ,λ 0 :
0 1
   

= =   
   

 

  Thus one choice for V is 
1 0

.
0 1

V
 

=  
 

 The singular values of A are 1 9 3σ = =  and 2 0 0.σ = =  Thus 

the matrix Σ is 
3 0

.
0 0
 

Σ =  
 

 Next compute  

   1 1
1

11
0

A
σ

− 
= =  

 
u v  

  Because Av2 = 0, the only column found for U so far is u1. Find the other column of U is found by 

extending {u1} to an orthonormal basis for 2. An easy choice is u2 = 
0

.
1
 
 
 

 

  Let 
1 0

.
0 1

U
− 

=  
 

 Thus  

   
1 0 3 0 1 0
0 1 0 0 0 1

TA U V
−     

= Σ =      
     

 

 6. Let 
2 0

.
0 1

A
− 

=  − 
 Then 

4 0
,

0 1
TA A

 
=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing 

order) 1λ 4=  and 2λ 1.=  Associated unit eigenvectors may be computed:  

   
1 0

λ 4 : ,λ 1:
0 1
   

= =   
   

 

  Thus one choice for V is 
1 0

.
0 1

V
 

=  
 

 The singular values of A are 1 4 2σ = =  and 2 1 1.σ = =  Thus 

the matrix Σ is 
2 0

.
0 1
 

Σ =  
 

 Next compute  

   1 1 2 2
1 2

1 01 1,
0 1

A A
σ σ

−   
= = = =   −   

u v u v  

  Since 1 2{ , }u u  is a basis for 2, let 
1 0

.
0 1

U
− 

=  − 
 Thus  

   
1 0 2 0 1 0
0 1 0 1 0 1

TA U V
−     

= Σ =      −     
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 7. Let 
2 1

.
2 2

A
− 

=  
 

 Then 
8 2

,
2 5

TA A
 

=  
 

 and the characteristic polynomial of TA A  is 

2λ 13λ 36 (λ 9)(λ 4),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 9=  and 2λ 4.=  
Associated unit eigenvectors may be computed:  

   
2 / 5 1/ 5

λ 9 : ,λ 4 :
1/ 5 2 / 5

   −
= =   

      
 

  Thus one choice for V is 
2 / 5 1/ 5

.
1/ 5 2 / 5

V
 −

=  
  

 The singular values of A are 1 9 3σ = =  and 

2 4 2.σ = =  Thus the matrix Σ is 
3 0

.
0 2
 

Σ =  
 

 Next compute  

   1 1 2 2
1 2

1/ 5 2 / 51 1,
2 / 5 1/ 5

A A
σ σ

   −
= = = =   

      
u v u v  

  Since 1 2{ , }u u  is a basis for 2, let 
1/ 5 2 / 5

.
2 / 5 1/ 5

U
 −

=  
  

 Thus  

   
1/ 5 2 / 5 3 0 2 / 5 1/ 5

0 22 / 5 1/ 5 1/ 5 2 / 5
TA U V

   −  
= Σ =     

−       
 

 8. Let 
2 3

.
0 2

A
 

=  
 

 Then 
4 6

,
6 13

TA A
 

=  
 

 and the characteristic polynomial of TA A  is 

2λ 17λ 16 (λ 16)(λ 1),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 16=  and 2λ 1.=  
Associated unit eigenvectors may be computed:  

   
1/ 5 2 / 5

λ 16 : ,λ 1:
2 / 5 1/ 5

   −
= =   

      
 

  Thus one choice for V is 
1/ 5 2 / 5

.
2 / 5 1/ 5

V
 −

=  
  

 The singular values of A are 1 16 4σ = =  and 

2 1 1.σ = =  Thus the matrix Σ is 
4 0

.
0 1
 

Σ =  
 

 Next compute  

   1 1 2 2
1 2

2 / 5 1/ 51 1,
1/ 5 2 / 5

A A
σ σ

   −
= = = =   

      
u v u v  

  Since 1 2{ , }u u  is a basis for 2, let 
2 / 5 1/ 5

.
1/ 5 2 / 5

U
 −

=  
  

 Thus  

   
2 / 5 1/ 5 4 0 1/ 5 2 / 5

0 11/ 5 2 / 5 2 / 5 1/ 5
TA U V

   −  
= Σ =     

−       
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 9. Let 
7 1
0 0 .
5 5

A
 
 =  
  

 Then 
74 32

,
32 26

TA A
 

=  
 

 and the characteristic polynomial of TA A  is 

2λ 100λ 900 (λ 90)(λ 10),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 90=  and 

2λ 10.=  Associated unit eigenvectors may be computed:  

   
2 / 5 1/ 5

λ 90 : ,λ 10 :
1/ 5 2 / 5

   −
= =   

      
 

  Thus one choice for V is 
2 / 5 1/ 5

.
1/ 5 2 / 5

V
 −

=  
  

 The singular values of A are 1 90 3 10σ = =  and 

2 10.σ =  Thus the matrix Σ is 

3 10 0

0 10 .
0 0

 
 

Σ =  
 
  

 Next compute  

   1 1 2 2
1 2

1/ 2 1/ 2
1 10 , 0

1/ 2 1/ 2

A A
σ σ

   −
   

= = = =   
   
   

u v u v  

  Since 1 2{ , }u u  is not a basis for 3, we need a unit vector 3u  that is orthogonal to both 1u  and 2.u  The 

vector 3u  must satisfy the set of equations 1 0T =u x  and 2 0.T =u x  These are equivalent to the linear 
equations  

   1 2 3
3

1 2 3

0 0
0 0

, so 1 , and 1
0 0

0 0

x x x
x x x

   
+ + =    = =   − + + =

      

x u  

  Therefore let 
1/ 2 1/ 2 0

0 0 1

1/ 2 1/ 2 0

U
 −
 

=  
 
 

. Thus  

   

3 10 01/ 2 1/ 2 0
2 / 5 1/ 5

0 0 1 0 10
1/ 5 2 / 50 01/ 2 1/ 2 0

TA U V

  −     
= Σ =     

−     
    

 

 10. Let 
4 2
2 1 .
0 0

A
− 

 = − 
  

 Then 
20 10

,
10 5

TA A
− 

=  − 
 and the characteristic polynomial of TA A  is 

2λ 25λ λ(λ 25)− = − , and the eigenvalues of TA A  are (in decreasing order) 1λ 25=  and 2λ 0.=  
Associated unit eigenvectors may be computed:  

   
2 / 5 1/ 5

λ 25 : ,λ 0 :
1/ 5 2 / 5

   
= =   

−      
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  Thus one choice for V is 
2 / 5 1/ 5

.
1/ 5 2 / 5

V
 

=  
−  

 The singular values of A are 1 25 5σ = =  and 

2 0 0.σ = =  Thus the matrix Σ is 
5 0
0 0 .
0 0

 
 Σ =  
  

 Next compute  

   1 1
1

2 / 5
1 1/ 5

0
A

σ

 
 

= =  
 
  

u v  

  Because Av2 = 0, the only column found for U so far is u1. Find the other columns of U found by 
extending {u1} to an orthonormal basis for 3. In this case, we need two orthogonal unit vectors u2 and 
u3 that are orthogonal to u1. Each vector must satisfy the equation 1 0,T =u x which is equivalent to the 
equation 2x1 + x2 = 0. An orthonormal basis for the solution set of this equation is 

   2 3

1/ 5 0
2 / 5 , 0 .

0 1

      = − =         

u u  

  Therefore, let 

2 / 5 1/ 5 0

1/ 5 2 / 5 0 .
0 0 1

U

 
 

= − 
 
  

 Thus  

   

2 / 5 1/ 5 0 5 0
2 / 5 1/ 5

1/ 5 2 / 5 0 0 0
1/ 5 2 / 50 0 1 0 0

TA U V

      − = Σ = −            

 

 11. Let 
3 1
6 2 .
6 2

A
− 
 = − 
 − 

 Then 
81 27

,
27 9

TA A
− 

=  − 
 and the characteristic polynomial of TA A  is 

2λ 90λ λ(λ 90),− = −  and the eigenvalues of TA A  are (in decreasing order) 1λ 90=  and 2λ 0.=  
Associated unit eigenvectors may be computed:  

   
3/ 10 1/ 10

λ 90 : , λ 0 : .
1/ 10 3/ 10

   
= =   

−      
 

  Thus one choice for V is 
3/ 10 1/ 10

.
1/ 10 3/ 10

V
 

=  
−  

 The singular values of A are 1 90 3 10σ = =  and 

2 0 0.σ = =  Thus the matrix Σ is 
3 10 0

0 0 .
0 0

 
 

Σ =  
 
 

 Next compute  

   1 1
1

1/ 3
1 2 /3

2 /3
A

σ

− 
 = =  
  

u v  
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  Because Av2 = 0, the only column found for U so far is u1. The other columns of U can be found by 
extending {u1} to an orthonormal basis for 3. In this case, we need two orthogonal unit vectors u2 and 
u3 that are orthogonal to u1. Each vector must satisfy the equation 1 0,T =u x which is equivalent to the 
equation 1 2 32 2 0.x x x− + + =  An orthonormal basis for the solution set of this equation is 

   2 3

2 /3 2 / 3
1/ 3 , 2 / 3 .
2 /3 1/ 3

   
   = − =   
   −   

u u  

  Therefore, let 
1/ 3 2 / 3 2 / 3
2 /3 1/3 2 / 3 .
2 /3 2 /3 1/ 3

U
− 
 = − 
 − 

 Thus  

   
1/ 3 2 / 3 2 / 3 3 10 0

3/ 10 1/ 10
2 /3 1/ 3 2 / 3 0 0

1/ 10 3/ 102 /3 2 / 3 1/ 3 0 0

TA U V
 −   −  = Σ = −         −   

 

 12. Let 
1 1
0 1 .
1 1

A
 
 =  
 − 

 Then 
2 0

,
0 3

TA A
 

=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing order) 

1λ 3=  and 2λ 2.=  Associated unit eigenvectors may be computed:  

   
0 1

λ 3: , λ 2 :
1 0
   

= =   
   

 

  Thus one choice for V is 
0 1

.
1 0

V
 

=  
 

 The singular values of A are 1 3σ =  and 2 2.σ =  Thus the 

matrix Σ is 

3 0

0 2 .
0 0

 
 

Σ =  
 
  

 Next compute  

   1 1 2 2
1 2

1/ 3 1/ 2
1 11/ 3 , 0

1/ 3 1/ 2

A A
σ σ

   
   

= = = =   
   −    

u v u v  

  Since 1 2{ , }u u  is not a basis for 3, we need a unit vector 3u  that is orthogonal to both 1u  and 2.u  The 

vector 3u  must satisfy the set of equations 1 0T =u x  and 2 0.T =u x  These are equivalent to the linear 
equations  

   1 2 3
3

1 2 3

1/ 61
0

,so 2 ,and 2 / 6
0 0

1 1/ 6

x x x
x x x

    + + =  = − = −  + − =       

x u  
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  Therefore let 

1/ 3 1/ 2 1/ 6

1/ 3 0 2 / 6 .

1/ 3 1/ 2 1/ 6

U

 
 

= − 
 

−  

 Thus  

   

1/ 3 1/ 2 1/ 6 3 0
0 1

1/ 3 0 2 / 6 0 2
1 0

0 01/ 3 1/ 2 1/ 6

TA U V

   
     

= Σ = −     
    

−      

 

 13. Let 
3 2 2

.
2 3 2

A
 

=  − 
 Then 

3 2
2 3 ,
2 2

TA
 
 =  
 − 

 
17 8

,
8 17

TT T TA A AA
 

= =  
 

 and the eigenvalues of TT TA A  

are seen to be (in decreasing order) 1λ 25=  and 2λ 9.=  Associated unit eigenvectors may be computed:  

   
1/ 2 1/ 2

λ 25 : , λ 9 :
1/ 2 1/ 2

   −
= =   

      
 

  Thus one choice for V is 
1/ 2 1/ 2

.
1/ 2 1/ 2

V
 −

=  
  

 The singular values of TA  are 1 25 5σ = =  and 

2 9 3.σ = =  Thus the matrix Σ is 
5 0
0 3 .
0 0

 
 Σ =  
  

 Next compute  

   1 1 2 2
1 2

1/ 2 1/ 18
1 11/ 2 , 1/ 18

0 4 / 18

T TA A
σ σ

   −
   

= = = =   
   

−      

u v u v  

  Since 1 2{ , }u u  is not a basis for 3, we need a unit vector 3u  that is orthogonal to both 1u  and 2.u  The 

vector 3u  must satisfy the set of equations 1 0T =u x  and 2 0.T =u x  These are equivalent to the linear 
equations  

   1 2 3
3

1 2 3

2 2 / 3
0 0

, so 2 , and 2 / 3
4 0

1 1/ 3

x x x
x x x

− −   
+ + =    = =   − + − =

      

x u  

  Therefore let 

1/ 2 1/ 18 2 / 3

1/ 2 1/ 18 2 / 3 .

0 4 / 18 1/ 3

U

 − −
 

=  
 

−  

 Thus  

   

1/ 2 1/ 18 2 / 3 5 0
1/ 2 1/ 2

1/ 2 1/ 18 2 / 3 0 3
1/ 2 1/ 20 00 4 / 18 1/ 3

T TA U V

 − −      = Σ =      −     −    
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  An SVD for A is computed by taking transposes:  

   

1/ 2 1/ 2 0
1/ 2 1/ 2 5 0 0

1/ 18 1/ 18 4 / 18
0 3 01/ 2 1/ 2 2 / 3 2 / 3 1/ 3

A

 
  −  

= − −    
      −  

 

 14. From Exercise 7, TA U V= Σ  with 
2 / 5 1/ 5

.
1/ 5 2 / 5

V
 −

=  
  

 Since the first column of V is unit eigenvector 

associated with the greatest eigenvalue 1λ  of ,TA A  so the first column of V is a unit vector at which  
|| Ax || is maximized. 

 15. a. Since A has 2 nonzero singular values, rank A = 2.  

 b. By Example 6, 1 2

.40 .78
{ , } .37 , .33

.84 .52

 −   
    = −    
    − −    

u u  is a basis for Col A and 3

.58
{ } .58

.58

  
  = −  
    

v  is a basis  

for Nul A.  

 16. a. Since A has 2 nonzero singular values, rank A = 2.  

 b. By Example 6, 1 2

.86 .11
{ , } .31 , .68

.41 .73

 − −   
    =     
    −    

u u  is a basis for Col A and 3 4

.65 .34

.08 .42
{ , } ,

.16 .84

.73 .08

 −   
    
    =     − −     − −       

v v  is 

a basis for Nul A.  

 17. Let 1.TA U V U V −= Σ = Σ  Since A is square and invertible, rank A = n, and all of the entries on the 

diagonal of Σ must be nonzero. So 1 1 1 1 1 1( ) .TA U V V U V U− − − − − −= Σ = Σ = Σ  

 18. First note that the determinant of an orthogonal matrix is ±1, because 1 det det TI U U= = =  
2(det )(det ) (det ) .TU U U=  Suppose that A is square and .TA U V= Σ  Then Σ is square, and 

1det (det )(det )(det ) detT
nA U V σ σ= Σ = ± Σ = ± … . 

 19. Since U and V are orthogonal matrices,  

   1( ) ( ) ( )T T T T T T T T T TA A U V U V V U U V V V V V −= Σ Σ = Σ Σ = Σ Σ = Σ Σ  

  If 1, , rσ σ…  are the diagonal entries in Σ, then TΣ Σ  is a diagonal matrix with diagonal entries 2 2
1 , , rσ σ…  

and possibly some zeros. Thus V diagonalizes TA A  and the columns of V are eigenvectors of TA A  by 
the Diagonalization Theorem in Section 5.3. Likewise  

   1( ) ( ) ( )T T T T T T T T T TAA U V U V U V V U U U U U −= Σ Σ = Σ Σ = ΣΣ = ΣΣ  

  so U diagonalizes TAA  and the columns of U must be eigenvectors of TAA . Moreover, the 
Diagonalization Theorem states that 2 2

1 , , rσ σ…  are the nonzero eigenvalues of TA A . Hence 1, , rσ σ…  
are the nonzero singular values of A. 

 20. If A is positive definite, then TA PDP= , where P is an orthogonal matrix and D is a diagonal matrix. 
The diagonal entries of D are positive because they are the eigenvalues of a positive definite matrix. 
Since P is an orthogonal matrix, TPP I=  and the square matrix TP  is invertible. Moreover, 
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1 1 1( ) ( ) ( ) ,T T TP P P P− − −= = =  so TP  is an orthogonal matrix. Thus the factorization TA PDP=  has the 
properties that make it a singular value decomposition. 

 21. Let .TA U V= Σ  The matrix PU is orthogonal, because P and U are both orthogonal. (See Exercise 29 in 
Section 6.2). So the equation ( ) TPA PU V= Σ  has the form required for a singular value decomposition. 
By Exercise 19, the diagonal entries in Σ are the singular values of PA. 

 22. The right singular vector 1v  is an eigenvector for the largest eigenvector 1λ  of .TA A  By Theorem 7 in 

Section 7.3, the second largest eigenvalue 2λ  is the maximum of ( )T TA Ax x  over all unit vectors 
orthogonal to 1v . Since 2( ) || || ,T TA A A=x x x  the square root of 2λ ,  which is the second largest singular 
value of A, is the maximum of || Ax || over all unit vectors orthogonal to 1.v  

 23. From the proof of Theorem 10, [ ]1 1 .r rU σ σΣ = … …u u 0 0  The column-row expansion of the 

product ( ) TU VΣ  shows that  

   
1

1 1 1( ) ( )

T

T TT
r r r

T
n

A U V U σ σ
 
 

= Σ = Σ = +…+ 
 
  

v
u v u v

v

 

  where r is the rank of A. 

 24. From Exercise 23, 1 1 1 .T T T
r r rA σ σ= +…+v u v u  Then since 

0 for
,

1 for
T
i j

i j
i j

≠
=  =

u u  

   1 1 1( ) ( ) ( )T T T T T
j r r r j j j j j j j j j j jA σ σ σ σ σ= +…+ = = =u v u v u u v u u v u u v  

 25. Consider the SVD for the standard matrix A of T, say TA U V= Σ . Let 1{ , , }nB = …v v  and 

1{ , , }mC = …u u  be bases for n and m constructed respectively from the columns of V and U. Since the 
columns of V are orthogonal, T

j jV =v e , where je  is the jth column of the n × n identity matrix. To find 
the matrix of T relative to B and C, compute  

   ( ) T
j j j j j j j j j jT A U V U U Uσ σ σ= = Σ = Σ = = =v v v e e e u  

  so [ ( )]j C j jT σ=v e . Formula (4) in the discussion at the beginning of Section 5.4 shows that the 
“diagonal” matrix Σ is the matrix of T relative to B and C. 

 26. [M] Let 

18 13 4 4
2 19 4 12

.
14 11 12 8

2 21 4 8

A

− − 
 − =
 − −
 −  

 Then 

528 392 224 176
392 1092 176 536

,
224 176 192 128
176 536 128 288

TA A

− − 
 − − =
 − −
 − −  

 and the eigenvalues 

of TA A  are found to be (in decreasing order) 1λ 1600,=  2λ 400,=  3λ 100,=  and 4λ 0.=  Associated 
unit eigenvectors may be computed:  

   1 2 3 4

.4 .8 .4 .2

.8 .4 .2 .4
λ : ,λ : ,λ : ,λ :

.2 .4 .8 .4

.4 .2 .4 .8

− −       
       − −       
       − −
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  Thus one choice for V is 

.4 .8 .4 .2

.8 .4 .2 .4
.

.2 .4 .8 .4

.4 .2 .4 .8

V

− − 
 − − =
 − −
 
  

 The singular values of A are 1 40,σ =  1 20,σ =  

3 10,σ =  and 4 0.σ =  Thus the matrix Σ is 

40 0 0 0
0 20 0 0

.
0 0 10 0
0 0 0 0

 
 
 Σ =
 
 
  

 Next compute  

   1 1 2 2
1 2

.5 .5

.5 .51 1, ,

.5 .5

.5 .5

A A
σ σ

−   
   
   = = = =
   −
   
      

u v u v  

   3 3
3

.5

.51

.5

.5

A
σ

− 
 
 = =
 
 −  

u v  

  Because Av4 = 0, only three columns of U have been found so far. The last column of U can be found  
by extending {u1, u2, u3} to an orthonormal basis for 4. The vector u4 must satisfy the set of equations 

1 0,T =u x  2 0,T =u x  and 3 0.T =u x These are equivalent to the linear equations 

   
1 2 3 4

1 2 3 4 4

1 2 3 4

1 .5
0

1 .5
0, so , and .

1 .5
0

1 .5

x x x x
x x x x
x x x x

− −   
+ + + =    − −   − + − + = = =

   
− + + − =    

      

x u  

  Therefore, let 

.5 .5 .5 .5

.5 .5 .5 .5
.

.5 .5 .5 .5

.5 .5 .5 .5

U

− − − 
 − =
 −
 −  

 Thus  

  

.5 .5 .5 .5 40 0 0 0 .4 .8 .2 .4

.5 .5 .5 .5 0 20 0 0 .8 .4 .4 .2

.5 .5 .5 .5 0 0 10 0 .4 .2 .8 .4

.5 .5 .5 .5 0 0 0 0 .2 .4 .4 .8

TA U V

− − − − −     
     −     = Σ =
     − − −
     − − −          

 

 27. [M] Let 

6 8 4 5 4
2 7 5 6 4

.
0 1 8 2 2
1 2 4 4 8

A

− − − 
 − − =
 − −
 − − −  

 Then 

41 32 38 14 8
32 118 3 92 74

,38 3 121 10 52
14 92 10 81 72

8 74 52 72 100

TA A

− − − 
 − − − 
 = − − −
 − − 
 − − − 

 and the 

eigenvalues of TA A  are found to be (in decreasing order) 1λ 270.87,=  2λ 147.85,=  3λ 23.73,=  

4λ 18.55,=  and 5λ 0.=  Associated unit eigenvectors may be computed: 
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   1 2 3 4 5

.10 .39 .74 .41 .36
.61 .29 .27 .50 .48

λ : ,λ : ,λ : ,λ : ,λ :.21 .84 .07 .45 .19
.52 .14 .38 .23 .72
.55 .19 .49 .58 .29

− − − −         
         − − −         
         − − −
         − − − −         
         − −         

 

  Thus one choice for V is 

.10 .39 .74 .41 .36
.61 .29 .27 .50 .48

..21 .84 .07 .45 .19
.52 .14 .38 .23 .72
.55 .19 .49 .58 .29

V

− − − − 
 − − − 
 = − − −
 − − − − 
 − − 

 The nonzero singular values of A are 

1 16.46,σ =  1 12.16,σ =  3 4.87,σ =  and 4 4.31.σ =  Thus the matrix Σ is 
16.46 0 0 0 0

0 12.16 0 0 0
.

0 0 4.87 0 0
0 0 0 4.31 0

 
 
 Σ =
 
 
  

 Next compute  

   1 1 2 2
1 2

.57 .65

.63 .241 1, ,

.07 .63
.51 .34

A A
σ σ

− −   
   −   = = = =
   −
   −      

u v u v  

   3 3 4 4
3 4

.42 .27

.68 .291 1,

.53 .56

.29 .73

A A
σ σ

−   
   − −   = = = =
   −
   − −      

u v u v  

  Since 1 2 3 4{ , , , }u u u u  is a basis for 4, let 

.57 .65 .42 .27

.63 .24 .68 .29
.

.07 .63 .53 .56
.51 .34 .29 .73

U

− − − 
 − − − =
 − −
 − − −  

 Thus  

   TA U V= Σ  

  

.10 .61 .21 .52 .55
.57 .65 .42 .27 16.46 0 0 0 0

.39 .29 .84 .14 .19
.63 .24 .68 .29 0 12.16 0 0 0

= .74 .27 .07 .38 .49
.07 .63 .53 .56 0 0 4.87 0 0

.41 .50 .45 .23 .58
.51 .34 .29 .73 0 0 0 4.31 0

.36 .4

− − −
− − −   

− − −   − − −    − − −
   − −

− −   − − −       − − 8 .19 .72 .29

 
 
 
 
 
 
 − − − 
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 28. [M] Let 

4 0 7 7
6 1 11 9

.
7 5 10 19
1 2 3 1

A

− − 
 − =
 −
 − −  

 Then 

102 43 27 52
43 30 33 88

,
27 33 279 335
52 88 335 492

TA A

− − 
 − − − =
 − −
 −  

 and the eigenvalues of 

TA A  are found to be (in decreasing order) 1λ 749.9785,=  2λ 146.2009,=  3λ 6.8206,=  and 
6

4λ 1.3371 10 .−= ×  The singular values of A are thus 1 27.3857,σ =  2 12.0914,σ =  3 2.61163,σ =  and 

4 .00115635.σ =  The condition number 1 4/ 23,683.σ σ =  

 29. [M] Let 

5 3 1 7 9
6 4 2 8 8

.7 5 3 10 9
9 6 4 9 5
8 5 2 11 4

A

 
 − 
 =
 − − 
  

 Then 

255 168 90 160 47
168 111 60 104 30

,90 60 34 39 8
160 104 39 415 178
47 30 8 178 267

TA A

 
 
 
 =
 
 
  

 and the eigenvalues 

of TA A  are found to be (in decreasing order) 1λ 672.589,=  2λ 280.745,=  3λ 127.503,=  4λ 1.163,=  
and 7

5λ 1.428 10 .−= ×  The singular values of A are thus 1 25.9343,σ =  2 16.7554,σ =  3 11.2917,σ =  

4 1.07853,σ =  and 5 .000377928.σ =  The condition number 1 5/ 68,622.σ σ =  

7.5 SOLUTIONS 

Notes: The application presented here has turned out to be of interest to a wide variety of students, including 
engineers. I cover this in Course Syllabus 3 described above, but I only have time to mention the idea briefly 
to my other classes. 

 1. The matrix of observations is 
19 22 6 3 2 20
12 6 9 15 13 5

X
 

=  
 

 and the sample mean is 

72 121 .
60 106

M
   

= =   
   

 The mean-deviation form B is obtained by subtracting M from each column of X, so 

7 10 6 9 10 8
.

2 4 1 5 3 5
B

− − − 
=  − − − 

 The sample covariance matrix is  

   
430 135 86 271 1
135 80 27 166 1 5

TS BB
− −   

= = =   − −−    
 

 2. The matrix of observations is 
1 5 2 6 7 3
3 11 6 8 15 11

X
 

=  
 

 and the sample mean is 
24 41 .
54 96

M
   

= =   
   

 

The mean-deviation form B is obtained by subtracting M from each column of X, so 
3 1 2 2 3 1

.
6 2 3 1 6 2

B
− − − 

=  − − − 
 The sample covariance matrix is  

   
28 40 5.6 81 1
40 90 8 186 1 5

TS BB
   

= = =   −    
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 3. The principal components of the data are the unit eigenvectors of the sample covariance matrix S. One 

computes that (in descending order) the eigenvalues of 
86 27
27 16

S
− 

=  − 
 are 1λ 95.2041=  and 

2λ 6.79593.=  One further computes that corresponding eigenvectors are 1
2.93348

1
− 

=  
 

v  and 

2
.340892

.
1

 
=  
 

v  These vectors may be normalized to find the principal components, which are 

1
.946515
.322659

 
=  − 

u  for 1λ 95.2041=  and 2
.322659
.946515
 

=  
 

u  for 2λ 6.79593.=  

 4. The principal components of the data are the unit eigenvectors of the sample covariance matrix S. One 

computes that (in descending order) the eigenvalues of 
5.6 8

8 18
S

 
=  
 

 are 1λ 21.9213=  and 

2λ 1.67874.=  One further computes that corresponding eigenvectors are 1
.490158

1
 

=  
 

v  and 

2
2.04016

.
1

− 
=  
 

v  These vectors may be normalized to find the principal components, which are 

1
.44013

.897934
 

=  
 

u  for 1λ 21.9213=  and 2
.897934

.44013
− 

=  
 

u  for 2λ 1.67874.=  

 5. [M] The largest eigenvalue of 
164.12 32.73 81.04

32.73 539.44 249.13
81.04 249.13 189.11

S
 
 =  
  

 is 1λ 677.497,=  and the first principal 

component of the data is the unit eigenvector corresponding to 1λ , which is 1

.129554

.874423

.467547

 
 =  
  

u . The fraction 

of the total variance that is contained in this component is 1λ / tr( ) 677.497 /(164.12 539.44S = + +  
189.11) .758956,=  so 75.8956% of the variance of the data is contained in the first principal component. 

 6. [M] The largest eigenvalue of 
29.64 18.38 5.00
18.38 20.82 14.06
5.00 14.06 29.21

S
 
 =  
  

 is 1λ 51.6957,=  and the first principal 

component of the data is the unit eigenvector corresponding to 1λ ,  which is 1

.615525

.599424 .

.511683

 
 =  
  

u  Thus one 

choice for the new variable is 1 1 2 3.615525 .599424 .511683 .y x x x= + +  The fraction of the total variance 
that is contained in this component is 1λ / tr( ) 51.6957 /(29.64 20.82 29.21) .648872,S = + + =  so 
64.8872% of the variance of the data is explained by 1.y  
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 7. Since the unit eigenvector corresponding to 1λ 95.2041=  is 1
.946515

,
.322659

 
=  − 

u  one choice for the new 

variable is 1 1 2.946515 .322659 .y x x= −  The fraction of the total variance that is contained in this 
component is 1λ / tr( ) 95.2041/(86 16) .933374,S = + =  so 93.3374% of the variance of the data is 
explained by 1.y  

 8. Since the unit eigenvector corresponding to 1λ 21.9213=  is 1
.44013

,
.897934
 

=  
 

u  one choice for the new 

variable is 1 1 2.44013 .897934 .y x x= +  The fraction of the total variance that is contained in this 
component is 1λ / tr( ) 21.9213/(5.6 18) .928869,S = + =  so 92.8869% of the variance of the data is 
explained by 1.y  

 9. The largest eigenvalue of 
5 2 0
2 6 2
0 2 7

S
 
 =  
  

 is 1λ 9,=  and the first principal component of the data is the 

unit eigenvector corresponding to 1λ ,  which is 1

1/ 3
2 /3 .
2 /3

 
 =  
  

u  Thus one choice for y is 

1 2 3(1/ 3) (2 / 3) (2 / 3) ,y x x x= + +  and the variance of y is 1λ 9.=  

 10. [M] The largest eigenvalue of 
5 4 2
4 11 4
2 4 5

S
 
 =  
  

 is 1λ 15,=  and the first principal component of the data 

is the unit eigenvector corresponding to 1λ ,  which is 1

1/ 6

2 / 6 .

1/ 6

 
 

=  
 
  

u  Thus one choice for y is 

1 2 3(1/ 6) (2 / 6) (1/ 6) ,y x x x= + +  and the variance of y is 1λ 15.=  

 11. a. If w is the vector in N with a 1 in each position, then [ ]1 1N N… = +…+ =X X w X X 0  since the 

kX  are in mean-deviation form. Then  

  [ ] [ ]1 1 1
T T T T

N N NP P P P … = … = … = = Y Y w X X w X X w 0 0  

  Thus 1 ,N+…+ =Y Y 0  and the kY  are in mean-deviation form.  

b. By part a., the covariance matrix SY  of 1, , N…Y Y  is  

   [ ][ ]1 1
1

1
T

N NS
N

= … …
−Y Y Y Y Y  

   [ ] [ ]1 1
1 ( )

1
T T T

N NP P
N

= … …
−

X X X X  

   [ ][ ]1 1
1

1
TT T

N NP P P SP
N

 = … … = − 
X X X X  

  since the kX  are in mean-deviation form.  
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 12. By Exercise 11, the change of variables X = PY changes the covariance matrix S of X into the covariance 
matrix TP SP  of Y. The total variance of the data as described by Y is tr( ).TP SP  However, since TP SP  
is similar to S, they have the same trace (by Exercise 25 in Section 5.4). Thus the total variance of the 
data is unchanged by the change of variables X = PY. 

 13. Let M be the sample mean for the data, and let ˆ .k k= −X X M  Let 1
ˆ ˆ

NB  = … X X  be the matrix of 

observations in mean-deviation form. By the row-column expansion of ,TBB  the sample covariance 
matrix is  

   1
1

TS BB
N

=
−

 

   
1

1

ˆ
1 ˆ ˆ

1 ˆ

T

N
T
N

N

 
  = …   −  
 

X
X X

X

 

   
1

1 ˆ ˆ
1

N N
T T

k k k k
k kN N= =1

1= = ( − )( − )
− −1∑ ∑X X X M X M  

Chapter 7 SUPPLEMENTARY EXERCISES 

 1. a. True. This is just part of Theorem 2 in Section 7.1. The proof appears just before the statement of 
the theorem.  

 b. False. A counterexample is 
0 1

.
1 0

A
− 

=  
 

  

 c. True. This is proved in the first part of the proof of Theorem 6 in Section 7.3. It is also a 
consequence of Theorem 7 in Section 6.2.  

 d. False. The principal axes of T Ax x  are the columns of any orthogonal matrix P that diagonalizes A. 
Note: When A has an eigenvalue whose eigenspace has dimension greater than 1, the principal axes 
are not uniquely determined.  

 e. False. A counterexample is 
1 1

.
1 1

P
− 

=  
 

 The columns here are orthogonal but not orthonormal.  

 f. False. See Example 6 in Section 7.2.  

 g. False. A counterexample is 
2 0
0 3

A
 

=  − 
 and 

1
.

0
 

=  
 

x  Then 2 0T A = >x x , but T Ax x  is an 

indefinite quadratic form.  
 h. True. This is basically the Principal Axes Theorem from Section 7.2. Any quadratic form can be 

written as T Ax x  for some symmetric matrix A.  
 i. False. See Example 3 in Section 7.3.  
 j. False. The maximum value must be computed over the set of unit vectors. Without a restriction on 

the norm of x, the values of T Ax x  can be made as large as desired.  
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 k. False. Any orthogonal change of variable x = Py changes a positive definite quadratic form into 
another positive definite quadratic form. Proof: By Theorem 5 of Section 7.2., the classification of a 
quadratic form is determined by the eigenvalues of the matrix of the form. Given a form ,T Ax x  the 
matrix of the new quadratic form is 1 ,P AP−  which is similar to A and thus has the same eigenvalues 
as A.  

 l. False. The term “definite eigenvalue” is undefined and therefore meaningless.  

 m. True. If x = Py, then 1( ) ( )T T T T TA P A P P AP P AP−= = =x x y y y y y y .  

 n. False. A counterexample is 
1 1

.
1 1

U
− 

=  − 
 The columns of U must be orthonormal to make TUU x  

the orthogonal projection of x onto Col U.  
 o. True. This follows from the discussion in Example 2 of Section 7.4., which refers to a proof given 

in Example 1.  

 p. True. Theorem 10 in Section 7.4 writes the decomposition in the form ,TU VΣ  where U and V are 
orthogonal matrices. In this case, TV  is also an orthogonal matrix. Proof: Since V is orthogonal, V 
is invertible and 1 .TV V− =  Then 1 1( ) ( ) ( ) ,T T T TV V V− −= =  and since V is square and invertible, TV  
is an orthogonal matrix.  

 q. False. A counterexample is 
2 0

.
0 1

A
 

=  
 

 The singular values of A are 2 and 1, but the singular 

values of TA A  are 4 and 1.  

 2. a. Each term in the expansion of A is symmetric by Exercise 35 in Section 7.1. The fact that 
( )T T TB C B C+ = +  implies that any sum of symmetric matrices is symmetric, so A is symmetric.  

 b. Since 1 1 1T =u u  and 1 0T
j =u u  for j ≠ 1,  

  1 1 1 1 1 1 1 1 1 1 1 1 1(λ ) (λ ) λ ( ) λ ( ) λT T T T
n n n n n nA = +…+ = +…+ =u u u u u u u u u u u u u u  

  Since 1 ≠u 0 , 1λ  is an eigenvalue of A. A similar argument shows that λ j  is an eigenvalue of A for  
j = 2, …, n. 

 3. If rank A = r, then dim Nul A = n – r by the Rank Theorem. So 0 is an eigenvalue of A with multiplicity  
n – r, and of the n terms in the spectral decomposition of A exactly n – r are zero. The remaining r terms 
(which correspond to nonzero eigenvalues) are all rank 1 matrices, as mentioned in the discussion of the 
spectral decomposition.  

 4. a. By Theorem 3 in Section 6.1, (Col ) Nul NulTA A A⊥ = =  since .TA A=  

 b. Let y be in n. By the Orthogonal Decomposition Theorem in Section 6.3, y = ŷ + z, where ŷ  is in 

Col A and z is in (Col ) .A ⊥  By part a., z is in Nul A.  

 5. If Av = λv for some nonzero λ, then 1 1λ (λ ),A A− −= =v v v  which shows that v is a linear combination of 
the columns of A. 

 6. Because A is symmetric, there is an orthonormal eigenvector basis 1{ , , }n…u u  for n. Let r = rank A.  
If r = 0, then A = O and the decomposition of Exercise 4(b) is y = 0 + y for each y in n; if r = n then the 
decomposition is y = y + 0 for each y in n. 

  Assume that 0 < r < n. Then dim Nul A = n – r by the Rank Theorem, and so 0 is an eigenvalue of A with 
multiplicity n – r. Hence there are r nonzero eigenvalues, counted according to their multiplicities. 
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Renumber the eigenvector basis if necessary so that 1, , r…u u  are the eigenvectors corresponding to the 
nonzero eigenvalues. By Exercise 5, 1, , r…u u  are in Col A. Also, 1, ,r n+ …u u  are in Nul A because these 
vectors are eigenvectors corresponding to the eigenvalue 0. For y in n, there are scalars 1, , nc c…  such 
that  

   1 1 1 1

ˆ
r r r r n nc c c c+ += +…+ + +…+

Z

y u u u u
y

 

  This provides the decomposition in Exercise 4(b). 

 7. If TA R R=  and R is invertible, then A is positive definite by Exercise 25 in Section 7.2.  

  Conversely, suppose that A is positive definite. Then by Exercise 26 in Section 7.2, TA B B=  for some 
positive definite matrix B. Since the eigenvalues of B are positive, 0 is not an eigenvalue of B and B is 
invertible. Thus the columns of B are linearly independent. By Theorem 12 in Section 6.4, B = QR for 
some n × n matrix Q with orthonormal columns and some upper triangular matrix R with positive entries 
on its diagonal. Since Q is a square matrix, ,TQ Q I=  and  

   ( ) ( )T T T T TA B B QR QR R Q QR R R= = = =  

  and R has the required properties. 

 8. Suppose that A is positive definite, and consider a Cholesky factorization of TA R R=  with R upper 
triangular and having positive entries on its diagonal. Let D be the diagonal matrix whose diagonal 
entries are the entries on the diagonal of R. Since right-multiplication by a diagonal matrix scales the 
columns of the matrix on its left, the matrix 1TL R D−=  is lower triangular with 1’s on its diagonal.  
If U = DR, then 1 .TA R D DR LU−= =  

 9. If A is an m × n matrix and x is in n, then 2( ) ( ) || || 0.T T TA A A A A= = ≥x x x x x  Thus TA A  is positive 
semidefinite. By Exercise 22 in Section 6.5, rank rank .TA A A=  

 10. If rank G = r, then dim Nul G = n – r by the Rank Theorem. Hence 0 is an eigenvalue of G with 
multiplicity n – r, and the spectral decomposition of G is  

   1 1 1λ λT T
r r rG = +…+u u u u  

  Also 1λ , ,λr…  are positive because G is positive semidefinite. Thus  

   ( )( ) ( )( )1 1 1 1λ λ λ λT T
r r r rG = +…+u u u u  

  By the column-row expansion of a matrix product, TG BB=  where B is the n × r matrix 

1 1λ λ .r rB  = … u u  Finally, TG A A=  for .TA B=  

 11. Let TA U V= Σ  be a singular value decomposition of A. Since U is orthogonal, TU U I=  and 
T TA U U UV PQ= Σ =  where 1TP U U U U −= Σ = Σ  and .TQ UV=  Since Σ is symmetric, P is 

symmetric, and P has nonnegative eigenvalues because it is similar to Σ, which is diagonal with 
nonnegative diagonal entries. Thus P is positive semidefinite. The matrix Q is orthogonal since it is the 
product of orthogonal matrices. 

 12. a. Because the columns of rV  are orthonormal,  

   1 1( )( ) ( )T T T T
r r r r r r r rAA U DV V D U U DD U U U+ − −= = =y y y y  
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  Since T
r rU U y  is the orthogonal projection of y onto Col rU  by Theorem 10 in Section 6.3, and  

since Col ColrU A=  by (5) in Example 6 of Section 7.4, AA+y  is the orthogonal projection of  
y onto Col A.  

 b. Because the columns of rU  are orthonormal,  

   1 1( )( ) ( )T T T T
r r r r r r r rA A V D U U DV V D DV V V+ − −= = =x x x x  

  Since T
r rV V x  is the orthogonal projection of x onto Col rV  by Theorem 10 in Section 6.3, and since 

Col RowrV A=  by (8) in Example 6 of Section 7.4, A A+ x  is the orthogonal projection of x onto 
Row A.  

 c. Using the reduced singular value decomposition, the definition of A+ , and the associativity of matrix 
multiplication gives:  

   1 1( )( )( ) ( )( )T T T T T
r r r r r r r r r rAA A U DV V D U U DV U DD U U DV+ − −= =  

   1 T T
r r r rU DD DV U DV A−= = =  

   1 1 1 1( )( )( ) ( )( )T T T T T
r r r r r r r r r rA AA V D U U DV V D U V D DV V D U+ + − − − −= =  

   1 1 1T T
r r r rV D DD U V D U A− − − += = =  

 13. a. If b = Ax, then .A A A+ + += =x b x  By Exercise 12(a), +x  is the orthogonal projection of x onto  
Row A.  

b. From part (a) and Exercise 12(c), ( ) ( ) .A A A A AA A A+ + += = = =x x x x b  

c. Let Au = b. Since +x  is the orthogonal projection of x onto Row A, the Pythagorean Theorem shows 
that 2 2 2 2|| || || || || || || || ,+ + += + − ≥u x u x x  with equality only if .+=u x  

 14. The least-squares solutions of Ax = b are precisely the solutions of Ax = ˆ ,b  where b̂ is the orthogonal 
projection of b onto Col A. From Exercise 13, the minimum length solution of Ax = b̂  is ˆ ,A+b  so ˆA+b  
is the minimum length least-squares solution of Ax = b. However, ˆ AA+=b b  by Exercise 12(a) and 
hence ˆA A AA+ + + += = Αb b b  by Exercise 12(c). Thus A+b  is the minimum length least-squares solution 
of Ax = b.  

 15. [M] The reduced SVD of A is ,T
r rA U DV=  where  

   

.966641 .253758 .034804
9.84443 0 0

.185205 .786338 .589382
, 0 2.62466 0 ,

.125107 .398296 .570709
0 0 1.09467

.125107 .398296 .570709

rU D

− 
  − −   = =   −
    −  

 

   

.313388 .009549 .633795

.313388 .009549 .633795
and .633380 .023005 .313529

.633380 .023005 .313529

.035148 .999379 .002322

rV

− 
 − 
 = − −
 − 
  

 

  So the pseudoinverse 1 T
r rA V D U+ −=  may be calculated, as well as the solution ˆ A+=x b  for the system 

Ax = b:  
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.05 .35 .325 .325

.05 .35 .325 .325
ˆ,.05 .15 .175 .175

.05 .15 .175 .175

.10 .30 .150 .150

A+

− − .7   
   − − .7   
   = =− − − −.8
   − .8   
   − − − .6   

x  

  Row reducing the augmented matrix for the system ˆTA =z x  shows that this system has a solution, so x̂  

is in Col Row .TA A=  A basis for Nul A is 1 2

0 1
0 1

{ , } , ,1 0
1 0
0 0

 −   
    
        =  
    
    
        

a a  and an arbitrary element of Nul A is 

1 2.c d= +u a a  One computes that ˆ|| ,|| = 131/50x  while ˆ|| .c d2 2+ ||= (131/50) + 2 + 2x u  Thus if  
u ≠ 0, || x̂ || < || x̂  + u ||, which confirms that x̂  is the minimum length solution to Ax = b. 

 16. [M] The reduced SVD of A is ,T
r rA U DV=  where  

   

.337977 .936307 .095396
12.9536 0 0

.591763 .290230 .752053
, 0 1.44553 0 ,

.231428 .062526 .206232
0 0 .337763

.694283 .187578 .618696

rU D

− 
  −   = =   − − −
    − − −  

 

   

.690099 .721920 .050939
0 0 0

and .341800 .387156 .856320
.637916 .573534 .513928

0 0 0

rV

− 
 
 
 = −
 
 
  

 

  So the pseudoinverse 1 T
r rA V D U+ −=  may be calculated, as well as the solution ˆ A+=x b  for the  

system Ax = b:  

   

.5 0 .05 .15
0 0 0 0

ˆ,0 2 .5 1.5
.5 1 .35 1.05
0 0 0 0

A+

− − 2.3   
   0   
   = = 5.0
   − − − −.9   
   0   

x  

  Row reducing the augmented matrix for the system ˆTA =z x  shows that this system has a solution, so x̂  

is in Col RowTA A= . A basis for Nul A is 1 2

0 0
1 0

{ , } , ,0 0
0 0
0 1

    
    
        =  
    
    
        

a a  and an arbitrary element of Nul A is 

1 2.c d= +u a a  One computes that ˆ|| ,|| = 311/10x  while ˆ|| .c d2 2+ || = (311/10) + +x u  Thus if u ≠ 0, 
|| x̂ || < || x̂ + u ||, which confirms that x̂  is the minimum length solution to Ax = b. 
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