Orthogonality and
Least Squares

6.1 SOLUTIONS

Notes: The first half of this section is computational and is easily learned. The second half concerns the
concepts of orthogonality and orthogonal complements, which are essential for later work. Theorem 3 is
an important general fact, but is needed only for Supplementary Exercise 13 at the end of the chapter and
in Section 7.4. The optional material on angles is not used later. Exercises 27-31 concern facts used later.

-1 4 u 8
1. Since u= and v= , u-u=(—1)2+22=5,v-u=4(—1)+6(2)=8,andu:—.
2 6 uu 5
3 6
2. Since w=| —1|and x=|-2|, w-w=3+(=D)?+(-5)*=35,x- w=6(3) + (=2)(-1) + 3(=5) = 5,
-5 3
and X W zi:l.
w-w 35 7
3 3/35
3. Since w=|—1|, w-w=3%+(=1)* +(-5)* =35, and w=|-1/35].
W-W
-5 ~1/7

. 1] s 1 -1/5
4. Since u= , wru=(-D)"+2"=5and —u= .
2 u-u 2/5

i 4
5. Since u= and V:L}, u-v=(=D@) +26)=8, v-v=4>+6> =52, and

u-v 214 8/13
—_— V:— = .
V-V 136 12/13
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10.

11.

12.

13.
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6 3
Since x=| 2| and w=|—1|, x- w=6(3) + (-2)(-1) + 3(=5) = 5, X-X=6" +(=2)> +3* =49, and
3] -5
6 30/49
(ﬂszi 2 |=|-10/49]|.
X-X 49
3 15/49
3
. Since w=| =1, [|wll=W-w =37+ (-1)> +(=5)> =35.
-5
6

Since x=| -2 |, ||x[l=vx-x =46 +(=2)> +3% =49 =7.
3

. A unit vector in the direction of the given vector is

1 -30]_ 1 [-30]_[-3/5
[=30)> +407 | 40] 50| 40] | 4/5

A unit vector in the direction of the given vector is

-6 -6 NG

_ ()2 2 _12)2 61
Je6r +4 137 | 4| V61|, e

A unit vector in the direction of the given vector is

1 7/4 o[ 7/3/69
1/2|= 172 |=|2//69

2 2.2 J69/16
A1 +A127 +12| IR

A unit vector in the direction of the given vector is
1 {8/3}_ 1 {8/3}_[4/5}
J@/3)2+22 L 2] ~100/91 2] [3/5

X 10 -1 2 2 2
Since x = 3 and y = e | x=y|*=[10—(-D]" +[-3—(-5)]" =125 and

dist (x,y) =125 =5/5.
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6.1 + Solutions

0 —4
Since u=|-5| and z=| -1|, |lu—z|f=[0- (=D +[-5—-(=D]* +[2-8]* =68 and
2 8

dist (u,z) =68 =24/17.

Since a - b =8(-2) + (-5)(-3) =-1 #0, a and b are not orthogonal.

Since u - v=12(2) + (3)( -3) + (-5)(3) = 0, u and v are orthogonal.

Since u - v=3(-4) + 2(1) + (-5)(-2) + 0(6) = 0, u and v are orthogonal.
Sincey - z=(-3)(1) + 7(-8) + 4(15) + 0(=7) =1 # 0, y and z are not orthogonal.

a. True. See the definition of || v |.
b. True. See Theorem 1(c).

¢. True. See the discussion of Figure 5.

1 1
d. False. Counterexample: {0 0}.

True. See the box following Example 6.

o®

True. See Example 1 and Theorem 1(a).
False. The absolute value sign is missing. See the box before Example 2.
True. See the defintion of orthogonal complement.

True. See the Pythagorean Theorem.

e R0 T p

True. See Theorem 3.
Theorem 1(b):
u+v)w=u+v)w=@ +vHw=ud'w+vw=u-w+v-w
The second and third equalities used Theorems 3(b) and 2(c), respectively, from Section 2.1.
Theorem 1(c):

(cu)-v=(cu) v=c@' v)=c(u-v)

The second equality used Theorems 3(c) and 2(d), respectively, from Section 2.1.

359

Since u - u is the sum of the squares of the entries in u, u - u = 0. The sum of squares of numbers is

zero if and only if all the numbers are themselves zero.
One computes that u - v = 2(=7) + (=5)(—4) + (-1)6 = 0, [|u|f=u-u=2% +(=5)* + (-1)* =30,

|vIP=v-v=(=7)>+(—4)* +6> =101, and |[u+v|}=@+Vv) - (u+v) =
2+ (=7)* +(=5+(—4))> + (-1+6)* =131.

One computes that
lu+v|f=u+v)-+v)=u-u+2u-v+v-v|u| +2u- v+| v|}

and
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lu-v|f=u-v)-(u—v)=u-u-2u-v+v-vu| 2u v+| v|}
)

la+vIP +lla=vIP=lulP +2u-v+ [ vIF +lulP -2u-v+ [ vIP=2]u]? 2] v

a X
When v = L}}, the set H of all vectors {
y

entries satisfy ax + by = 0. If a # 0, then x = — (b/a)y with y a free variable, and H is a line through

} that are orthogonal to v is the subspace of vectors whose

-b
the origin. A natural choice for a basis for H in this case is { { } } Ifa=0and b #0, then by =0.
a

Since b # 0, y =0 and x is a free variable. The subspace H is again a line through the origin. A

1
natural choice for a basis for H in this case is { {0} }, but { { } } is still a basis for H since a =0

a
and b#0.If a = 0 and b = 0, then H = R? since the equation Ox + Oy = 0 places no restrictions on x or
y.

Theorem 2 in Chapter 4 may be used to show that W is a subspace of R®, because W is the null space
of the 1 x 3 matrix u’. Geometrically, W is a plane through the origin.

If y is orthogonal tou and v, then y - u =y - v =0, and hence by a property of the inner product,
y-(u+v)=y-u+y-v=0+0=0. Thusy is orthogonal tou + v.

An arbitrary w in Span{u, v} has the form w=cu+c¢,v.If y is orthogonal to u and v, then
u-y=v-y=0.By Theorem 1(b) and 1(c),
w-y=(cu+cv) y=c-y)+c(v-y)=0+0=0

A typical vector in W has the form w=¢,v, +...+¢,v . If x is orthogonal to each V;, then by
Theorems 1(b) and 1(c),
wW-x=(qV,+...+¢,V,) Xx=¢ (V- X)+...+¢,(v, - x)=0

So x is orthogonal to each w in W.

a. Ifzisin W, uisin W, and ¢ is any scalar, then (cz) - u=c(z - u) = c0 = 0. Since u is any
element of W, ¢z is in W=,

b. Let z, and z, be in W*. Then for any uin W, (z, +2,)-u=z,-u+z, -u=0+0=0. Thus
z,+z, isin W

c. Since 0 is orthogonal to every vector, 0 is in W*. Thus W* is a subspace.

Suppose that x is in Wand W*. Since x is in W*, x is orthogonal to every vector in W, including x
itself. So x - x = 0, which happens only when x = 0.
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32. [M]
a. One computes that | a, ||=||a, [|=||a; ||=||a, ||=1 and that a,-a; =0 fori#.
b. Answers will vary, but it should be that || Au || =||u || and || Av || = ]| v ||.

c. Answers will again vary, but the cosines should be equal.

d. A conjecture is that multiplying by A does not change the lengths of vectors or the angles
between vectors.

33. [M] Answers to the calculations will vary, but will demonstrate that the mapping
x> T(x)= (ﬂj v (for v # 0) is a linear transformation. To confirm this, let x and y be in R", and
V-V
let ¢ be any scalar. Then

T(X+y):(w)v:((X'V)+(y'V)JV =(X.Vjv+(u]V=T(X)+T(Y)
V-V V-V

\ A4 V-V

T(cx):(wjvz(c(x'qu=c(x'vjv=cT(X)
V-V V-V \ 24

34. [M] One finds that

and

-5 1
-1 4 105 0 -1/3

N=| 1 O R=|0 1 1 0 -4/3
0 -1 000 1 13
_O 3_

The row-column rule for computing RN produces the 3 X 2 zero matrix, which shows that the rows of
R are orthogonal to the columns of N. This is expected by Theorem 3 since each row of R is in Row
A and each column of N is in Nul A.

6.2 SOLUTIONS

Notes: The nonsquare matrices in Theorems 6 and 7 are needed for the QR factorization in Section 6.4. It
is important to emphasize that the term orthogonal matrix applies only to certain square matrices. The
subsection on orthogonal projections not only sets the stage for the general case in Section 6.3, it also
provides what is needed for the orthogonal diagonalization exercises in Section 7.1, because none of the
eigenspaces there have dimension greater than 2. For this reason, the Gram-Schmidt process (Section 6.4)
is not really needed in Chapter 7. Exercises 13 and 14 are good preparation for Section 6.3.

-1 3
1. Since | 4|-| -4 |=2#0, the set is not orthogonal.
=3 |-7
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1110 1| |5 0||-5
Since |2 |-|1|=|-2]||-2|=|1||-2|=0, the set is orthogonal.
| 1] |2 1 1 2 1
—6][ 3
. Since | -3 |-| 1|=-30=0, the set is not orthogonal.
| 9] [-1
[ 210 21 4] [0]] 4]
Since | =5|-|0|=|-=5|:|-2|=|0|:| =2 |=0, the set is orthogonal.
|1-3] 10 -3/ 6] |O 6
[ 3] [-1 31 3] [-1]]3]
. -2 3 2118 3118 .
Since . = . = . =0, the set is orthogonal.
113 117 =317
L 3] 4 3110 [ 4]10]
417 3
. 1 :
Since sl s =-32#0, the set is not orthogonal.
| 8] [-1
Since u,-u, =12-12=0, {u,,u,} is an orthogonal set. Since the vectors are non-zero, u, and u,

are linearly independent by Theorem 4. Two such vectors in R? automatically form a basis for R*. So
{u,,u,} is an orthogonal basis for R’. By Theorem 5,
_X-u X-u,

1
X= u, + u, =3u, +—u,
u - u, -u, 2

Since u,-u, =—6+6=0, {u,,u,} is an orthogonal set. Since the vectors are non-zero, u, and u,

are linearly independent by Theorem 4. Two such vectors in R* automatically form a basis for R*. So
{u,,u,} is an orthogonal basis for R>. By Theorem 5,
X-u, X-u,

X= u, + u, =——u, +—u,
u,-u, u,-u, 2 4

Since u, -u, =u, -u; =u, -u; =0, {u,,u,.u;} is an orthogonal set. Since the vectors are non-zero,
u,, u,, and u; are linearly independent by Theorem 4. Three such vectors in R* automatically form
a basis for R>. So {u,,u,,u,} is an orthogonal basis for R3. By Theorem 5,

X-u X U, XUy, 5

3
X= u, + u, + u; =—u, ——u, +2u,
u - u, -u, u; U, 2
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Since u, -u, =u, -u; =u, -u; =0, {u,,u,.u;} is an orthogonal set. Since the vectors are non-zero,
. . . 3 .
u,, u,, and u; are linearly independent by Theorem 4. Three such vectors in R’ automatically form

a basis for R*. So {u,,u,,u,} is an orthogonal basis for R3. By Theorem 5,

X-u, X-u, XUy 4
X= u, + u, + u; =—u +-u, +—u,
u, -u, u,-u, u;-u, 3 3 3

1 —4
Lety= {7} and u 2{ 2}. The orthogonal projection of y onto the line through u and the origin is

the orthogonal projection of y onto u, and this vector is

. yu 1 -2
y=——u=—u=
u-u 2 1

1 -1
Lety 2{ J and u 2{ 3}. The orthogonal projection of y onto the line through u and the origin is

the orthogonal projection of y onto u, and this vector is

. y-u 2 { 2/5}
y:—u:——u:
u-u 5 —

The orthogonal projection of y onto u is
. _yu 13 —4/5
y=—u=——u=

u-u 65 715

The component of y orthogonal to u is

. [145
Y7V g5

. i< 5] 195
us = - = .
Y=YTW=Y= 51 srs

The orthogonal projection of y onto u is

. yu 2 14/5
y:—u:—u:
u-u 5 2/5

The component of y orthogonal to u is
. |45
Y7V 2855

. ey |45
us = - = .
Y=YTW=Y= 51T 28/5

The distance from y to the line through u and the origin is [ly — § ||. One computes that
- y-u 3] 318 3/5
—V=vVy—"—u= - =
yoy=y u-u 1| 10|6 -4/5
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so ||y —¥|l=v9/25+16/25 =1 is the desired distance.

The distance from y to the line through u and the origin is |ly — § ||. One computes that

s G

so||ly-y|=v36+9= 3J/5 is the desired distance.

1/3 -1/2
Letu=|1/3]|, v= 0. Sinceu- v=0, {u, v} is an orthogonal set. However, ||u|*=u-u=1/3
1/3 1/2

and || v|*=v-v=1/2, so {u, v} is not an orthonormal set. The vectors u and v may be normalized to
form the orthonormal set

V313|212
il A
u \%

3731 | 212

0 0
Letu=| 1|, v=|-1|. Sinceu - v=-1#0, {u, v} is not an orthogonal set.
0 0
—6 8] , )
Let u= ol V=l 6l Since u - v =0, {u, v} is an orthogonal set. Also, ||u|["=u-u=1 and
| vIF=v-v=1, so {u, v} is an orthonormal set.
[—2/3 1/3
Letu=| 1/3|, v=|2/3|. Sinceu-v=0, {u, v} is an orthogonal set. However, ||u|*=u-u=1
2/3 0

and || v ||2= v-v=5/9, so {u, v} is not an orthonormal set. The vectors u and v may be normalized

to form the orthonormal set

-2/3 1//5
i | )2
ulibry 2/3 0

1/-10 3/4/10 0
Let u= 3/\/% , V= —1/\/% ,and w= —1/\/5 .Sinceu-v=u-w=v-w=0, {u,v,w}isan

3/320 ~1/20 /42

orthogonal set. Also, |[u|’=u-u=1, |v|*’=v-v=1, and ||w|*=w-w=1, so {u, v, w} is an
orthonormal set.
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1/\18 142 -2/3
Let u=|4/4/18 , V= Of, and w=| 1/3|. Sinceu-v=u-w=v-w=0, {u, v, w}isan

1718 —“1/\2 —2/3

orthogonal set. Also, ||u||2=u-u:1, I V||2=V-V=l, and ||W||2=W-W=l, so {u, v, w} is an
orthonormal set.

a. True. For example, the vectors u and y in Example 3 are linearly independent but not orthogonal.
True. The formulas for the weights are given in Theorem 5.
False. See the paragraph following Example 5.

False. The matrix must also be square. See the paragraph before Example 7.

I

False. See Example 4. The distance is |ly — ¥ ||.

®

True. But every orthogonal set of nonzero vectors is linearly independent. See Theorem 4.

b. False. To be orthonormal, the vectors is S must be unit vectors as well as being orthogonal to each
other.

c. True. See Theorem 7(a).
d. True. See the paragraph before Example 3.
e. True. See the paragraph before Example 7.

To prove part (b), note that
Ux)-Uy)=Ux) Uy)=x'U'Uy=x'y=x"y
because U'U =1.Ify=x1in part (b), (Ux) - (UX) = X - X, which implies part (a). Part (c) of the

Theorem follows immediately fom part (b).

A set of n nonzero orthogonal vectors must be linearly independent by Theorem 4, so if such a set
spans Wit is a basis for W. Thus W is an n-dimensional subspace of R”, and W =R".

If U has orthonormal columns, then U”U =1 by Theorem 6. If U is also a square matrix, then the

equation U'U =1 implies that U is invertible by the Invertible Matrix Theorem.

If U is an n x n orthogonal matrix, then / =UU ™' =UU" . Since U is the transpose of U, Theorem

6 applied to U” says that U” has orthogonal columns. In particular, the columns of U” are linearly
independent and hence form a basis for R”" by the Invertible Matrix Theorem. That is, the rows of U
form a basis (an orthonormal basis) for R".

Since U and V are orthogonal, each is invertible. By Theorem 6 in Section 2.2, UV is invertible and
wov )_1 =v'ut=vUT = (UV)", where the final equality holds by Theorem 3 in Section 2.1. Thus
UV is an orthogonal matrix.

If U is an orthogonal matrix, its columns are orthonormal. Interchanging the columns does not
change their orthonormality, so the new matrix — say, V — still has orthonormal columns. By

Theorem 6, V'V =I. Since Vis square, V' =V~ by the Invertible Matrix Theorem.
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Suppose that § = RALY Replacing u by cu with ¢ # 0 gives
u-u

W Ly CW YU

y - (cu) _
(cu)-(cu) (cw) c? (u-u) c? (u-u) u-u

So § does not depend on the choice of a nonzero u in the line L used in the formula.

If v,-v, =0, then by Theorem 1(c) in Section 6.1,

(V) (V) =c [V, - (c;V,)]=cic5(V, - V,) =¢,c,0=0

X-u
Let L = Span{u}, where u is nonzero, and let 7(X) =——u . For any vectors x and y in R" and any
u-u

scalars ¢ and d, the properties of the inner product (Theorem 1) show that
(cx+dy)-u u
u-u

T(cx+dy)=

=cx-u+a,’y-uu
u-u

_ cx-uu+dy-u

u-u u-u

=cT(x)+dT(y)

Thus 7 is a linear transformation. Another approach is to view 7 as the composition of the following

u

three linear mappings: Xx—=> a=Xx-v,at>b=a/v-v,and b bv.

Let L = Span{u}, where u is nonzero, and let 7'(x) =refl, y = 2proj, y —y . By Exercise 33, the
mapping y - proj,y is linear. Thus for any vectors y and z in R" and any scalars ¢ and d,

T(cy+dz)=2proj, (cy+dz)—(cy+dz)
=2(c proj,y +d proj,z)—cy —dz
=2c proj,y —cy+2d proj,z—dz
=c(2 proj,y—y)+d(2proj,z—1z)
=cT(y)+dT(z)

Thus 7 is a linear transformation.

[M] One can compute that A" A=1001 4+~ Since the off-diagonal entries in A" A are zero, the columns
of A are orthogonal.
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36. [M]
a. One computes that U =1 4> While

82 0 -20 8 6 20 24 0
0 42 24 0 -20 6 20 -32
-20 24 58 20 0 32 0 6
ULﬂﬁz(—l—j 8 0 20 8 24 -20 6 0
100 6 -20 0 24 18 0 -8 20

20 6 32 -20 0 358 0 24
24 20 0 6 -8 0 18 =20
0 -32 6 0 20 24 -20 42

The matrices U'U and UU" are of different sizes and look nothing like each other.

b. Answers will vary. The vector p=UU "y is in ColU because p=U(U"y) . Since the columns of
U are simply scaled versions of the columns of A, ColU = ColA. Thus each p is in Col A.

¢. One computes that U’z =0.

d. From (c), z is orthogonal to each column of A. By Exercise 29 in Section 6.1, z must be

orthogonal to every vector in Col A; that is, z is in (Col A)*.

6.3 SOLUTIONS

Notes: Example 1 seems to help students understand Theorem 8. Theorem 8 is needed for the Gram-
Schmidt process (but only for a subspace that itself has an orthogonal basis). Theorems 8 and 9 are
needed for the discussions of least squares in Sections 6.5 and 6.6. Theorem 10 is used with the QR
factorization to provide a good numerical method for solving least squares problems, in Section 6.5.
Exercises 19 and 20 lead naturally into consideration of the Gram-Schmidt process.

1. The vector in Spanf{u,} is

10
72 -6
X% u,=—u,=2u,=
2
Si X-u,
mce x =cu, +c,u, +c3uy + u,, the vector
u, -uy
10 10 0
x-u, |8 |6 |2
uw,ou, |2 |2 ] 4
0 2] |2

isin Span{u,,u,,u;}.
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2. The vector in Spanf{u,} is

2
v-u 14 4
Ly =—u, =2u, =
u, - 2
2
Si V-
ince x = u, +c,u, +c;uy +c,u,, the vector
u -u
2 2
vou, 50 |4 1
\ u, = - _|=
u -u -3 2 -5
3] [2 1

isin Spanf{u,,u;,u,}.

3. Since u, -u, =-1+14+0=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto

Span{u,,u,} is

1 -1 -1

y= y' 4 u, + y i u2=§u1+§u2=é 1 +§ li=| 4
wow wew, o200 27 2 |02

0 0 0

4. Since u, -u, ==12+12+0=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto
Span{u,,u,} is

30 5 6 3 e

=2t u, + y i u2=—u1—1—u2=— 4|1-=| 3|=(3
u -u u,-u, 25 25 5 5

0 0| |0

5. Since u,-u, =3+1-4=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto
Span{u,,u,} is

T B I
y= y u, + y i u,=—u-——u,=—-1|-=|-1|=
u, -u, u,-u, 14 6 2
-2 2 6

6. Since u,-u, =0-1+1=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto

Span{u,,u,} is

275 S EINEN
y: y-u u, + y-u, ll2:__7u1+_u2:__ —1(+—1|=4
u - u,-u, 18 2 2 ! 2 ! !

7. Since u,-u, =5+3-8=0, {u;,u,} is an orthogonal set. By the Orthogonal Decomposition
Theorem,
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5 10/3 -7/3
y=Y-u1 u1+y-u2 u,=0u, +=u,=| 2/3|,z=y-y=| 7/3
8/3 713

andy = §+ z, where § isin Wand zisin W™,

. Since u, -u, =—14+3-2=0, {u,,u,} is an orthogonal set. By the Orthogonal Decomposition

Theorem,
| 3/2 =5/2
y=y'u1 u1+y-u2 w,=2u,+—u,=|7/2|,z=y-y=| 1/2

andy = §+ z, where § isin Wand zisin W,

. Since u, ‘u, =u, -uy =u, -uy; =0, {u,,u,,u,} is an orthogonal set. By the Orthogonal

Decomposition Theorem,

2 2

oy . . 2 2 |4 o1
yzyu1u1+yu2 u2+yu3 Uy =20+ -0y — Uy = Z=Y -y =

ul _ul u2 .u2 ll3 '“3 N 3 3 . O 3

0 -1

andy = §+ z, where § isin Wand zisin W,

Since u,-u, =u, -u; =u, -u; =0, {u,,u,,u;} is an orthogonal set. By the Orthogonal
Decomposition Theorem,

5 -2

. . ° 2 2
yzyu1u1+yu2 u2+yu3 u3:lu1+ﬁu2—éu3= ,Z=y-§=

ul'ul uz.u2 113-113 3 3 3 3 2

6 0

andy = §+ z, where § isin Wand zisin W,

Note that v, and v, are orthogonal. The Best Approximation Theorem says that §, which is the

orthogonal projection of y onto W =Span{v,,v,}, is the closest point to y in W. This vector is

3

. ) -1
g=2 v, + YV, V2=1V1+§V2=

\RA7 v, V, 2 2 1

-1

Note that v, and v, are orthogonal. The Best Approximation Theorem says that y, which is the
orthogonal projection of y onto W =Span{v,,v,}, is the closest point to y in W. This vector is
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13. Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in

Span{v,,v,} tozis

-1

. L'V, Z-V, 2 7 -3
i= L, ==V, ==V, =

\{RA7 v, V, 3 3 -2

3

14. Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in
Span{v,,v,} tozis

1

. : 0
p=2 Ny 4 2% V2=lV1+0V2=

\SRAS v, V, 2 -1/2

-3/2

15. The distance from the point y in R’ to a subspace W is defined as the distance from y to the closest
point in W. Since the closest point in Wto y is § = proj,,y, the desired distance is || y — §||. One

3 2
computes that §=| -9 |,y —§=| 0|, and ||y —§||=+/40 =2410.
-1 6

16. The distance from the point y in R* to a subspace W is defined as the distance from y to the closest
point in W. Since the closest point in Wto y is § = proj,,y, the desired distance is || y — §||. One

-1 4
|- . |4

computes that y = 3,y—y= 4,and||y—§'||:8.
9 4

L o 8/9 -2/9 2/9
17. a. UTU={0 J,UUT= =2/9 5/9 4/9
2/9  4/9 5/9

b. Since U'U =1,, the columns of U form an orthonormal basis for W, and by Theorem 10
8/9 -2/9 2/9|4| |2
proj,y =UUTy=|-2/9  5/9 4/9|/8|=|4|.
2/9  4/9 5/9]1 5
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23.
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1/10  -3/10
a. UTU:[I]:LUUT:{ }

-3/10  9/10
b. Since U'U =1, {u,} forms an orthonormal basis for W, and by Theorem 10
i uU” 1/10 -3/10||7 -2
100} = = = .

PrwY Y=310  9n0l[9] 7] 6
By the Orthogonal Decomposition Theorem, u, is the sum of a vector in W =Span{u,,u,} and a
vector v orthogonal to W. This exercise asks for the vector v:
0 0 0

v:u3—projwu3:u3—(—%ul+%u2j: 0|-|-2/5|=|2/5
1 4/5 1/5

Any multiple of the vector v will also be in W+,

By the Orthogonal Decomposition Theorem, u, is the sum of a vector in W =Span{u,,u,} and a
vector v orthogonal to W. This exercise asks for the vector v:
0 0 0
v:u4—proqu4:u4—(éul—%u2j: 1|-| 1/5|=|4/5
o [-2/5 2/5

Any multiple of the vector v will also be in W,

a. True. See the calculations for z, in Example 1 or the box after Example 6 in Section 6.1.

b. True. See the Orthogonal Decomposition Theorem.

c. False. See the last paragraph in the proof of Theorem 8, or see the second paragraph after the
statement of Theorem 9.

d. True. See the box before the Best Approximation Theorem.

e. True. Theorem 10 applies to the column space W of U because the columns of U are linearly
independent and hence form a basis for W.

. True. See the proof of the Orthogonal Decomposition Theorem.
. True. See the subsection “A Geometric Interpretation of the Orthogonal Projection.”

. True. The orthgonal decomposition in Theorem 8 is unique.

e o T

. False. The Best Approximation Theorem says that the best approximation to y is projy, y.
e. False. This statement is only true if x is in the column space of U. If n > p, then the column space

of U will not be all of R”, so the statement cannot be true for all x in R”.

By the Orthogonal Decomposition Theorem, each x in R” can be written uniquely as X = p + u, with
p in Row A and u in (Row At By Theorem 3 in Section 6.1, (Row A)t =Nul A, so uisin NulA.

Next, suppose Ax = b is consistent. Let X be a solution and write X = p + u as above. Then
Ap=A(x—u)=Ax—Au=Db - 0=b, so the equation Ax = b has at least one solution p in Row A.

Finally, suppose that p and p, are both in RowA and both satisfy Ax =b. Then p—p, isin
Nul A= (Row A)", since A(p—p,)=Ap—-Ap,=b—-b=0. The equations p=p, +(p—p,) and
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p = p + 0 both then decompose p as the sum of a vector in RowA and a vector in (Row A, By
the uniqueness of the orthogonal decomposition (Theorem 8), p =p,, and p is unique.

. By hypothesis, the vectors w,, ..., W p are pairwise orthogonal, and the vectors v, ..., V, are

q

pairwise orthogonal. Since w; is in Wfor any i and v, is in W+ for any j, W, - v; =0 forany i

and j. Thus {w,,...,w,,v,...,v, } forms an orthogonal set.

. For any y in R", write y = § + z as in the Orthogonal Decomposition Theorem, with § in

Wand zin W* . Then there exist scalars Cpse-sC, and d,,...,d, suchthat y =y +z=

oWy +...+c,w,+d\v,+...+d,v,. Thus the set {W;,...,w,V;,...,V_} spans R",

. The set {W,...,W ., V,,...,V,} is linearly independent by (a) and spans R" by (b), and is thus a

basis for R". Hence dimW +dimW~* = p+g=dimR".

25. [M] Since U Tu=1 4> U has orthonormal columns by Theorem 6 in Section 6.2. The closest point to

y in Col U is the orthogonal projection y of y onto Col U. From Theorem 10,

[1.2]
4
1.2
1.2
4
1.2
4
4

>
Il
=
d
,_]
<
Il

26. [M] The distance from b to ColU is || b — b||, where b=UU"b. One computes that

2 8
92 .08
44 .56
b=UUb= ! ,b—b= 0 ,||b—l3||:@
-2 -8 5
—44 -.56
.6 -1.6
—92] | —.08 ]

which is 2.1166 to four decimal places.
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6.4 SOLUTIONS

Notes: The QR factorization encapsulates the essential outcome of the Gram-Schmidt process, just as the
LU factorization describes the result of a row reduction process. For practical use of linear algebra, the
factorizations are more important than the algorithms that produce them. In fact, the Gram-Schmidt
process is not the appropriate way to compute the QR factorization. For that reason, one should consider
deemphasizing the hand calculation of the Gram-Schmidt process, even though it provides easy exam
questions.

The Gram-Schmidt process is used in Sections 6.7 and 6.8, in connection with various sets of
orthogonal polynomials. The process is mentioned in Sections 7.1 and 7.4, but the one-dimensional
projection constructed in Section 6.2 will suffice. The QR factorization is used in an optional subsection
of Section 6.5, and it is needed in Supplementary Exercise 7 of Chapter 7 to produce the Cholesky
factorization of a positive definite matrix.

-1
1. Set v, =x, and compute that v, =X, — X% Vv, =X, —3v,=| 5. Thus an orthogonal basis for W
\/RA7] 3
31 -1
is Of,| 5
-1||-3
5
2. Set v, =x, and compute that v, =X, — X2 Vi vV, =X, —lv1 =| 4 |. Thus an orthogonal basis for W
v,V 2 g
0 5
is 41,1 4
2| ]-8
3
3. Set v, =x, and compute that v, =X, — X vV, =X, —lv1 =|3/2 |. Thus an orthogonal basis for
Yh 3/2
2 3
Wis 4 |=51,]3/2
1]1]3/2
3
4. Set v, =x, and compute that v, =X, — X% v, =X, —(=2)v, =| 6 |. Thus an orthogonal basis for
\/RA7] 3
3113
Wis |41,
5|13
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5
X, V, 1 .
5. Set v, =x, and compute that v, =x, — vV, =X, -2V, = nt Thus an orthogonal basis for W
-1
1 5
_ —4 1
is ,
0|4
1]]-1
4
X,V 6 :
6. Set v, =x, and compute that v, =X, — v, =X, —(-3)v, = 3| Thus an orthogonal basis for
Vl ° Vl .
0
3 4
. -1 6
Wis ,
2113
-1 0

7. Since || v, ||=~/30 and || v, [=+/27/2 =36/2, an orthonormal basis for W is

2/30 ] [2/46 |

{_IIVIII’—Ilvzll}: ~5/30 |.| 1/4/6
\% vV

P 1130 | | 1746

8. Since || v, ||=\/% and || v, ||=\/574=3\/6, an orthonormal basis for W is

3/350 | [ 1/46 ]
{ A ,L}z ~4/4/50 |,| 2//6
vill v | sid50 | L 1/ve

-

9. Call the columns of the matrix X,, X,, and x; and perform the Gram-Schmidt process on these

vectors:
vV, =X,

1
X,V 3

— 2 iy —

V, =X, ————V, =X, —(-2)v, =
vV, 'V, 3
-1
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-3
X; 'V X,V 3 1 1
V3 =X3— Ly -2 :X3__V1_(__j 2=
V-V, VyV, 2 2 1
3
3 1|]-3
. . 3 1
Thus an orthogonal basis for W is sl
31 -1 3

10. Call the columns of the matrix X,, X,, and x; and perform the Gram-Schmidt process on these

vectors:
vV, =X,
3
X,V 1
vV, =X, — v, =X, —(-3)v, =
\/RA7 1
-1
-1
X,V Xy V 1 5 -1
V3 =X3— Ly, -2 2=X3 TV oV =
vV, vV, V, 2 2 3
-1
-1 30 ]-1
. ) 3 1] -1
Thus an orthogonal basis for W is ks
1| -1 -1

11. Call the columns of the matrix X,, X,, and x; and perform the Gram-Schmidt process on these

vectors:
vV, =X,
s
0
vV, =X, —MV1 =X, —(-Dv,=| 3
V-V, 3
L 3_

2
0
X5V X5V 1
— 3V 3 Vo o _ —
V3 =X;— v, - V,=X;—4v, —| —— |v, =| 2
v,-V, vV, V, 3
2
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1 3 2

-1 0 0

Thus an orthogonal basis for Wis < | —1|,| 3|,| 2
1|3 2

L 1) 3] [-2]

12. Call the columns of the matrix X,, X,, and x; and perform the Gram-Schmidt process on these

vectors:
Vi =X
oy
1
Vy=x, 2 Vly —x —dv,=| 2
v, 'V, q
L 1_
- g
3
o g g 0
-3
L 3_
[ 1] [-1] [ 3]
-1 1 3
Thus an orthogonal basis for W is 0l,| 2, O
1 113
1] | 1] 3]
13. Since A and Q are given,
5 9
- {5/6 176 -3/6 1/6} 1 7 {6 12}
R=Q0 A= =
-1/6 5/6 1/6 3/6||-3 -5 0 6
5
14. Since A and Q are given,
-2 3

5/7 217 —4/7 2/7|| 2 2| |0 7
4 6

o [=207 517 27 47 5 7| [7 07
R=0"A= =

15. The columns of Q will be normalized versions of the vectors v,, v,, and v, found in Exercise 11.
Thus
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Cuds 2 12

145 0 0 NN N
O=|-1/5 12 12[|,R=Q"A=| 0 6 -2

15 -172 172 o o0 4

L UN5 12 —1/2]

16. The columns of Q will be normalized versions of the vectors v,, v,, and v, found in Exercise 12.

17.

18.

19.

20.

21.

Thus
D12 -1/N2) 1/2]
“1/2 1/ @J2)  1/2 2 8 7
0= 0 1/2 0,R=0"A=|0 2J2 32
172 1/2J2) -1/2 o 0 6
/2 1/2V2) 12
a. False. Scaling was used in Example 2, but the scale factor was nonzero.
b. True. See (1) in the statement of Theorem 11.

¢. True. See the solution of Example 4.

False. The three orthogonal vectors must be nonzero to be a basis for a three-dimensional
subspace. (This was the case in Step 3 of the solution of Example 2.)

True. If x is not in a subspace w, then x cannot equal proj,, X, because proj,, x isin W. This idea

was used for v, in the proof of Theorem 11.

c. True. See Theorem 12.

Suppose that x satisfies Rx = 0; then Q Rx = Q0 = 0, and Ax = 0. Since the columns of A are linearly
independent, x must be 0. This fact, in turn, shows that the columns of R are linearly indepedent.
Since R is square, it is invertible by the Invertible Matrix Theorem.

If y is in ColA, then y = Ax for some x. Then y = OQRx = Q(Rx), which shows that y is a linear
combination of the columns of Q using the entries in Rx as weights. Conversly, suppose that y = Ox

for some x. Since R is invertible, the equation A = QR implies that O = AR So
y = AR"'x = A(R"'X), which shows that y is in Col A.

Denote the columns of Q by {q;....,q, }. Note that n < m, because A is m X n and has linearly

independent columns. The columns of Q can be extended to an orthonormal basis for R™ as follows.
Let f, be the first vector in the standard basis for R" that is not in W, =Span{q;,...,q,}, let

u, =f, —proj, f,, and let q,,, =u,/||u, ||. Then {q;....,q,.q,.,,} is an orthonormal basis for

W, =Span{q,....q,.q,,,}. Nextlet f, be the first vector in the standard basis for R that is
notin W, let u, =f, —proj,, f,, andlet q,,, =u,/||u, ||. Then {q,.....q,.q,.;.9q,:,} is an

orthogonal basis for W, , =Span({q,,...,q,.q,.,,4,,,}. This process will continue until m — n vectors
have been added to the original n vectors, and {q;,....q,,.q,,.---.9,,} is an orthonormal basis for R".
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Let O)=[q,,; --- 4, and O, =[Q Q,]. Then, using partitioned matrix multiplication,

QR—QR—A
o784

We may assume that {u,,...,u,} is an orthonormal basis for W, by normalizing the vectors in the

original basis given for W, if necessary. Let U be the matrix whose columns are u,,...,u . Then, by

Theorem 10 in Section 6.3, T'(x) = proj,, x=(UU "x for x in R". Thus 7 is a matrix transformation
and hence is a linear transformation, as was shown in Section 1.8.

Given A = OR, partition A=[A, A, |, where A has p columns. Partition Q as 0=[Q, ]

Rll R12

where Q, has p columns, and partition R as R ={ }, where R, is a p X p matrix. Then

22
Rll R12

A:[A1 A2]=QR=[Q1 QZ]{O R
2

} =[OR, QR,+0O,R,]

Thus A, = Q,R,,. The matrix Q, has orthonormal columns because its columns come from Q. The
matrix R, is square and upper triangular due to its position within the upper triangular matrix R. The
diagonal entries of R, are positive because they are diagonal entries of R. Thus Q,R,; is a QR
factorization of A, .

[M] Call the columns of the matrix x,, X,, X;, and x, and perform the Gram-Schmidt process on
these vectors:

VvV, =X

V, =X, ————V, =X, —(-)v,=[ 3

0]
5
X,V X,V X,V
4 Vi 4' V2 4 V3o _ —
V=X - Vi 27 3—X4__V1_(_1)V2_(__jv3— 0
VitV V' Vs V3 V3 0
5]

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



Thus an orthogonal basis for W is

6.5 ¢ Solutions 379

|

N

|

W
S O & © O
S O wn O

25. [M] The columns of Q will be normalized versions of the vectors v,, v,, and v, found in Exercise

24. Thus

12 12 143
1710 1/2 0
0=-3/10 -1/2 1/\3
4/5 0 1/\3
1710 1/2 0

o,

20 =20 -10 10

”ﬁR - 0 6 -8 -6

0. R=0 0 0 6/3 =33

0 0 0 0 5V2
~1/42

26. [M] In MATLAB, when A has n columns, suitable commands are

Q = A(:,1)/norm(A(:,1))

(o)

for j=2: n

% The first column of Q

v=A(:,]) —Q*(Q'*A(:,7))

Q(:,3J)=v/norm(v)

% Add a new column to Q

end

6.5 SOLUTIONS

Notes: This is a core section — the basic geometric principles in this section provide the foundation
for all the applications in Sections 6.6—6.8. Yet this section need not take a full day. Each example
provides a stopping place. Theorem 13 and Example 1 are all that is needed for Section 6.6. Theorem 15,
however, gives an illustration of why the QR factorization is important. Example 4 is related to Exercise

17 in Section 6.6.

1. To find the normal equations and to find X, compute

-1

o [-1 2
ATA= 2
2 -3 3|

o -1 2 -1
A=
2 3 3

SRS

2
{ 6 —11}
3=
-11 22
3
—4
11
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) T T 6 -11| x —4
a. The normal equations are (A" A)x=A"b: = .
-11 22| x, 11

b. Compute
6 —11]'[—4 2 114
x=(A"TA)ATb = - L
-11 22 11 1111 6] 11
133 13
1122 |2
2. To find the normal equations and to find X, compute

2 1
o[22 2 12 8
10323 & 10

5

~ (2 2 2 24

ATb= 8 |=
too )l -2

) T T 12 8 || x 24
a. The normal equations are (A" A)x=A"b: = .
8 10|l x, -2

b. Compute

Ty tarp |12 8 [24] 1[10 —87[-24
X = = e
8 10| | 2| 56/-8 12 -2

1 [—224 __—4
56 168 | | 3
3. To find the normal equations and to find X, compute
F 1 o]
- 1 -1 0 2|-1 2 6 6
A A= =
-2 2 3 5] 0 3 6 42
L 2 5_
[ 3
r 1 -1 0 2| 1 6
A'b= =
-2 2 3 5|4 -6
| 2

. T T 6 6] x 6
a. The normal equations are (A" A)x=A"b: =
6 42| x, -6

b. Compute
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6 6]'T6 42 -6 6
x=(A"A)'ATb= - L
6 42| |-6| 216|-6 6] -6
1 [288] [ 4/3
C216] =72 |-1/3

4. To find the normal equations and to find X, compute

1 3
ATA_l 111 1_33
_3—111 1_311

5
A (111 6
Ab= 1|=
3041 1 14
0

. T T 3 3| x 6
a. The normal equations are (A" A)x=A"b: =
3 11| x, 14

b. Compute

-1
o) 4L
3 11| 14| 24|-3 3|14

1|24 1
- 5{24} - H
5. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the
system A’ Ax=A"b:
4 2 2 14 1 0 1 5
(AT ATb]|=[2 2 0 4|~j0 1 -1 -3
2 0 2 100 |0 O 0 O

5 -1
so all vectors of the form X=| =3 |+ x;| 1| are the least-squares solutions of Ax = b.
0 1

6. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the
system A"Ax=A"b:

6 3 3 27 1 0 1 5
[ATA ATb]=[3 3 0 12[~[0 1 -1 -1
30 3 15 00 0 O
5 -1
so all vectors of the form X=| —1 |+ x;| 1| are the least-squares solutions of Ax = b.
0 1
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1 2] 3
-1 [ 43
7. From Exercise 3, A= , b= , and X= . Since
0 —4 | —1/3
2 | 2
1 3 2 3] [-1
. -1 4/3' 1| |2 1| -3
AX— — = — —
0 -1/3 —4 -1 -4 3
2 2 1 2| |1

the least squares error is || AX—b|j= V20 =245.

1 3 5
1
8. From Exercise 4, A=|1 -1|, b=|1], and )?:{J. Since
1 1 0
1 3 . 5 4 5 -1
Ax-b=|1 —1{1}—1:0—1:—1
1 1 0 2 0 2

the least squares error is || AR—b ||=/6.

9. (a) Because the columns a, and a, of A are orthogonal, the method of Example 4 may be used to

find b, the orthogonal projection of b onto Col A:

b b 2 1 : 1 |
b= A a,=—a,+—a,=—| 3|+=|1|=|1

a -a a,-a, 7
-2 4 0

(b) The vector X contains the weights which must be placed on a, and a, to produce b. These
2/7|
7]

weights are easily read from the above equation, so X ={

10. (a) Because the columns a, and a, of A are orthogonal, the method of Example 4 may be used to

find b, the orthogonal projection of b onto Col A:

| 1 | 2 4
f):b.a1 a1+b-a2 a,=3a, +—-a,=3-1|+-4|=|-1

(b) The vector x contains the weights which must be placed on a, and a, to produce b. These

3
weights are easily read from the above equation, so X = .
1/2

11. (a) Because the columns a,, a, and a, of A are orthogonal, the method of Example 4 may be used

to find b, the orthogonal projection of b onto Col A:
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a,-3 ;- ;-4
4 0 1 3
211 =5 1| 1 1
==| |+0 += =
3|6 1| 31 0 4
1 -1 =5 -1
(b) The vector X contains the weights which must be placed on a,, a,, and a; to produce b. These
2/3
weights are easily read from the above equation, so X=| 0.
1/3

12. (a) Because the columns a,, a, and a, of A are orthogonal, the method of Example 4 may be used

to find b, the orthogonal projection of b onto Col A:

~ b-a b-a, b-a, 1 14 5
b= a + a, + : a3=§a1+?az+ -3 a,

1 2
a,-a -3, a;-a;
1 1 0 5
1 1 N 14101 5/ -1 |2
3]0 3(1] 31| |3
-1 1 -1] |6
(b) The vector % contains the weights which must be placed on a, , a,, and a, to produce b. These
1/3
weights are easily read from the above equation, so X=| 14/3|.
-5/3

13. One computes that

(11 0
Au=|-11|,b—Au=| 2|,|b-Aul|=+/40

11 |6

- -
Av=|-12|,b—Av=| 3|,||b—Av|=+29

7 )

Since Av is closer to b than Au is, Au is not the closest point in Col A to b. Thus u cannot be a least-
squares solution of Ax =b.

14. One computes that

3 2
Au=|8|,b—Au=|—4|||b-Au=+24
2 2
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15.

16.

17.

18.

19.

7 )
Av=|2[,b-Av=| 2|,|b-Av|=24
8 —4

Since Au and Au are equally close to b, and the orthogonal projection is the unigue closest point in
Col A to b, neither Au nor Av can be the closest point in Col A to b. Thus neither u nor v can be a
least-squares solution of Ax = b.

35 7
The least squares solution satisfies R&=Q"b. Since R = {0 J and Q"b :{ J, the augmented

matrix for the system may be row reduced to find

e oovly s S ]

and so X :{ } is the least squares solution of Ax = b.

1772

2 3
The least squares solution satisfies R&=Q"b. Since R = {O 5} and Q"b :{ .

} , the augmented
matrix for the system may be row reduced to find
T 2 3 17/2 1 0 29
[ R Q b} - -
0 5 9/2 o 1 9
. 129]. .
and so X= 9 is the least squares solution of Ax = b.

True. See the beginning of the section. The distance from Ax to bis || Ax —b ||.

True. See the comments about equation (1).

False. The inequality points in the wrong direction. See the definition of a least-squares solution.
True. See Theorem 13.

e R0 T

True. See Theorem 14.

®

True. See the paragraph following the definition of a least-squares solution.

b. False. If x is the least-squares solution, then A X is the point in the column space of A closest to
b. See Figure 1 and the paragraph preceding it.

c. True. See the discussion following equation (1).

d. False. The formula applies only when the columns of A are linearly independent. See Theorem
14.

e. False. See the comments after Example 4.
f. False. See the Numerical Note.

a. f Ax =0, then A” Ax = A" 0=0. This shows that Nul A is contained in Nul AT A.

b. If A"Ax=0, then x’ AT Ax=x"0=0. So (Ax)" (Ax) =0, which means that || A ||*=0, and
hence Ax = 0. This shows that Nul A” A is contained in Nul A.
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20. Suppose that Ax = 0. Then A" Ax=A"0=0. Since A" A is invertible, x must be 0. Hence the
columns of A are linearly independent.

21. a. If A has linearly independent columns, then the equation Ax = 0 has only the trivial solution. By

Exercise 19, the equation A" Ax=0 also has only the trivial solution. Since ATAisa square
matrix, it must be invertible by the Invertible Matrix Theorem.

b. Since the n linearly independent columns of A belong to R™, m could not be less than n.

¢. The n linearly independent columns of A form a basis for Col A, so the rank of A is n.

22. Note that AT A has n columns because A does. Then by the Rank Theorem and Exercise 19,
rank A’ A=n—dimNul A" A = n—dimNul A = rank A

23. By Theorem 14, b=A%= A(ATA)' ATb. The matrix A(A"A)" AT is sometimes called the hat-

matrix in statistics.

24. Since in this case A’ A=1, the normal equations give X = A"b.

2 2|l «x 6
25. The normal equations are {2 2}{ } = {6} , whose solution is the set of all (x, y) such that x + y =
Yy

3. The solutions correspond to the points on the line midway between the lines x + y=2 and x + y =
4.

26. [M] Using .7 as an approximation for V212, a, =a, =.353535 and q, =.5. Using .707 as an
approximation for V2172, a, =a, =.35355339, a, =.5.

6.6 SOLUTIONS

Notes: This section is a valuable reference for any person who works with data that requires statistical
analysis. Many graduate fields require such work. Science students in particular will benefit from
Example 1. The general linear model and the subsequent examples are aimed at students who may take a
multivariate statistics course. That may include more students than one might expect.

1. The design matrix X and the observation vector y are

1 0 1
lel’yzl’

1 2 2

1 3 2

and one can compute

4 6 6| 4 9
xTx = Xly=| LA=(X"X)"x"y=
{6 14} y L J p= ) y 4
The least-squares line y = f, + f,x is thus y =.9 + .4x.

2. The design matrix X and the observation vector y are
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b ek e

and one can compute

4 12 6] 4 -6
X'X = Xly=| LB=X"X)"X"y=
Lz 46} Y {25} A= X)Xy 7

The least-squares line y = /3, + f,x is thus y =—.6 + .7x.

3. The design matrix X and the observation vector y are

1 -1 0
le O,yzl,

1 1 2

1 2 4

and one can compute

4 2 71 5 1.1
X'x = Xy=l |, B=(X"X)"X"y=| "
2 efralosmaroin| ]

The least-squares line y =/, + fx isthusy=1.1 + 1.3x.

4. The design matrix X and the observation vector y are

1 2 3
X:13,y:2,

1 5 1

1 6 0

and one can compute

4 16 6] 43
xTx = Xly=| LB=X"X)"X"y=
{16 74} y {17}'6 ( )Xy -7

The least-squares line y = /3, + f,x is thus y =4.3 — .7x.

S. If two data points have different x-coordinates, then the two columns of the design matrix X cannot
be multiples of each other and hence are linearly independent. By Theorem 14 in Section 6.5, the
normal equations have a unique solution.

6. If the columns of X were linearly dependent, then the same dependence relation would hold for the
vectors in R? formed from the top three entries in each column. That is, the columns of the matrix
1 x xf
1 x, x; | wouldalso be linearly dependent, and so this matrix (called a Vandermonde matrix)
I x x32
would be noninvertible. Note that the determinant of this matrix is (x, —x,)(x; — x,)(x; —x,) # 0
since x;, x,,and x; are distinct. Thus this matrix is invertible, which means that the columns of X

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



6.6

Solutions

387

are in fact linearly independent. By Theorem 14 in Section 6.5, the normal equations have a unique

solution.

7. a. The model that produces the correct least-squares fit is y = X + ¢ where

11
2 4
X=[3 9
4 16

5 25]

[1.8]
2.7
3.4
3.8

5=

139

B
B,

},ande:

~ | 1.76
b. [M] One computes that (to two decimal places) S :{ 20}, so the desired least-squares equation

is y=1.76x—.20x>.

8. a. The model that produces the correct least-squares fit is y = X + € where

X xl2 x13 Y1 A §
X =|: ,y=| i [,f=|p, |,ande=
| X, x,% xz Y i €n
b. [M] For the given data,
4 16 64 [1.58]
6 36 216 2.08
8 64 512 2.5
10 100 1000 2.8
X = andy =
12 144 1728 3.1
14 196 2744 34
16 256 4096 3.8
|18 324 5832 | | 4.32 |
5132
SO ﬁ =X"X)"'x Ty =|-.03348 |, and the least-squares curve is
.001016

y=.5132x—.03348x* +.001016x".

9. The model that produces the correct least-squares fit is y = X+ € where

cos1
X =|cos?2

cos 3

sin 1

sin 3

7.9

-9

. A
sin2 |,y=|5.4 ,ﬂz{B},andez €

Sl

&
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10. a. The model that produces the correct least-squares fit is y = X8 + € where

o~0200)  ,—07(10)

[21.34] 6
e—.02(11) e—.07(11) 20.68 €
. M, 2
X =| =202 20702 | v =120.05 |, B = y ,ande=|¢ |,
B
p~0204) =074 18.87 €
_e—.02(15) e~ 0705) | _18'30_ L&

~ 19.94
b. [M] One computes that (to two decimal places) = LO 10} so the desired least-squares

equation is y= 19.94¢7% +10.10e°"".

11. [M] The model that produces the correct least-squares fit is y = X + € where

1 3cos .88 [ 3] 6 |
1 2.3cos1.1 23 €
X=|1 1.65cosl.42|,y=|1.65 ,ﬂ={ﬁ},ande: &
1 1.25c081.77 1.25 ¢ e
1 10lcos2.14]  [1.01] & |

. (1.4
One computes that (to two decimal places) :{ 81 J . Since e = .811 < 1 the orbit is an ellipse. The

equation r = /(1 — e cos @) produces r = 1.33 when = 4.6.

12. [M] The model that produces the correct least-squares fit is y = X+ €, where

1 3.78] 91 6
1 411 98 €
X=|1 439|,y=|103 ,ﬂ:{ﬁo},ande= &
1 473 110 A €
|1 488|  [112] &

8.56
19.24
p=1856+19.24 In w. When w = 100, p = 107 millimeters of mercury.

One computes that (to two decimal places) ,B :{ } , so the desired least-squares equation is
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13. [M]
a. The model that produces the correct least-squares fit is y = X8+ € where
1 o o o] B} -
S TS 0 %
12 22 2 289‘89 a
. €
13 3 ¥ 62.0 ez
o4 44 104.7 €
15 5 5 159.1 ’;" €
x={1 6 6 6 |y=2220[,8=|""|ande=| ¢
17 7 7 294.5 P 6,
1 8 8 8§ 380.4 h €
1 9 9 ¢ 471.1 €
1 10 10* 10° 3717 o
o112 1P 0808 o
809.2 €»
12 o122 12)) - T -
—.8558
One computes that (to four decimal places) ,B = :Z(S)ii , so the desired least-squares
—-.0274

polynomial is y(f) =—.8558 +4.7025¢ +5.5554* —.0274¢".
b. The velocity v(¢) is the derivative of the position function y(¢), so
v(t) =4.7025+11.11087 —.0822¢*, and v(4.5) = 53.0 ft/sec.

14. Write the design matrix as [1 X]. Since the residual vector e =y — X B is orthogonal to Col X,

0=1-e=1-(y=XB)=1"y-1" X)J

ety zx}m{y-nﬁo—/zzmy-nﬁo—n/zz

This equation may be solved for y to find y = ﬂAO + ,81)_6.

15. From equation (1) on page 369,

el ) Hs

oy R
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16.

17.

18.

19.

20.
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The equations (7) in the text follow immediately from the normal equations X' X B=X Ty.

The determinant of the coefficient matrix of the equations in (7) is "Z X - (Zx)z. Using the 2 x 2

formula for the inverse of the coefficient matrix,

bl Y8
Hence

s _ Q- 0 ) j _ny = 0QY)
0 an2 —(Z:x)2 A anz —(Z:x)2

Note: A simple algebraic calculation shows that z y— (Z X) Bl =n ﬁo, which provides a simple

formula for /4, once f, is known

a. The mean of the data in Example 1 is x =5.5, so the data in mean-deviation form are (-3.5, 1),

1 =35
1 -

(-.5,2), (1.5, 3), (2.5, 3), and the associated design matrix is X = | L5l The columns of X are
1 2.5

orthogonal because the entries in the second column sum to 0.

4 0 9
b. The normal equations are X' X B=X "y, or P = . One computes that
0 21| B 7.5

- 9/4 .
B= {5/14} so the desired least-squares line is y=(9/4)+(5/14)x =(9/4)+(5/14)(x=5.5).

Since

by n X
S NN K

X"X isa diagonal matrix when Z x=0.

The residual vectore =y — X B is orthogonal to Col X, while y=X [? is in Col X. Since € and y are
thus orthogonal, apply the Pythagorean Theorem to these vectors to obtain

SSM=llyIP=l1§ +elP=l13 I +lelP=II X BIP +]ly - X BIP=SS(R) +SS(E)
Since B satisfies the normal equations, X Tx /A3 =X"y, and
IXBIP=(XB) XP)=B"X"xp=F"x"y
Since || X,B I’=SS(R) and y"y=||y|]* =SS(T), Exercise 19 shows that
SS(E)=SS(T)-SS(R)=y"y- A" X"y
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6.7 SOLUTIONS

Notes: The three types of inner products described here (in Examples 1, 2, and 7) are matched by
examples in Section 6.8. It is possible to spend just one day on selected portions of both sections.
Example 1 matches the weighted least squares in Section 6.8. Examples 2—6 are applied to trend analysis
in Seciton 6.8. This material is aimed at students who have not had much calculus or who intend to take
more than one course in statistics.

For students who have seen some calculus, Example 7 is needed to develop the Fourier series in
Section 6.8. Example 8 is used to motivate the inner product on Cla, b]. The Cauchy-Schwarz and
triangle inequalities are not used here, but they should be part of the training of every mathematics
student.

1. The inner product is (x, y) =4x,y, +5x,y,. Letx=(1, 1),y = (5, -1).
a. Since || x|P=(x, x)=9, || x||=3. Since ||y |P=(y, y) =105, ||y =+/105. Finally,
| (x,y) =15 =225.
b. A vector z is orthogonal to y if and only if (x, y) = 0, that is, 20z, —5z, =0, or 4z, = z,. Thus

1
all multiples of L} are orthogonal to y.

2. The inner product is (x,y)=4x,y, +5x,y,. Letx = (3, -2), y = (-2, 1). Compute that
IxIP=¢x.x)=56. [y [P=(y. ) =21 [x[Ply[F=56-21=1176. (x.y) = =34, and [<x, y) ['=1156.
Thus |(x, y) " <||x|P|ly |I*, as the Cauchy-Schwarz inequality predicts.

3. The inner product is { p, g) = p(~1)g(=1) + p(0)g(0) + p(1)q(1), so
(4+1,5-41*) =3(1)+4(5)+5(1)=28.

4. The inner product is { p, g) = p(=1)g(=1) + p(0)g(0) + p(1)g(1), so (3t—t2, 3+2t2> _
(5 +03)+2(5)=-10.

5. The inner product is { p, g) = p(-=1)g(-1) + p(0)g(0) + p(1)¢g(1), so
(p.p)=(4+1,4+1)=3"+4"+5" =50 and || p = /(p. p) =+/50 =52 . Likewise
(Gq)=(5—-47,5-4*) =1 +5* +1> =27 and || ¢||=/(g.9) =~27 =33 .

6. The inner product is { p, g} = p(~1)g(=1) + p(0)g(0) + p(1)g(1), so {p, p) =3t 1,3t —1*) =
(—4)* +0%+2% =20 and || p|l=p, p) =20 = 24/5. Likewise (g,q) =(3+21*,3+21%) =
52 +32+5%=59 and || ¢ |l=/g.q) =~/59.

7. The orthogonal projection § of g onto the subspace spanned by p is
(¢.p) _28 _56 14

A+1)=—+—t

= P50 25 25

8. The orthogonal projection § of g onto the subspace spanned by p is
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1

(q,p) 10 2 3
e p=——Gt—1t)=—=t+—t
p ( ) it

§= -
(p,p) 20

9. The inner product is {p, g) = p(-3)q(=3) + p(=1)g(-1) + p(1)gq(1) + p(3)q(3).
a. The orthogonal projection p, of p, onto the subspace spanned by p, and p, is

A b E) 20 O
2=<P2 Po) 0+<P2 p1>p1=—(1)+—t=5
(Pos Po) (p1»py) 4 20

b. The vector g=p, — p, =1* -5 will be orthogonal to both p, and p, and {p,, p;,¢q} will be an
orthogonal basis for Span{p,, p,, p,}. The vector of values for g at (-3, -1, 1, 3) is (4, 4, 4, 4),

so scaling by 1/4 yields the new vector g = (1/4)(t* =5).

10. The best approximation to p = r by vectors in W =Span{ p,, p;.q} will be

<p’p0> +<p7pl> +<P’¢]> :91+ﬁt+9[l‘2_5j=ﬂt
<po,po>p° <p1,p1>p‘ <q,q>q 4() 20() 4 4 5

P = projy p =

11. The orthogonal projection of p = 1 onto W = Span{ p,, p;, p,} Will be

(P, py) (P, 1) p.pyy 0.5 34 0 » 17
+ + p2—5(1)+10(l)+ 4(z 2) t

p=projy p= 0 I
v <P0,Po> <P1vP1> <P2,P2> 5

12. Let W =Span{ p,, p;» p,}. The vector p; = p—proj, p =1 —(17/5)t will make {Pos P15 P2 D3}
an orthogonal basis for the subspace P5 of P4. The vector of values for p, at(-2,-1,0, 1, 2) is

(-6/5, 12/5, 0, -12/5, 6/5), so scaling by 5/6 yields the new vector p; = (5/6)(> —(17/5)1) =
(5/6)t —=(17/6)t.

13. Suppose that A is invertible and that (u, v) = (Au) - (Av) for u and v in R". Check each axiom in the
definition on page 376, using the properties of the dot product.

i. (u,v)=(Au)- (Av)=(Av) - (Au) =(v, u)

ii. (u+v,w)y=AMW+V))- - (AwW) = (Au+ Av) - (AwW) = (Au) - (AW) + (AV) - (AW) =(u, w) + (v, W)

iii. {cu, v) = (A(cw)) - (Av) = (c(Aw)) - (Av) = c((Au) - (Av)) = c(u, v)

iv. (u,u)=(Au)-(Au)=|| Au|]*>0, and this quantity is zero if and only if the vector Au is 0. But
Au = 0 if and only u = 0 because A is invertible.

14. Suppose that T'is a one-to-one linear transformation from a vector space V into R”" and that (u, v) =
T(u) - T(v) for u and v in R". Check each axiom in the definition on page 376, using the properties of
the dot product and 7. The linearity of 7 is used often in the following.

. (u,vy=TW)- - T(v)=T(v)- - T(u) =(v,u)

ii. w+v,wy=Ta+v) - T(w)=(T@) + T(v)) - T(w) =T) - T(w) + T(v) - T(wW) ={u, w) +{V, W)

iii. {cu, v) =T(cu) - T(v) = (cT(w)) - T(v) = c¢(T(n) - T(Vv)) = c(u, v)

iv. (wu)=T(u) -T(u)=||T@)|*=0, and this quantity is zero if and only if u = 0 since T'is a one-
to-one transformation.
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Using Axioms 1 and 3, (u, cv) ={cv, u) = c{v, u) = c(u, v).
Using Axioms 1, 2 and 3,
Jlu-v|f=@-v,u-v)=wu—-v)—(v,u—v)
=(u,u) —(u, v) —(v,u) +(v, v) =(u,u) — 2w, v) +(Vv, V)
=l 20w, v) +[| v|P

Since {u, v} is orthonormal, ||u|*=|| v|*=1 and (u, v) = 0. So |[u-v|}=2.

Following the method in Exercise 16,
lu+v|P=@+v,u+v)=@u+v)+(v,u+v)
=(uu) +{u, v) +{v,u) +(v,v) =(u,u) + 2(u, v) +(Vv, V)
=[[ulf + 26w, v) +] v |

Subtracting these results, one finds that ||u+v ||2 —[lu—-v ||2: 4(u,v), and dividing by 4 gives the
desired identity.

In Exercises 16 and 17, it has been shown that ||[u—v|*=||u| =2¢(u,v) +|| v|| and ||[u+v|=

lu|f* +2¢u,v) +| v|]* . Adding these two results gives|u+v | +[|lu—=v|*=2]u|* +2| v|*.

b
let u={ﬁ] and V=|:\/\/:]. Then |lu|*=a+b, |v|’=a+b, and (u,v>=2\/%. Since a and b are
b a

nonnegative, |u|=va+b, | v|=va+b. Plugging these values into the Cauchy-Schwarz
inequality gives
Wab =, )| < |u|l|v|=Va+bJa+b=a+b

Dividing both sides of this equation by 2 gives the desired inequality.

The Cauchy-Schwarz inequality may be altered by dividing both sides of the inequality by 2 and then
squaring both sides of the inequality. The result is

((u,V>j2 < NulPlivie
2 4

_|4 |1 2_ 2, 42 2 _ _ .
Now let u= b and v= { . Then ||ul|["=a”+b~, ||v|[ =2, and (u, v) = a + b. Plugging these

values into the inequality above yields the desired inequality.
The inner product is (f,g)= J.; f(g®)dr. Let f(t)=1- 3%, gt)=t —1>. Then

_[! 2 3 g [la,s 3 _
(f-g)=] =3 e=r")ydr=[ 3 —4r' +1dr=0

The inner productis {f,g) = _[Olf(t)g(t) dr. Letf(1)=5t-3, g(t)=1 —1*. Then
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(flg>=L;(Sﬁ—$U3—t%dt:LiSﬂﬁ—&3+3ﬁdt:0

The inner product is (f.¢)= [ f(1)g(t)dr. so (f.f)=[ (1~3)di=[ 9 61 +1dr =415, and

I £ Il=NCF £ =2/4/5.

- - 1 Ls 20 L6 5, 4
The inner product is (f,g)zjof(t)g(t) dt, so (g,g)zj.o(t —17) dtzj.ot -2 +17dr=1/105, and

I gll=+(g.g) =1//105.

The inner productis (f,g) = J: f(@®)g(t)dt. Then 1 and ¢ are orthogonal because (1, f) = J‘_llt dt=0.

So 1 and 7 can be in an orthogonal basis for Span{l, z,7*}. By the Gram-Schmidt process, the third
basis element in the orthogonal basis can be

2 2

an - (n
Since (2,1)=[' r2dr=2/3, (L) = 1dr=2, and (*.ry=[' r’dr=0, the third basis element can
B - | - B B - | — 4 B - 1 — Y

be written as 7> — (1/3). This element can be scaled by 3, which gives the orthogonal basis as
{1,7,3* —1}.

The inner productis (f,g) = J‘_zz f(@®)g()dt. Then 1 and ¢ are orthogonal because (1, 1) = J‘_zzt dt=0.

So 1 and 7 can be in an orthogonal basis for Span{l, z,7*}. By the Gram-Schmidt process, the third
basis element in the orthogonal basis can be

t2 _<tz_’1>1_@t
1,1 (t,1)

. 2w (2.2, _[2 _ 28 (2.3, . .
Since (£2,1) = [_2t dt=16/3, (1,1)= I_zldt—4, and (t ,t>_j_2t dt =0, the third basis element can

be written as #* —(4/3). This element can be scaled by 3, which gives the orthogonal basis as
{1,1,3t> —4).

[M] The new orthogonal polynomials are multiples of —17¢+5¢ and 72 —155¢* +35¢*. These
polynomials may be scaled so that their values at -2, -1, 0, 1, and 2 are small integers.

[M] The orthogonal basis is f,(r)=1, f,(t)=cost, f,(t)= cos’t —(1/2) =(1/2)cos 21, and
f()= cos’t —(3/4)cos 1 = (1/4)cos 3t.
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6.8 SOLUTIONS

Notes: The connections between this section and Section 6.7 are described in the notes for that section.
For my junior-senior class, I spend three days on the following topics: Theorems 13 and 15 in Section 6.5,
plus Examples 1, 3, and 5; Example 1 in Section 6.6; Examples 2 and 3 in Section 6.7, with the
motivation for the definite integral; and Fourier series in Section 6.8.

1. The weighting matrix W, design matrix X, parameter vector 3, and observation vector y are:

1 0 0 0 O 1 2 0
0 2 0 0 O 1 -1 0
W=0 0 2 0 0, X=[1 0 ,ﬂ:{ﬁ()},y: 2
000 20 11 : 4
00 0 0 1] 1 2] | 4]
The design matrix X and the observation vector y are scaled by W:

(1 -2] 0]

2 2 0

=2 0| Wy=|4

2 2 8

|1 2] | 4]

Further compute

wywx =[] aoyrwy <[ 8
0 16] 24
and find that
. e 114 0]f28] [ 2
B = (WX WE)~ () Wy{ 0 1/16}{24}_[3/2}

Thus the weighted least-squares line is y = 2 + (3/2)x.

2. Let X be the original design matrix, and let y be the original observation vector. Let W be the
weighting matrix for the first method. Then 2W is the weighting matrix for the second method. The
weighted least-squares by the first method is equivalent to the ordinary least-squares for an equation
whose normal equation is

WX) WX B =(WX)" Wy (1)

while the second method is equivalent to the ordinary least-squares for an equation whose normal
equation is

QWX) W)X B=WX)" 2W)y )

Since equation (2) can be written as A4WX) WX ,[;’ =4wWx)" Wy, it has the same solutions as
equation (1).
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3. From Example 2 and the statement of the problem, p,(t)=1, p,(t)=t, p,(t)= -2,
ps(t)=(5/ 6)’ —(17/6)t, and g=(3,5,5,4,3). The cubic trend function for g is the orthogonal
projection p of g onto the subspace spanned by p,, p,, p,,and p,:

(&, Do) +<g,p1> +<g,p2> +<g,p3>
(PosPo) A pp) " (papa) T APy ps)

2002 +_—7(t2 -2) +£(§t3 —1—71‘)
5 10 14

=4—Lt—l(t2 —2)+l(§t3 —Htj=5—gt—lt2 Ly
0 6 2 6

132 3

This polynomial happens to fit the data exactly.

4. The inner product is  p, ¢) = p(-5)q(=5) + p(=3)q(=3) + p(-Dg(=1) + p(1)q(1) + p(3)q(3) + p(5)q(5).
a. Begin with the basis {1, f, t*} for P,. Since 1 and 7 are orthogonal, let p,(t)=1 and p,(t)=t.

Then the Gram-Schmidt process gives

2 2
p2(t) =t2 _ul_ut =t2 —E=t2 _2

A () 6 3
The vector of values for p, is (40/3, -8/3, —=32/3, —-32/3, —8/3, 40/3), so scaling by 3/8 yields the
new function p, = (3/8)(t* —(35/3)) = (3/8)t* — (35/8).

b. The data vectoris g = (1, 1, 4, 4, 6, 8). The quadratic trend function for g is the orthogonal
projection p of g onto the subspace spanned by p,, p, and p,:

(g,P()) ) + (g,l?1> + <g’p2> pzzﬁ(l)+ﬂt+£(gt2 _ﬁj
(po,P()) <P1,P1> <p2,]72> 6 70 8418 8

5 1(32 35] 59 5 3,
=4+ t+—| - ==+ ——t
7 8 8) 16 7 112

p=

5. The inner productis (f, g) = J.OM f(@®)g)dt. Let m # n. Then

. . 2, . 1 27
{sin mt, sin nt) = .[o sin mt sin nt dt = E-[O cos((m—n)t) —cos((m+n)t)dt =0
Thus sin mt¢ and sin nt are orthogonal.
6. The inner productis (f,g) = Ij” f()g(t)dt. Let m and n be positive integers. Then
. 2, 1 p27 . .
(sin mt,cos nt) = jo sin mt cos nt dt = EIO sin((m+n)t)+sin((m—n)t)dt =0
Thus sinm¢ and cosnt are orthogonal.

7. The inner productis (f,g) = Ij” f()g(t)dt. Let k be a positive integer. Then

2 1 ¢2
|| cos kt ||*=(cos kt,cos kt) = IO " cos?kt dt = E-[O "l+cos 2kt dt =7
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and

I sin & [P=(sin kesin &) = [ sin*h dr =% [T1-cos2krdi=r

8. Let f(r) =t — 1. The Fourier coefficients for f are:

G _
Sy j f()dt_—j t—ldt=—1+7
and for k> 0,

1 ¢27 1 c27
a, =—| " ft)cos ke dt =—[ " (t=)cos kt dt =0
0 oo

1 27 X 1 pc2r .
b, = —J. f(t)sin kt dt = —I (t—=1Dsin kt dt =——
70 w0
The third-order Fourier approximation to fis thus

a—20+blsint+bzsin 2t +bysin 3t =—1+ 7 —2sint —sin 2t—§ sin 3¢

9. Let f(t) =2z — t. The Fourier coefficients for f are:

ao 2 1 27
20— Ndt=—| 2m—tdt=
Y=o, rwd=—]

and for k > 0,

1 c2r 1 c2rx
a, =— " f(6)cos ke dt =—[ " (2w —1) cos kt dt =0
7o /A

1 e27 . 1 c27 . 2
b, _;jo F(t)sin ke dt _;jo (27 1) sin kit di =
The third-order Fourier approximation to fis thus

a . . . . . 2.
70+blsm t+b,sin 2t + bysin 3t =7 +2sin ¢ +sin 2t+§sm 3t

1 forO<tr<rm : ..
10. Let f()= . The Fourier coefficients for f are:
-1 forzx<t<2m

ao

j f@ydi= —j dt—— =0
andfork>0,
1 c2r 1 ¢ 1 (2r
a, _;Io f(t)cos kt dt—;_[o cos kt dt—;jﬂ cosktdt=0

4/(km) for k odd

b —ljz”f(t)sinktdt—lj”sinktdt—ljz”sinktdt—
T xdo 7t J0 r 0 for k even

The third-order Fourier approximation to fis thus

. . 4 . 4 .
b;sin t +b;sin 3t =—sin ¢t +—sin 3t
V4 3z
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11. The trigonometric identity cos 2f =1—2sin’* shows that
sin’t = 1 —lcos 2t
2 2

The expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or
less, so this expression is the third-order Fourier approximation to sin”¢ .

12. The trigonometric identity cos 3¢ =4 cos’t —3cost shows that
3, 3 1
cos’t =—cos t +—cos 3¢
4 4

The expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or
less, so this expression is the third-order Fourier approximation to cosz.

13. Let fand g be in C [0, 2r] and let m be a nonnegative integer. Then the linearity of the inner product
shows that

((f+ g), cos mty = f, cos mt) + (g, cos mt), {( f+ g), sin mt) = f, sin mt) + { g, sin mt)
Dividing these identities respectively by (cos mt, cos mt) and (sin mt, sin mf) shows that the Fourier
coefficients a,, and b, forf+ g are the sums of the corresponding Fourier coefficients of f and of g.

14. Note that g and / are both in the subspace H spanned by the trigonometric polynomials of order 2 or
less. Since 4 is the second-order Fourier approximation to f; it is closer to f than any other function in
the subspace H.

15. [M] The weighting matrix W is the 13 x 13 diagonal matrix with diagonal entries 1, 1, 1, .9, .9, .8, .7,
.6,.5,.4,.3,.2,.1. The design matrix X, parameter vector 3, and observation vector y are:

1 0 0 0 )
1111 0.0
1 2 22 2 8.8
1 3 3 3 zz'i
2 3 ’
15 5 5 [;0 159.1
X=[1 6 6 6| 8= ﬂl Ly =|222.0
1 7 77 7 ﬁ2 294.5
1 8 Q2 g3 3 380.4
1 9 92 E 471.1
1 10 10> 10° 71T
, \ 686.8
1 11 117 11 2092
112 122 12 -

The design matrix X and the observation vector y are scaled by W:
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1.0 00 0.0 0.0] [ 0.00]
1.0 1.0 1.0 1.0 8.80
1.0 20 4.0 8.0 29.90
9 27 81 243 55.80
9 36 144 576 94.23
8 40 200 100.0 127.28
WX =| .7 42 252 151.2|,Wy=|155.40
6 42 294 205.8 176.70
5 40 320 2560 190.20
4 3.6 324 2916 188.44
3 3.0 300 300.0 171.51
2 22 242 2662 137.36
|1 12 144 1728 | 80.92
Further compute
6.66 22.23 120.77 797.19 747.844
; 2223 120.77 797.19 5956.13 ; 4815.438
WX)' WX = ,(WX) Wy =
120.77  797.19  5956.13  48490.23 35420.468
797.19 5956.13 48490.23 420477.17 285262.440
and find that
—0.2685
. S ; 3.6095
B=(WX)"WX)" (WX) Wy = 5 8576
—-0.0477

Thus the weighted least-squares cubic is y = g(r) =—.2685+3.6095¢ +5.85761* —.0477¢". The

velocity at t = 4.5 seconds is g'(4.5) = 53.4 ft./sec. This is about 0.7% faster than the estimate
obtained in Exercise 13 of Section 6.6.

1 forO<t<nx . o
16. [M] Let f(¢)= . The Fourier coefficients for f have already been found to be
-1 forx<t<2m

4/(kr) for k odd

. Thus
0 for k even

a, =0 forall k>0 and b, :{

f4(@) =isin t +isin 3tand fi(t) =isin t +isin 3t +isin 5t
T kY4 T kY4 hY/4

A graph of f, over the interval [0, 27] is
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Chapter 6 SUPPLEMENTARY EXERCISES

1.

s

SR -0 &0

A graph of f; over the interval [0, 27] is

A graph of f; over the interval [-27, 27] is

False. The length of the zero vector is zero.
True. By the displayed equation before Example 2 in Section 6.1, with ¢ = -1,
==l Dx =l -1l == x]l.
True. This is the definition of distance.
False. This equation would be true if 7|| v || were replaced by | r ||| v ||.
False. Orthogonal nonzero vectors are linearly independent.
True.If x-u=0andx-v=0,thenx-(u—-v)=x-u-x-v=0.
True. This is the “only if” part of the Pythagorean Theorem in Section 6.1.
True. This is the “only if” part of the Pythagorean Theorem in Section 6.1 where v is replaced
by —v, because || —v ||’ is the same as || v||*.

False. The orthogonal projection of y onto u is a scalar multiple of u, not y (except when y
itself is already a multiple of u).
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Jj- True. The orthogonal projection of any vector y onto W is always a vector in W.

k. True. This is a special case of the statement in the box following Example 6 in Section 6.1 (and
proved in Exercise 30 of Section 6.1).

1. False. The zero vector is in both Wand W+,
m. True. See Exercise 32 in Section 6.2. If v;-v; =0, then
(c;v;)-(c;v)=cic;(v;-v;)=c;c;0=0.
n. False. This statement is true only for a square matrix. See Theorem 10 in Section 6.3.
o. False. An orthogonal matrix is square and has orthonormal columns.

p. True. See Exercises 27 and 28 in Section 6.2. If U has orthonormal columns, then U =11t
U is also square, then the Invertible Matrix Theorem shows that U is invertible and U A

In this case, UU T = I, which shows that the columns of U” are orthonormal; that is, the rows
of U are orthonormal.

q. True. By the Orthogonal Decomposition Theorem, the vectors proj, v and v —proj,, v are
orthogonal, so the stated equality follows from the Pythagorean Theorem.

r. False. A least-squares solution is a vector X (not AX) such that AX is the closest point to b
in Col A.

s. False. The equation X= (ATA)' A™b describes the solution of the normal equations, not the

matrix form of the normal equations. Furthermore, this equation makes sense only when ATA
is invertible.

2. If {v,,v,} is an orthonormal set and x =c¢,v, +¢,V,, then the vectors ¢,v, and c¢,v, are orthogonal
(Exercise 32 in Section 6.2). By the Pythagorean Theorem and properties of the norm
IxIP=llc,v, + v, IP=llev, [P+l evy IP= (e v, ID* + (e v, ID* e P+ [, P

So the stated equality holds for p = 2. Now suppose the equality holds for p = k, with k > 2. Let
{vy,..., ¥, } be an orthonormal set, and consider X =c¢,v, +...+ ¢, V, + ¢, Vi =W, + iy Viss

where u, =¢v, +...+¢,v,. Observe that u, and c,,,v,,, are orthogonal because V; - v;,; =0 for j
= 1,...,k. By the Pythagorean Theorem and the assumption that the stated equality holds for &, and
because || ¢ Vi 7= e Pll ven [P =l e P

IxIP=llu, + Vi IP=lug 1P+l e Vi P=le P+ Al e P

Thus the truth of the equality for p = k implies its truth for p = k + 1. By the principle of induction,
the equality is true for all integers p = 2.

3. Given x and an orthonormal set {V;,...,v,} in R", let X be the orthogonal projection of x onto the
subspace spanned by V...,V . By Theorem 10 in Section 6.3, X=(X" V)V, +...+(X-V,)V . By
Exercise 2, || X|* =|x- v, [ +...+|x- v, |* . Bessel’s inequality follows from the fact that
IX|]* <||x|*, which is noted before the proof of the Cauchy-Schwarz inequality in Section 6.7.

4. By parts (a) and (c) of Theorem 7 in Section 6.2, {Uv,,...,Uv, } is an orthonormal set in R". Since
there are n vectors in this linearly independent set, the set is a basis for R”.
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S.

6.

7.

8.

9.

10.

11.

CHAPTER 6 ¢ Orthogonality and Least Squares

Suppose that (U x)-(U y) = x-y for all x, y in R", and let e,,...,e, be the standard basis for R". For
j=1,...,n, Ue,; is the jth column of U. Since ||Ue, ||2:(Uej)-(Uej) =e;-e; =1, the columns of U

are unit vectors; since (Ue;)-(Ue,)=e;-e, =0 for j # k, the columns are pairwise orthogonal.

If Ux = Ax for some x # 0, then by Theorem 7(a) in Section 6.2 and by a property of the norm,
Ix||=| Ux||=||Ax || = | A ||| x ||, which shows that | A | = 1, because x # 0.

Let u be a unit vector, and let Q=1 —2uu’. Since (uu’ )’ =u" v’ =uu’,
O'=(I-2uu’) =1 -2’ =1-2uu’ =0

Then
00" =0* =(I -2uu’ )’ =1 —2un” - 2uu” +4(uu” )(uu")

Since u is a unit vector, w”'u=u-u=1, so (un’ )(uu’)=u@’ )(w)u’ =uu’, and
00" =1 -2uu’ —2uu’ +4un’ =71

Thus Q is an orthogonal matrix.

a. Suppose that x - y = 0. By the Pythagorean Theorem, ||x||* +||y [P=||x+y|I*. Since T preserves
lengths and is linear,
1T+ 1T IP= ITx+pIP= 1T +TW I
This equation shows that 7(x) and 7(y) are orthogonal, because of the Pythagorean Theorem.
Thus T preserves orthogonality.
b. The standard matrix of T'is [T(el) ... T(e, )] , where e,,...,e, are the columns of the identity
matrix. Then {T'(e,),...,T(e,)} is an orthonormal set because T preserves both orthogonality and

lengths (and because the columns of the identity matrix form an orthonormal set). Finally, a
square matrix with orthonormal columns is an orthogonal matrix, as was observed in Section 6.2.

Let W= Span{u, v}. Given z in R", let Z = proj,,z. Then Z is in Col A, where A= [u V]. Thus
there is a vector, say, X in R*, with AX=%. So, X is a least-squares solution of Ax = z. The normal

equations may be solved to find X, and then Z may be found by computing A .

Use Theorem 14 in Section 6.5. If ¢ # 0, the least-squares solution of Ax = cb is given by
(AT A)" A" (¢b), which equals c(ATA) AT, by linearity of matrix multiplication. This solution is

c times the least-squares solution of Ax = b.

T

X a 1 A4 1 =2 5
Let x=|y|, b=|b|, v=|-2|, and A=|v' |=|1 -2 5|. Then the given set of equations is
Z c 5 VT 1 -2 5

Ax = Db, and the set of all least-squares solutions coincides with the set of solutions of the normal

equations A" Ax=A"b. The column-row expansions of A"A and A™b give

ATA=w +w +w =3w  ATb=av+bv+cev=(a+b+c)v
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Thus A" Ax =3(vv" )x =3v(v' x) =3(V' X)Vv since v'x is a scalar, and the normal equations have

become 3(V'X)v=(a+b+c)v, so 3(V'X)=a+b+c, or vV x=(a+b+c)/3. Computing v’ x gives
the equation x — 2y + 5z = (a + b + ¢)/3 which must be satisfied by all least-squares solutions to Ax =
b.

The equation (1) in the exercise has been written as VA = b, where V is a single nonzero column
vector v, and b = Av. The least-squares solution A of VA = b is the exact solution of the normal
equations V' VA =V"b. In the original notation, this equation is v vA=v’ Av. Since v'v is
nonzero, the least squares solution A is vV Av/(v"'v). This expression is the Rayleigh quotient
discussed in the Exercises for Section 5.8.

a. The row-column calculation of Au shows that each row of A is orthogonal to every u in Nul A. So

each row of A is in (Nul A)*. Since (Nul A)* is a subspace, it must contain all linear
combinations of the rows of A; hence (Nul A)l contains Row A.

b. If rank A = r, then dimNul A = n — r by the Rank Theorem. By Exercsie 24(c) in Section 6.3,
dimNul A +dim(Nul A)* =n, so dim(Nul A)" must be r. But Row A is an r-dimensional

subspace of (Nul At by the Rank Theorem and part (a). Therefore, Row A =(Nul At

c. Replace A by Al in part (b) and conclude that Row A" =(Nul AT)*. Since Row A" =Col A,
Col A=(Nul A")™ .

The equation Ax = b has a solution if and only if b is in Col A. By Exercise 13(c), Ax=b has a
solution if and only if b is orthogonal to Nul A", This happens if and only if b is orthogonal to all

solutions of ATx=0.

If A=URU" with U orthogonal, then A is similar to R (because U is invertible and U T=U"),s0A
has the same eigenvalues as R by Theorem 4 in Section 5.2. Since the eigenvalues of R are its n real
diagonal entries, A has n real eigenvalues.

a. If U=[u1 u, ... un], then AU:[Xlul Au, ... Aun]. Since u, is a unit vector and
u,,...,u, are orthogonal to u,, the first column of U AU is U (Aju,)=AU"u, =\e,.

b. From (a),

}\’1 & * & %
UTAU =
: A
0
View U" AU as a2 x 2 block upper triangular matrix, with A, as the (2, 2)-block. Then from

Supplementary Exercise 12 in Chapter 5,
det(U" AU — A1) =det((A, —M)1,)-det(A — A1, ) =(A, —A)-det(A —M1, )
This shows that the eigenvalues of U" AU, namely, A,,...,A,, consist of A, and the eigenvalues

of A, . So the eigenvalues of A, are A,,...,A

>¥n
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17.

18.

19.

20.
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[M] Compute that || Ax ||/|| x || = .4618 and cond(A)x (|| Ab||/||b]]) =3363x(1.548x107*) =.5206.. In
this case, || Ax ||/|| x || is almost the same as cond(A) X || Ab ||/|| b ||.

[M] Compute that || Ax |[/|| x || = .00212 and cond(A) x (|| Ab |//|| b ||) = 3363 x (.00212) = 7.130. In
this case, || Ax ||/|| x || is almost the same as || Ab ||/|| b ||, even though the large condition number
suggests that || Ax ||[/|| x || could be much larger.

[M] Compute that || Ax||/||x|l=7.178x10™® and cond(A)x (|| Ab||/||b|]) =23683x(2.832x107*) =

6.707. Observe that the relative change in x is much smaller than the relative change in b. In fact the
theoretical bound on the relative change in x is 6.707 (to four significant figures). This exercise
shows that even when a condition number is large, the relative error in the solution need not be as
large as you suspect.

[M] Compute that || Ax ||/|| x || = .2597 and cond(A)x (|| Ab||/||b||) = 23683x(1.097x107°) =.2598 .

This calculation shows that the relative change in x, for this particular b and Ab, should not exceed
.2598. In this case, the theoretical maximum change is almost acheived.
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