Delft University of Technology, EEMCS faculty
Examination Mathematics 2, AESB1210 (test 2)
Friday, January 9th, 2015, 13.45-15.45

- It's not allowed to use a calculator or a mathematical table.
- Each answer should be clearly motivated.
- Your grade is obtained by rounding (score +4$) / 4$ to one decimal place.
- Points:

Ex. 1	4	Ex. 2	4	Ex. 3	3	Ex. 4	4	Ex. 5a	2
								Ex. 5b	2
								Ex. 5c	2
Ex. 6	4	Ex. 7	4	Ex. 8	3	Ex. 9	4		

1. Suppose a, b and c are real constants such that a is not zero and the system

$$
\begin{cases}x_{1}+x_{2}+x_{3} & =f \\ x_{1}+(a+1) x_{2}+3 x_{3} & =g \\ b x_{2}+c x_{3} & =h\end{cases}
$$

is consistent for all possible values of f, g and h. What does this imply for the numbers a, b and c ?
2. Find the solutions of the linear system whose augmented matrix is given by
$\left[\begin{array}{rrrrr|r}1 & -3 & 0 & -1 & 0 & -2 \\ 0 & 1 & 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1 & 9 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
3. Let $\underline{a}_{1}, \underline{a}_{2}$ and \underline{a}_{3} be vectors in \mathbb{R}^{n} such that $5 \underline{a}_{2}=2 \underline{a}_{1}-4 \underline{a}_{3}$ and $A=\left[\underline{a}_{1} \underline{a}_{2} \underline{a}_{3}\right]$, so $\underline{a}_{1}, \underline{a}_{2}$ and \underline{a}_{3} are the columns of matrix A. Find a solution of the homogeneous linear $\operatorname{system} A \underline{x}=\underline{0}$. (Hint: recall the definition of the product of a matrix and a vector)
4. Determine the value(s) of a such that $\left\{\left[\begin{array}{l}1 \\ a\end{array}\right],\left[\begin{array}{l}a \\ a+2\end{array}\right]\right\}$ is linearly independent.
5. Let $A=\left[\begin{array}{rrr}1 & -5 & -7 \\ -3 & 7 & 5\end{array}\right]$ and let T be the corresponding matrix transformation.
a. Find all vectors \underline{x} that are mapped into $\underline{0}$ by transformation T (so find the null space of T).
b. Is transformation T onto?
c. Is transformation T one-to-one?
6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation that first reflects vectors about the $x_{1} x_{2}$ - plane and then rotates vectors about the x_{2} - axis through π radians. Find the standard matrix of T.
7. Determine a and d such that matrix $A=\left[\begin{array}{ll}a & 0 \\ 1 & d\end{array}\right]$ has the property $A^{2}=A$.
8. Find $x \in \mathbb{R}$ such that $\left[\begin{array}{rr}2 x & 7 \\ 1 & 2\end{array}\right]^{-1}=\left[\begin{array}{rr}2 & -7 \\ -1 & 4\end{array}\right]$.
9. Prove or disprove: if A is an $2 \times 2-$ matrix such that $A^{2}=0$ then $A=0$ (of course by
0 is meant the zero marix with 0 is meant the zero marix with size 2×2).

