Mathematics 1 AESB1110: Answers for Exam 1

September 26, 2014

1. Given the points $A(1,1,3), B(3,1,1)$, and $C(1,3,1)$:
(a) Find the angle $\angle A B C$
total 1 p .

Answer: Create two vectors $\underline{B A}$ and $\underline{B C}$:

$$
\begin{align*}
& \underline{B A}=\langle 1-3,1-1,3-1\rangle=\langle-2,0,2\rangle \\
& \underline{B C}=\langle 1-3,3-1,1-1\rangle=\langle-2,2,0\rangle \tag{1/2}
\end{align*}
$$

Use the dot-product formula to compute the cosine of the angle:

$$
\begin{aligned}
\cos \varphi & =\frac{\underline{B A} \cdot \underline{B C}}{|\underline{B A}||\underline{B C}|}, \\
\underline{B A} \cdot \underline{B C} & =-2(-2)+0(2)+2(0)=4, \\
|\underline{B A}| & =\sqrt{(-2)^{2}+0^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}, \\
|\underline{B C}| & =\sqrt{(-2)^{2}+2^{2}+0^{2}}=\sqrt{8}=2 \sqrt{2}, \\
\cos \varphi & =\frac{4}{2 \sqrt{2}(2 \sqrt{2})}=\frac{1}{2}, \\
\varphi & =\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}\left(\text { or } 60^{\circ}\right)
\end{aligned}
$$

Leaving $\sqrt{8}$ instead of $2 \sqrt{2}$ is OK.
(b) Find the area of the triangle $A B C$
total 1 p .
Answer: Use the length of the cross product of the vectors $\underline{B A}$ and $\underline{B C}$:

$$
\begin{align*}
\underline{B A} \times \underline{B C} & =\langle-2,0,2\rangle \times\langle-2,2,0\rangle \\
& =\langle 0(0)-2(2),-2(2)-(-2) 0,-2(2)-0(-2)\rangle \\
& =\langle-4,-4,-4\rangle \quad(\text { or the opposite vector }) \tag{1/2}
\end{align*}
$$

$$
\begin{align*}
|\underline{B A} \times \underline{B C}| & =\sqrt{(-4)^{2}+(-4)^{2}+(-4)^{2}}=\sqrt{3(16)}=4 \sqrt{3} \\
S_{\triangle A B C} & =\frac{1}{2}|\underline{B A} \times \underline{B C}|=2 \sqrt{3} \tag{1/2}
\end{align*}
$$

Not simplifying $\sqrt{48}$ as $4 \sqrt{3}$ is OK. Geometrical construction instead of the cross-product formula is worth 0.5 p .
(c) Give the equation of the plane passing through these points

total 1 p .

Answer: Equation of the plane passing through point $P\left(x_{0}, y_{0}, z_{0}\right)$ and having the normal vector $\underline{n}=\langle a, b, c\rangle$ is:

$$
\begin{equation*}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \tag{1/2}
\end{equation*}
$$

Take one of the points, say $A(1,1,3)$, and $\underline{n}=\underline{B A} \times \underline{B C}$. Then, the equation of the plane is

$$
\begin{equation*}
-4(x-1)-4(y-1)-4(z-3)=0 \tag{1/2}
\end{equation*}
$$

The negative of this equation, or a different reference point are all OK.
(d) Consider the plane passing through the point A and having the normal vector $\underline{A B}$. Find the angle between this plane and the plane constructed in (c)?
total 1 p .
Answer: The angle between the planes is the angle between their normal vectors.

The plane constructed in (c) has the normal vector $\underline{B A} \times \underline{B C}$. This vector is orthogonal to both $\underline{B C}$ and $\underline{B A}$ (and $\underline{A B}=-\underline{B A}$ as well). Hence, the planes are orthogonal (the angle between them is $\pi / 2)$. Also OK, if the angle was computed via the dotproduct formula.
2. Simplify :

$$
f(x)=\sin \left(\cos ^{-1}(x)\right)
$$

Answer: Let $\cos ^{-1}(x)=y$. Then, $x=\cos y$.
We are looking for $\sin y$. But $\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}}$. Hence,

$$
\begin{equation*}
\sin \left(\cos ^{-1}(x)\right)=\sqrt{1-x^{2}} \tag{1/2}
\end{equation*}
$$

Geometrical construction instead of this algebraic one is worth $1 / 2 \mathrm{p}$ only.
3. Given the function:
total 1 p .

$$
g(x)= \begin{cases}x^{3}-1, & x<2 \\ a, & x=2 \\ \frac{x^{2}+3 x-10}{x-2}, & x>2\end{cases}
$$

find the value of the constant a for which $g(x)$ is continuous on \mathbb{R}.

Answer: A function $g(x)$ is continuous at a iff

$$
\lim _{x \rightarrow a} g(x)=g(a)
$$

The branches of the function are polynomials and therefore continuous on their domains. It remains to analyze the point $x=2$. Computing the value and the left and right limits of $g(x)$ at $x=2$ we get

$$
\begin{align*}
g(2) & =a \tag{1/2}\\
\lim _{x \rightarrow 2^{-}} g(x) & =\lim _{x \rightarrow 2^{-2}}\left(x^{3}-1\right)=2^{3}-1=7 \\
\lim _{x \rightarrow 2^{+}} g(x) & =\lim _{x \rightarrow 2^{+}} \frac{x^{2}+3 x-10}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+5)}{x-2} \\
& =\lim _{x \rightarrow 2^{+}}(x+5)=2+5=7
\end{align*}
$$

Hence, for the continuity of $g(x)$ at $x=2$ and thus on \mathbb{R} to hold we need to choose $a=7$.
4. Evaluate the following two limits:

$$
\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right), \quad \text { and } \quad \lim _{x \rightarrow 1} \frac{\sin (1-x)}{x-1}
$$

Answer: For the first limit we use the Squeeze Theorem:

$$
\begin{align*}
& -1 \leq \sin \left(\frac{1}{x}\right) \leq 1 \\
& -x^{4} \leq x^{4} \sin \left(\frac{1}{x}\right) \leq x^{4} \\
& \lim _{x \rightarrow 0}\left(-x^{4}\right)=0=\lim _{x \rightarrow 0} x^{4} \\
& \lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)=0 \tag{1}
\end{align*}
$$

For the second limit we use the l'Hospital rule:

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{\sin (1-x)}{x-1}=\lim _{x \rightarrow 1} \frac{-\cos (1-x)}{1}=-\cos 0=-1 \tag{1}
\end{equation*}
$$

5. (a) Find y^{\prime} from the following implicit definition of $y(x)$:

$$
e^{y} \cos (x)=1+\sin (x y)
$$

Answer:

$$
\begin{align*}
& \left(e^{y} \cos (x)\right)^{\prime}=(1+\sin (x y))^{\prime} \\
& \left(e^{y}\right)^{\prime} \cos (x)+e^{y}(\cos (x))^{\prime}=(1)^{\prime}+(\sin (x y))^{\prime} \\
& y^{\prime} e^{y} \cos (x)-e^{y} \sin (x)=\cos (x y)(x y)^{\prime} \\
& y^{\prime} e^{y} \cos (x)-e^{y} \sin (x)=\left(y+x y^{\prime}\right) \cos (x y) \tag{1/2}
\end{align*}
$$

$$
\begin{aligned}
& y^{\prime} e^{y} \cos (x)-x y^{\prime} \cos (x y)=e^{y} \sin (x)+y \cos (x y) \\
& y^{\prime}\left(e^{y} \cos (x)-x \cos (x y)\right)=e^{y} \sin (x)+y \cos (x y) \\
& y^{\prime}=\frac{e^{y} \sin (x)+y \cos (x y)}{e^{y} \cos (x)-x \cos (x y)}
\end{aligned}
$$

(b) Prove that
total 1 p .

$$
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}
$$

Answer: Using implicit differentiation on the equivalent function $\sin (y)=x:$

$$
\begin{align*}
& (\sin (y))^{\prime}=x^{\prime} \tag{1/2}\\
& y^{\prime} \cos (y)=1 \\
& y^{\prime}=\frac{1}{\cos (y)}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}} \tag{1/2}
\end{align*}
$$

