Mathematics 1 AESB1110-15: Test 1 - ANSWERS

October 30, 2016

Rules:

- No points are assigned for a question if only the final answer is given without any intermediate steps (except Question 4).
- Subtract 0.25 p . for the first occurrence of an arithmetic error. Do not subtract further points if the same error 'propagates' into subsequent calculations.

Question 1: Simplify: $\sin \left(\tan ^{-1}(x)\right)$

Answer:

$$
\begin{aligned}
& \tan ^{-1}(x)=y \Leftrightarrow \tan (y)=x \Rightarrow \sin \left(\tan ^{-1}(x)\right)=\sin (y)=? ;+1 p . \\
& \tan (y)=\frac{\sin (y)}{\cos (y)}=x \text { and } \sin ^{2}(y)+\cos ^{2}(y)=1 ; \\
& \sin (y)=x \cos (y) \text { and } x^{2} \cos ^{2}(y)+\cos ^{2}(y)=1 \Rightarrow\left(x^{2}+1\right) \cos ^{2}(y)=1 ; \\
& \sin (y)=x \cos (y) \text { and } \cos ^{2}(y)=\frac{1}{1+x^{2}} \Rightarrow \cos (y)=\frac{1}{\sqrt{1+x^{2}}} \\
& \sin \left(\tan ^{-1}(x)\right)=\sin (y)=x \cos (y)=\frac{x}{\sqrt{1+x^{2}}}+1 p .
\end{aligned}
$$

Give $1.5 p$. if the problem is solved geometrically.

Question 2: Given the function

$$
f(x)= \begin{cases}\frac{x^{4}-1}{1-x} & \text { if } x \neq 1 \\ a & \text { if } x=1\end{cases}
$$

for what value of a is $f(x)$ continuous at $x=1$?
Answer: $f(x)$ is continuous at $x=1$ iff $\lim _{x \rightarrow 1} f(x)=f(1)+0.5 p$.
$f(1)=a ; \quad+0.5 p . ; \quad f(x)$ is the same for $x \rightarrow 1^{-}$and $x \rightarrow 1^{+}$, so:
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{4}-1}{1-x}=\left[\right.$ e.g. l'Hospital, since $\left.\frac{0}{0}\right]=\lim _{x \rightarrow 1} \frac{4 x^{3}}{-1}=-4, \quad+0.5 p$.
Computing $x \rightarrow 1^{-}$and $x \rightarrow 1^{+}$limits separately is also OK
$\lim _{x \rightarrow 1} f(x)=f(1)$, i.e., $f(x)$ is continuous at $x=1, \quad$ iff $\quad a=-4 . \quad+0.5 p$.

Question 3: Use (a) the definition of inverse function and (b) implicit differentiation to prove that

$$
\left[\cos ^{-1}(x)\right]^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}
$$

Answer:

$$
\begin{aligned}
& \text { (a) } \cos ^{-1}(x)=y \quad \Leftrightarrow \quad x=\cos (y) ;+0.75 p . \\
& \text { (b) }(x)^{\prime}=[\cos (y)]^{\prime} \Rightarrow 1=-\sin (y) y^{\prime} \Rightarrow+0.75 p . \\
& y^{\prime}=-\frac{1}{\sin (y)}=-\frac{1}{\sqrt{1-\cos ^{2} y}}=-\frac{1}{\sqrt{1-x^{2}}}+0.5 p .
\end{aligned}
$$

Question 4: Differentiate the following function:

$$
y(x)=\frac{1}{\cos ^{-1}(x)}
$$

Answer:

$$
\begin{aligned}
y^{\prime} & =-\frac{1}{\left[\cos ^{-1}(x)\right]^{2}}\left[\cos ^{-1}(x)\right]^{\prime}+1 p . \\
& =\frac{1}{\left[\cos ^{-1}(x)\right]^{2} \sqrt{1-x^{2}}}++1 p .
\end{aligned}
$$

Question 5: Use linear approximation to estimate 1.001^{100}
Answer:

$$
\begin{aligned}
& f(x) \approx L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)++0.5 p . \\
& f(x)=x^{100} ; \quad x=1.001 ; \quad x_{0}=1 \quad+0.5 p . \\
& f\left(x_{0}\right)=f(1)=1^{100}=1 ; \quad f^{\prime}(x)=100 x^{99} ; \quad f^{\prime}\left(x_{0}\right)=f^{\prime}(1)=100 ; \quad+0.5 p . \\
& 1.001^{100} \approx 1+100(1.001-1)=1+0.1=1.1 \quad+0.5 p .
\end{aligned}
$$

