VIII. Turbulence

A. review of where we've been

- · laminar flow, rectilinear streamlines
- · role of convection terms in momentum balance:
 - no convection across streamlines
 - convection terms along streamlines cancel
 - no convection bein in final balance equation
- solutions apply for Re < some limit; what happens at large Re?
- · from here on, adios to non-Newtonian fluids

B. nature of turbulence

· Mixing of momentum throughout the volume of Fluid, which means that high momentum Pluid and low momentum Pluid are brought to the wall.

C. consequences of turbulence

- · v fluctuates with time Pluctuates intime + space "chaotic"
- significant fluctuations in \vec{v} across average streamlines:
 - convection of momentum across average streamlines:
 - greatly increases rate of momentum transport to the wall.
- must use time-average \vec{v} in equations $\langle v \rangle$ (might lose brackets later)
 - time-average \vec{v} is nearly uniform across tube in tube flow
- · too complex for analytical solution

D. results from dimensional analysis

Should be able to relate

OLD CV2 to D CV2

formalize concept in "friction factors"